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Abstract. In the present work we present INMOST, the programming
platform for mathematical modelling and its application to a couple of
practical problems. INMOST consists of a number of tools: mesh and
mesh data manipulation, automatic differentiation, linear solvers, sup-
port for multiphysics modelling. The application of INMOST to black-oil
reservoir simulation and blood coagulation problem is considered.
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1 Introduction

Nowadays the necessity in parallel modelling of complex phenomena with mul-
tiple stiff physical processes is very acute. This puts a significant burden on the
programmer who has not only to cope with various computational methods but
also to manage the unstructured grid, data exchanges with MPI, assembly of
large distributed linear systems, solve the resulting linear and nonlinear systems
and finally postprocess the result. The INMOST [1] is an open-source library
that alleviates the most of the complexity from the programmer and provides a
unified set of tools to address each of the aforementioned issues. We have used
the INMOST platform to implement the fully implicit black-oil reservoir model
and fully coupled and implicit blood coagulation problem. The black-oil reser-
voir model involves simultaneous solution of three Darcy laws that describe the
mixture of water, oil and gas. The blood coagulation model couples the Navier-
Stokes equations with a Darcy term and nine additional advection-diffusion-
reaction equations that participate in reactive cascade during coagulation of the
blood. The numerical results for both models are presented.

Among notable alternatives for multiphysics modelling, commercial are
COMSOL [2], ANSYS Fluent [3], Star-CD [4] and open-source are Dumux [5],
OPM [6], Elmer [7], OOFEM [8], OpenFOAM [9], SU2 [10], CoolFluid [11] and
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many others. A comparison of some of these packages is available in [12]. Per-
spectives for multiphysics software are discussed in [13]. Should be noted, that all
of these packages provide modelling environment with integrated set of compu-
tational methods. The methods are implemented with certain assumptions and
has certain limitations on physics, time stepping and couplings. An attempt to
apply OpenFOAM package to blood coagulation model didn’t allow to simulate
the problem in reasonable time due to impossibility to construct fully-coupled
approach from provided methods.

At present INMOST does not contain integrated computational methods
but provides a programming platform to implement them. Among program-
ming platforms the notable alternatives are Dune [17], Trilinos [15] and PETSc
[14]. Dune is famous for distributed mesh management. Trilinos and PETSc are
famous for a collection of built-in parallel linear solvers and seamless integra-
tion of third-party linear solvers; both also provide excellent nonlinear solvers,
but rely on third party libraries for mesh management. Trilinos provides Sacado
package for automatic differentiation. The framework for coupling of multiple
physics modules is under active development in Dune (within Dumux project
[5]) and in Trilinos (wihtin Amanzi project [41]) Functionality of all of these
packages could be successfully used in large extent to build a simulator. The
first version of the black-oil simulator reported in this work was based on linear
and nonlinear solvers from PETSc and our own mesh management tool.

There is a number of C/C++ libraries that solve a particular task. For
mesh management there are MSTK, MOAB, libMesh, FMDB and many other
libraries. For linear system assembly and solution there are Trilinos, PETSc,
SuperLU, MUMPS, Hypre and many others. For automatic differentiation there
are Sacado (Trilinos), ADOL-C, FAD, ADEL, Adept and so on. For nonlinear
solvers there are Trilinos, PETSc, SUNDIALS, Ipopt, Snopt and so on. For lin-
ear algebra integration there is Eigen library. The advantage of using separate
tools could be in a greater level of maturity of popular libraries, the disadvantage
is the absence of tight integration that is inevitably needed for construction of
multiphysics framework.

2 Mesh and Data

The algorithms and functionality that form the basis of mesh manipulation mod-
ule in INMOST were previously reported in [19,20,22]. Parallel mesh refinement
instruments were reported in [21]. We develop further the mesh modification
functionality to support general mesh modification and synchronization in par-
allel and to preserve layers of ghost cells minimizing computational work.

The primary functionality required in this work are:

– load a mesh and associated data;
– compute partitioning of the mesh;
– redistribute the mesh;
– build multiple layers of ghost cells;
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– access mesh elements, status of elements, mesh data;
– save the results in parallel VTK format.

Among novel functionalities of the mesh module we mention two novelties.
First, the support of the Eclipse simulator mesh format grdecl is used in the
INMOST black-oil reservoir model. Second, the ability to store on a mesh data
containing partial derivatives is used in the implicit computation of a Jacobian
matrix by the module of Automatic differentiation.

3 Automatic Differentiation

The algorithms used in the automatic differentiation module were previously
reported in [21]. The basis for the module are:

– a C++ class ‘variable’ to represent a value of function with its first order
partial derivatives;

– expression templates that form a templated tree of classes corresponding to
operations on variables;

– a C++ class ‘variable expression’ that can store expression template and
evaluate it on demand;

– a dense linked-list structure ‘Sparse::RowMerger’ is used for fast addition of
sparse vectors, corresponding to the partial derivatives;

A novel functionality of INMOST is a templated class ‘Matrix’ from the dense
linear algebra module that allows for operations on dense matrices of values
with specified type. Many ‘blas’ and ‘lapack’ operations are implemented in this
class: sub-matrix access, addition, subtraction, multiplication, system solution,
matrix inversion, singular value decomposition, pseudo-solve and pseudo-inverse
and so on. The whole functionality is supported for matrices consisting first
partial derivatives values. A set of simple rules prescribes the outcome when
two matrices with different types of elements are involved in operations, e.g.
multiplication of a matrix of doubles with a matrix of ‘variable’s results in a
matrix of ‘variable’s). This functionality is heavily used in the blood coagulation
model, see Sect. 7.

To connect the mesh data and the automatic differentiation, we introduce
an ‘Automatizator’ class. An ‘AbstractEntry’ sub-class allows to group the mesh
data into blocks of unknowns and register them with the object of the ‘Autom-
atizator’ class. An index data is created and associated to each entry of a block
of unknowns and enumeration for unknowns is performed on every mesh ele-
ment containing the data related to the unknowns. Each block is enumerated
consequently on each element of the mesh. This leads to the block-structured
organization of the Jacobian matrix. Based on this, one can split the Jacobian
matrix into blocks of physical processes and apply multigrid linear solvers [23–
26] to blocks. In the future the information of the block structure of the matrix
will be transfered to linear solvers.
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The main functionality of the ‘AbstractEntry’ class covers:

– Value provides on mesh element a matrix of values of unknowns;
– Unknown provides on mesh element a matrix of partial derivatives values;
– Index provides on mesh element a matrix of indices of unknowns, these indices

are positions of unknowns in the Jacobian matrix;
– MatrixSize determines the size of the returned matrix.

Each value, unknown and index can be accessed individually if it is undesirable
to get the whole matrix, the assembly of the matrix is being avoided in this case.

Various scenarios of unknowns organization is covered by sub-classes with
extended functionality:

– ‘SingleEntry’ is unknown as a single entry of datum on mesh elements;
– ‘VectorEntry’ is unknown as multiple entries of datum on mesh elements

(possibly with variable length);
– ‘BlockEntry’ is unknown as fixed size data on mesh elements;
– ‘StatusBlockEntry’ allows to change the status of unknowns in the block;
– ‘MultiEntry’ is a union of entries of different types, e.g., an object of ‘Sin-
gleEntry’ can be used together with an object of ‘VectorEntry’.

Each of these sub-classes is inherited from the ‘AbstractEntry’ class and retains
the original functionality.

To facilitate the assembly of the residual vector and the Jacobian matrix, we
introduced a ‘Residual’ class. This class contains a sparse matrix and a residual
vector (classes ‘Sparse::Matrix’ and ‘Sparse::Vector’, respectively). During the
assembly stage a sparse matrix is stored in INMOST as a set of sparse vectors
corresponding to rows of the matrix (class ‘Sparse::Row’). Each sparse vector is
expandable and allows fast modifications. It is the same vector that is used to
store partial derivatives values in the automatic differentiation module.

When an object of the class ‘Residual’ is accessed by its index (as an array via
square brackets a[i]), an object of the class ‘variable reference’ with references
to corresponding entry in the residual vector and the row in the sparse matrix is
returned. The object of this class can enter expression templates from automatic
differentiation module and thus allows for all the same operations as an object of
the ‘variable’ class. Assignment to an object of this class results in modification
of the sparse matrix and the residual vector stored in the object of the ‘Residual’
class.

On top of that, an object of the class ‘Residual’ can be accessed by a matrix
of indices (i.e. a[I] where I is the matrix), then it returns a matrix with the type
‘variable reference’. On assignment the underlaying sparse matrix and residual
vector are modified in the block-structured fashion. In the future we shall intro-
duce block-structured sparse matrices and use them in the ‘Residual’ class to
take advantage of the fast block-structured assembly.

All of this allows for seamless integration between the automatic differenti-
ation module and the sparse linear algebra module. The next user’s step is to
solve the arising distributed linear system.
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4 Linear Solver

INMOST linear solver module provides integration of multiple open-source solver
libraries: Trilinos [15], PETSc [14], SuperLU [16]. It also contains a number of
integrated solvers. Certain comparison of linear solvers was provided in [21]. One
of the most widely used solvers is described below.

We solve the problem using preconditioned iterative method BiCGStab(L)
[27]. This method makes L BiCG steps and fits a polynomial function to accel-
erate convergence of preconditioned residual to zero value.

The Additive Schwarz method with a prescribed overlap is used for the par-
allelization of the preconditioner.

For each local matrix extended by the overlap, we use the Crout-ILU method
[28] with the dual threshold τ, τ2 [29]. During elimination we estimate the con-
dition number of the inverse factors |L−1| and |U−1| and adjust both thresholds
accordingly to [31].

Before the elimination step, the matrix is preprocessed by reordering and
rescaling in three steps. First, we maximize the product on the diagonal using the
Dijkstra algorithm [33,34]. Second, we use the reverse Cuthill-Mckee algorithm
to reduce the fill-in. At last, we use a rescaling to balance the second norms of
all rows and all columns to unity [30].

In the future we plan to add local 2 × 2 pivoting [35], block-structured elim-
ination and OpenMP parallelization [32].

5 Multiphysics

At present, INMOST contains trial implementation of the multi-physics module.
The idea of the module is to provide basic functionality that allows one to
split the problem into physical processes. Each physical process is responsible
for a subset of unknowns and assembly of equations corresponding to these
unknowns. Such a physical process is represented by an ‘AbstractSubModel’ class.
The programmer has to inherit from this class and implement the following
functions:

– ‘PrepareEntries’ introduces unknowns of a process to the model;
– ‘FillResidual’ computes the residual for the process;
– ‘UpdateMultiplier’ performs backtracking of an update to meet constraints;
– ‘UpdateSolution’ updates unknowns during nonlinear iterations;
– ‘UpdateTimeStep’ proceeds to the next time step;
– ‘AdjustTimeStep’ computes an optimal time step for the process;
– ‘RestoreTimeStep’ returns back in case of nonlinear solver failure.

Coupling between two physical processes introduces coupling terms into equa-
tions involving unknowns of both processes. This requires access to unknowns
and equations of both processes.

Everything is managed by an object from a ‘Model’ class. It incorporates
an object of the ‘Automatizator’ class and named arrays of meshes, entries of
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unknowns, sub-models and couplings. The coupling is represented by ‘Abstract-
Coupling’ that has functions ‘PrepareEntries’ and ‘FillResidual’.

This module uses heavily all the previously introduced modules and a nonlin-
ear solver module which should guide the convergence of the multiphysics model
to the solution. The latter module is not implemented in public repository yet.

6 Black-Oil Model

For the black-oil model we assume that the mixture of water, oil and gas fills
all the voids, i.e. So + Sw + Sg = 1, the mixture in the heterogeneous porous
media is guided by the Darcy law with capillary pressure (Fig. 1). There are three
unknowns in the model: the water pressure p, the oil saturation So and either
the gas saturation Sg or the bubble point pressure pb depending on whether the
gas phase is present or is fully dissolved in the oil phase, respectively. The oil and
gas pressures are connected to water pressure p through the capillary pressures
Pco and Pcg. The system of equations takes the form:

Fig. 1. An example of water injection into reservoir with real structure featuring layered
heterogeneous media.

∂ρwθSw

∂t
−∇ · λwK (∇p − ρwg∇z) = qw,

∂ρoθSo

∂t
−∇ · λoK (∇p − ∇Pco − ρog∇z) = qo,

∂ρgoθSo + ρgθSg

∂t
−∇ · λgK (∇p + ∇Pcg − ρgg∇z)

−∇ · λgoK (∇p + ∇Pcg − ρgog∇z) = qg.

(1)

The equations are nonlinear due to the dependence of all the terms on
unknowns of the problem. Here θ(p) is the porosity of the media, ρα(p) is the
density of phase α, ρgo(pb) = ρg(pb)Rs(pb) is the density of gas dissolved in
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oil, Rs(pb) describes the solubility of gas in the oil at a given bubble point
pressure pb, λα(p, Sα) = ρα(p)krα(Sα)

μα(p) is the mobility of phase α that accounts

change in density, relative permeability and viscosity, λgo(pb) = ρgo(pb)krg(Sg)
μg(pb)

is
the mobility for gas dissolved in oil phase, Pco(So) and Pcg(Sg) are capillary
pressures for oil and gas phase, respectively, qα is the source or sink for phase α
(conventionally the Peacman’s well formula is used).

We use a nonlinear two-point flux approximation method [36,37] to calcu-
late Darcy velocity K(∇ . . . ) terms. Once the velocity is obtained, a single point
upstream discretization is used for the mobility. The whole system is approxi-
mated in the fully implicit manner by the backward Euler time-stepping method.

At each time step, the nonlinear system is solved by the Newton method.
If on nonlinear iteration l the gas fully dissolves into oil ˜Sl

g < 0 or the gas is
emitted p̃l

b > p, we solve a local nonlinear problem on the bubble point pressure
pl

b: ρgo

(

pl
b

)

Sl
o = ρgo

(

pl
)

Sl
o + ρg(pl)˜Sl

g or on amount of the emitted gas Sl
g:

ρgo

(

p̃l
b

)

Sl
o = ρgo

(

pl
)

Sl
o + ρg(pl)Sl

g, respectively. This step allows us to obtain
physically reasonable quantities for the bubble point pressure and the released
gas on the state switch. We also consider the same model without the gas phase,
i.e. Sg = 0 and the last equation is not considered.

7 Blood Coagulation

The dynamics of the blood plasma in the present work is described by the incom-
pressible Navier-Stokes equations with a Darcy permeability term (Fig. 2):

Fig. 2. An example of clot formation in the vessel.

⎧

⎨

⎩

∂ρu
∂t

+div
(

ρuuT − μ∇u + pI
)

= − 1
Kf

u,

divu = 0.

(2)

The density ρ and viscosity μ are assumed to be constant. The equations (2)
are coupled to the following concentrations of reactive components in the flow:
prothrombin PT , thrombin T , anti-thrombin A, blood clotting factor FX Ba,
fibrin F , fibrinogen Fg, fibrin polymer Fp, free platelets φf in the flow, platelets
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φc trapped in the clot. All the components except for the fibrin polymer and
platelets satisfy the advection-diffusion equation: ∂C

∂t + ∇ · (Cu − D∇C) = RC

for a component C. The platelets satisfy the nonlinear advection-diffusion equa-
tion ∂C

∂t + ∇ · k(φc) (Cu − Dc∇C) = RC with k(φc) = tanh (π(1 − φc/φmax)),
C = φf , φc. Polymerised fibrin does not move with the flow. The set of kinetic
reactions between components of the flow is taken from [40]. The parameter Kf

(2) describes the formation of porous media due to fibrin polymer and platelets
similar to [40].

All the unknowns (velocity vector u, pressure p and all the additional compo-
nents) are collocated at the centres of the cells. For the advection and diffusion
terms we use the second order finite-volume approximation, the inertia term is
being approximated nonlinearly. Collocation of velocities and pressures at cell
centers requires special stabilization for discretization of the flux related to the
gradient of pressure and divergence of velocity. The finite volume discretization
results in a system composed of 13 unknowns and equations per computational
cell. The whole system is solved simultaneously in the implicit manner by the
BDF2 time-stepping scheme.

8 Numerical Results

For the black oil model we use the secondary recovery problem on the Norne
field [39] with one injection well and two production wells. The problem runs for
100 modelling days with at maximum 1 day step. The partition of the mesh is
demonstrated in Fig. 3 (left). The parameters are taken from SPE9 test. For the
blood coagulation model we simulate 15 seconds of the clot formation observed in
the experiment [38]. The partition of the mesh is demonstrated in Fig. 3 (right).
The parameters are taken from [40].

Fig. 3. Partitioning of the computational mesh among processors, the black-oil model
on the Norne field (left), the blood coagulation model in a cylindric vessel corresponding
to experiment [38].

In both problems the number of overlap layers in the mesh was set to 2 for
assembly of fluxes and in additive Schwartz method was set to 1, the solver
dropping parameters are τ = 10−2 and τ2 = 10−3.
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Table 1. Performance of the models on different numbers of processors.

Two-phase model

Processors Assembly Solution Total Equations

1 1028 - 1544 - 2581 - 89830

8 172 6x 383 4x 558 5x 11229

16 89 12x 255 6x 345 8x 5615

32 53 20x 135 12x 189 14x 2808

64 30 35x 71 22x 101 26x 1404

128 19 55x 65 24x 84 31x 702

Three-phase model

Processors Assembly Solution Total Equations

1 2783 - 5368 - 8171 - 134745

8 449 6x 3295 2x 3749 2x 16844

16 252 11x 1656 3x 1911 4x 8422

32 152 19x 472 11x 626 13x 4211

64 88 32x 325 17x 415 20x 2106

128 59 47x 154 35x 213 38x 1053

Blood clotting model

Processors Assembly Solution Total Equations

1 2781 - 2156 - 4938 - 318500

8 461 6x 214 10x 680 7x 39812

16 253 11x 117 18x 373 13x 19906

32 148 19x 80 27x 234 21x 9954

64 90 31x 46 47x 141 35x 4977

128 46 60x 29 74x 77 64x 2489

The performance of the models is demonstrated in Table 1. Results indicate
that the clotting model scales very well with the growth of the number of pro-
cessors. This happens due domination of reactions, the problem is hyperbolic
due to low viscosity of blood plasma. As a result the solver behaves very good.

On contrary the black oil problem contains strong elliptic component and
the performance of linear solver deteriorates faster. For good performance this
problem require a specific solver [25] that can extract elliptic part of the problem
and apply multi-grid on it. In this problem the assembly of the matrix does not
ideally scale, since we have to perform certain operations on overlap which may
become significant with large number of processors. Still it remains reasonable
to increase number of processors to reduce total computational time.

The calculations were performed on cluster of INM RAS [18], we run the job
on nodes with different types of processors.
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9 Conclusion

We have presented briefly the open-source platform INMOST for parallel math-
ematical modelling. The platform allows to greatly facilitate programming of
complex coupled models. Parts of the INMOST platform are still under active
development. In the future we plan to advance the multiphysics tools for the
solution of nonlinear systems of equations and abstractions for seamless modu-
lar integration of independent physical models.
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