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ON ELLIPTICITY OF HYPERELASTIC MODELS
RESTORED BY EXPERIMENTAL DATA

V. Yu. Salamatova and Yu. V. Vasilevskii UDC 539.3

Abstract. The condition of ellipticity of the equilibrium equation plays an important role for the
correct description of the mechanical behavior of materials and is a necessary condition for new con-
stitutive relations. Earlier, new deformation measures were proposed to remove correlations between
the terms, which dramatically simplifies restoration of constitutive relations from experimental data.
One of these new deformation measures is based on the QR-expansion of deformation gradient. In this
paper, we study the strong ellipticity condition for hyperelastic material using the QR-expansion of
deformation gradient.
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Introduction

Solving problems of the mechanics of deformable solid bodies based on principles of continuum me-
chanics, one has to give the constitutive relation setting the dependence of stresses on the deformation
(see [19]). The constitutive relation entirely determines the mechanical behavior of the investigated
material; it is an equation closing the system of equations describing the motion of a deformable body.
Formulations of new biomedical problems led to the interest in constructing and investigating various
kinds of constitutive relations for soft human tissues.

Approaches to the nonlinear elasticity theory are used to describe the mechanical behavior of soft
tissues (see [9]). Usually, a model of hyperelastic materials is used, assuming the existence of an elastic
potential entirely determining the kind of the constitutive relation (see [9, 14]). A large amount of
papers are devoted to the constructing of constitutive relations for soft tissues. However, there is no
unified rule to select the correct constitutive relation. The standard approach to the construction of
constitutive relations is as follows: the kind of constitutive relation is selected (from a pool of already
known models) a priori, while the parameters of the model are found by means of the fitting method
based on the experimental data available for the investigated material.

The kind of constitutive relations depends mainly on the definition of the deformation measure.
Currently, several deformation measures are proposed (see [13]). The Cauchy–Green deformation
measure is generally accepted for the description of soft tissues. In [2], it is shown that the use of
invariants of this deformation measure for the setting of the constitutive relation leads to the correlation
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of terms of the constitutive relation; in the framework of the standard approach to the construction
of the constitutive relation, this causes problems in the processing of results of experiments for the
determination of the parameters of the model. There are papers [3, 12, 18] where other deformation
measures were used for the construction of constitutive relations to avoid such correlations. The
absence of correlations allows one to find the so-called response functions, which are the corresponding
derivatives of the elastic potential, directly by the experimental data; then the kind of constitutive
relations is not set a priori, but is restored via the response functions. For the first time, the approach
using response functions was proposed in [16]. It was developed by Humphrey [10] for the case of
biomembranes. The use of constitutive relations with noncorrelating terms in the framework of the
approach with response functions is a promising research direction for the description of soft-tissue
mechanics. The said approach was successfully applied to describe the mechanical behavior of blood
vessels (see [12]) and the myocardium (see [4]). However, once new deformation measures are used in
the framework of the said approach, theoretical issues related to restrictions of the form of the elastic
potential (and, therefore, of response functions) remain unclear.

To construct constitutive relations, one has to satisfy a number of conditions ensuring that the
problem is well posed (see [1, 13]). In particular, the strong ellipticity condition for the elastic
potential coincides with the ellipticity condition for the system of equilibrium differential equations,
is equivalent to the condition that the propagation velocities of low-amplitude waves in the elastic
medium are real (see [13]), and is a necessary condition of stability for the balanced elastic deformation
(see [11, 15]). For a given potential, it is possible that there exist values of the deformation gradient
such that it is strongly elliptic for these values, but is not strongly elliptic for others. The fulfillment
of the ellipticity conditions is important for the correct description of the mechanical behavior of the
material (see [8], [1, p. 282]). Thus, creating new hyperelastic models, one has to verify the ellipticity
condition. In [17], for the case of new deformation measures leading to constitutive relations with
noncorrelating terms, the fulfillment of the strong ellipticity condition is investigated for constitutive
relations represented in the invariants proposed in [3].

The aim of our paper is to study the fulfillment of the strong ellipticity condition for constitutive
relations based on the QR-expansion of the gradient of deformations (see [18]). As was noted above,
for the case of constitutive relations with noncorrelating terms, one can restore the kind of elastic
potential directly by the experimental data. The ellipticity conditions obtained in the present paper
can be used for the investigation of well-posedness of restored hyperelastic models.

1. Kinematics

Consider a domain Ωt ⊂ R
3 occupied by an elastic body at moment t (the actual configuration).

Denote this domain at the initial time by Ω0 (the initial configuration). The location of a point at
its reference configuration is denoted by X = (X1,X2,X3) (the Lagrangian coordinates); its location
at its actual configuration is denoted by x = (x1, x2, x3) (the Eulerian coordinates). The following
relations hold with respect to the Cartesian base {E1,E2,E3} related to the initial configuration Ω0

and the Cartesian base {e1, e2, e3} related to the actual configuration Ωt:

X = XIEI and x = xiei (1.1)

(in the sequel, we assume summation from 1 to 3 with respect to repeating indices, omitting the sign
of the sum).

The deformation of an elastic body is defined as the following one-to-one correspondence:

φ : Ωs �→ Ωt

such that at time t we have

φ(X, t) : X �→ x = φ(X, t), where xi = xi(X1,X2,X3, t).

The corresponding movements have the form u(X, t) := x− φ(X, t).
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An important kinematic characteristic is the following deformation gradient F:

F = F(X, t) =
∂φ

∂X
=

∂x

∂X
=

∂xi
∂XJ

ei ⊗EJ , (1.2)

where ⊗ denotes the tensor product. Components of the deformation gradient F are represented by
the following matrix:

Fij =
∂xi
∂XJ

, [Fij ] =

⎛
⎜⎜⎜⎜⎜⎝

∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

⎞
⎟⎟⎟⎟⎟⎠

.

The following restriction is imposed on J = detF:

J = detF > 0;

it guarantees the existence of F−1 and the absence of the self-penetration under deformations.
Note that the deformation gradient is related to movements u of body points as follows:

F = I+
∂u

∂X
, (1.3)

where I is the identity tensor.
The following so-called polar expansion of the deformation gradient F is broadly applied for the

construction of deformation measures (see [1]).

Theorem 1.1 (on polar expansion of invertible matrices). Any invertible real matrix F can be uni-
quely represented in the form

F = RU or F = VR, (1.4)

where R is an orthogonal matrix, while U and V are symmetric positive definite matrices.

Applying the polar expansion theorem to the deformation gradient, one can obtain the rotation
tensor R, the right-hand extension tensor U, and the left-hand extension tensor V. In other words,
the total deformation of a material element can be treated as the superposition of a solid rotation and
a dilatation of the said element.

2. Equilibrium Equations of Elastic Bodies

Under the assumption that there are no bulk forces, equilibrium equations for the elastic material
have the following form (see [1]):

div(JTF−T ) = 0 in Ω0, (2.1)

TT = T, (2.2)

where T is the Cauchy tensor (the true stress tensor) and J = detF. To close the system of Eqs. (2.1),
one has to set a constitutive relation T = T(F,X) and the corresponding boundary conditions.

The constitutive relation characterizes the mechanical behavior of the material. If the material is
hyperelastic, then the material state does not depend on the load path. Then there exists an elastic
potential W (the potential deformation energy) such that

T =
1

J

∂W

∂F
FT . (2.3)

The elastic potential is to satisfy the requirement of the material independence of the frame of reference,
i.e.,

W (F) = W (QF) ∀ Q ∈ SO(3), (2.4)
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where SO(3) is the proper group of rotations of the three-dimensional space. If there exists a symmetry
of physical properties of the considered material, then the constitutive relations are to be invariant
with respect to all transformations of material coordinates belonging to the group of symmetries
for the specified material. In [1, 13, 19], additional restrictions imposed on the form of the energy
function of the deformation (elastic potential) are described in detail. One of these restrictions is the
Legendre–Hadamard condition; in the next section, we consider it in detail.

2.1. The Legendre–Hadamard condition. Assume that W (F) is a twice continuously differ-
entiable function. Substituting relations (2.3) and (1.3) in the equilibrium equations (2.1), one can
represent Eqs. (2.1) as the following equation with respect to the movements u(X, t):

Cijkl
∂2uk

∂Xi∂Xl
= 0. (2.5)

Here, Cijkl are the components of the elasticity tensor C(F):

C(F) =
∂2W

∂F∂F
; Cijkl = Cklij =

∂2W

∂Fij∂Fkl
. (2.6)

Note that properties of the elasticity tensor C(F) determine the type of system of second-order partial
differential equations (2.5).

Definition 2.1 (the Legendre–Hadamard condition). The energy deformation function W (F) leads
to an elliptic system of equilibrium equations if the following condition is satisfied:

(a⊗ b) : C(F) : (a⊗ b) ≥ 0, ∀a,b ∈ R
3\0. (2.7)

If the inequality is strict, then (2.7) is a condition of the strong ellipticity of the system of equilibrium
equations for elastic bodies.

The strong ellipticity condition is satisfied if and only if the propagation velocities of low-amplitude
waves in the elastic medium are real (see [13]). On the other hand, if the equilibrium equations (2.5) are
not elliptic, then no smoothness of solutions of equilibrium equations of the elastic body is guaranteed
(see [11, 13]); this is related to the stability loss for the elastic body (see [11, 15]). Thus, creating new
hyperelastic models, one has to verify condition (2.7).

3. Elastic Potentials

3.1. Deformation measures. We have mentioned above the material independence of the frame
of reference posed by (2.4) as one of restrictions of the form of elastic potentials. As was shown in [1],
this requirement is satisfied for hyperelastic materials if and only if the potential energy function is
a function of FFT , i.e., W (F) = W̃ (FFT ). In practice, various deformation measures are used to
characterize deformations. Examples are the right-hand Cauchy–Green deformation tensor

C = FTF = U2,

the Lagrange deformation tensor

E = (C− I)/2,

the left-hand Cauchy–Green deformation tensor

B = FFT = V2,

and the logarithmic (Hencky) measure

EH = logB/2 = log(V), eH = logC/2 = log(U).

where U and V are the extension (deformation) tensors of the polar expansion of the deformation
gradient (1.4).
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In [18], it is proposed to use the deformation measure based on the QR-expansion of the deformation
gradient instead of its polar expansion. From the numerical viewpoint for solid-body mechanics, the
advantages of the above approach are discussed in [7, 18]. From the viewpoint of constitutive relations,
the main advantage is the possibility to construct a dependence with noncorrelating terms.

3.2. The deformation measure based on the QR-expansion of the deformation gradient.
In brief, the Srinivasa approach to the constructing of constitutive relations (see [18]) is as follows.

Theorem 3.1 (QR-expansion, see [20]). For any nondegenerate real matrix F, the expansion

F = QR (3.1)

holds, where Q is an orthogonal matrix and R is an upper triangular matrix with positive elements
on the diagonal.

According to the QR-expansion theorem for the deformation gradient F, there exists a matrix
Q = e′i ⊗Ei such that

QTF = F̃ =

i,j=1,2,3∑
i≤j

F̃ijEi ⊗Ej , (3.2)

[
F̃ij

]
:=

⎛
⎝
F̃11 F̃12 F̃13

0 F̃22 F̃23

0 0 F̃33

⎞
⎠ ,

where e′i is a new orthonormal base, which can be obtained by means of the Gram–Schmidt orthogo-
nalization of the vector system {FE1,FE2,FE3}.

In the base {e′i ⊗Ej}, the deformation gradient F can be expressed as follows:

F =

i,j=1,2,3∑
i≤j

F̃ije
′
i ⊗Ej. (3.3)

Since C = FTF = F̃T F̃, it follows that components of the tensor F̃ can be obtained by means of the
Cholesky factorization of the Cauchy–Green deformation tensor C:

F̃11 =
√
C11, F̃12 =

C12

F̃11

, F̃13 =
C13

F̃11

,

F̃22 =
√

C22 − F̃ 2
12, F̃23 =

C23 − F̃12F̃13

F̃22

, F̃33 =
√

C33 − F̃ 2
13 − F̃ 2

23.
(3.4)

Similarly to the tensors U and V, the tensor F̃ characterizes the body deformation as a variation of
distances between points; all its components are physically interpreted (see [18]). The deformation
measures are ξi, i = 1, . . . , 6:

ξ1 = log F̃11, ξ2 = log F̃22, ξ3 = log F̃33,

ξ4 =
F̃12

F̃11

, ξ5 =
F̃13

F̃11

, ξ6 =
F̃23

F̃22

.
(3.5)

The elastic potential is a function of ξi:

W = ψ(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6). (3.6)

By virtue of relations (3.4), condition (2.4) of the material independence of the frame of reference is
satisfied.
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4. Elastic Potentials: Ellipticity Condition in Srinivasa Invariants

Let a = aie
′
i and b = bkEk. Then

H ≡ a⊗ b = aibke
′
i ⊗Ek. (4.1)

Taking into account (3.2), condition (2.7) of the strong ellipticity can be represented as follows:

H :
∂2W

∂F∂F
: H = (QTH) :

∂2W

∂F̃∂F̃
: (QTH) (4.2)

=
∂2W

∂ξn∂ξm

(
∂ξn

∂F̃
: (QTH)

)(
∂ξm

∂F̃
: (QTH)

)
+

∂W

∂ξn

(
(QTH) :

∂2ξn

∂F̃∂F̃
: (QTH)

)
> 0.

Introduce the notation H̄ij = (e′i,HEj) = aibj. Then condition (4.2) is equivalent to the following
positive definiteness condition for a quadratic form:

H̄T Π H̄ > 0, (4.3)

where H̄ = (H11,H22,H33,H12,H23,H13)
T and the matrix Π is defined by (6.1)-(6.2) (see the Appen-

dix). Thus, the following theorem is proved.

Theorem 4.1. For the given deformation, the condition of strong ellipticity (4.2) is equivalent to the
positive definiteness of the matrix Π defined by (6.1)-(6.2).

Corollary 4.1. The following restrictions for partial derivatives of the function ψ are necessary con-
ditions of the strong ellipticity:

Π11 =
1

F̃ 2
11

(
∂2ψ

∂ξ21
+ ξ24

∂2ψ

∂ξ24
+ ξ25

∂2ψ

∂ξ25
− 2ξ4

∂2ψ

∂ξ1∂ξ4
− 2ξ5

∂2ψ

∂ξ1∂ξ5
(4.4)

+ 2ξ4ξ5
∂2ψ

∂ξ4∂ξ5
− ∂ψ

∂ξ1
+ 2ξ4

∂ψ

∂ξ4
+ 2ξ5

∂ψ

∂ξ5

)
> 0,

Π22 =
1

F̃ 2
22

(
∂2ψ

∂ξ22
− 2ξ6

∂2ψ

∂ξ2∂ξ6
+ ξ26

∂2ψ

∂ξ26
− ∂ψ

∂ξ2
+ 2ξ6

∂ψ

∂ξ6

)
> 0,

Π33 =
1

F̃ 2
33

(
∂2ψ

∂ξ23
− ∂ψ

∂ξ3

)
> 0,

Π44 =
1

F̃ 2
11

∂2ψ

∂ξ24
> 0,

Π55 =
1

F̃ 2
22

∂2ψ

∂ξ26
> 0,

Π66 =
1

F̃ 2
11

∂2ψ

∂ξ25
> 0.

The proof follows from the positive definiteness criterion for the matrix Π. According to inequali-
ties (4.4), the exponential growth of the function ψ with respect to ξ3 and its convexity with respect
to ξ4, ξ5, ξ6 are necessary ellipticity conditions for the hyperelastic model in invariants ξi, i = 1, . . . , 6.

Remark 4.1. Verifying necessary conditions (4.4) for each elastic potential restored by experimental
data, one can check whether the strong ellipticity condition is broken for the investigated range of
deformations. By virtue of Theorem 4.1, for the specified deformation, sufficient conditions of the
positive definiteness of the matrix Π are sufficient for the fulfillment of the strong ellipticity condition
as well; in the present paper, we omit their general form because it is too cumbersome.
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4.1. The case where ψ = ψ(ξ1, ξ2, ξ4). Consider the fulfillment of the necessary conditions of the
ellipticity for the special case of two-dimensional constitutive relations.

For many biomedicine problems, it is very interesting to simulate the work of the heart. The
mechanical behavior of various parts of a heart is actively investigated. In particular, this refers to
the pericardium (the inner envelope of the heart, also referred to as the pericardial sac). According to
experimental data, the pericardium can be treated as an anisotropic orthotropic material, i.e., there
exist three mutually orthogonal planes of symmetry of properties. The anisotropy of properties is
closely related to the net of elastic fibers located in the pericardium.

In [5, 6], based on experimental data, a constitutive relation was proposed for the pericardium.
The deformation measure proposed in [5] coincides with ξ1, ξ2, ξ4, and the relation obtained for the
hyperelastic case has the form

ψ(ξ1, ξ2, ξ4) = q1ξ1 + g1

(
e α1ξ1 − α1ξ1 − 1

α2
1

)
+ q2ξ2 + g2

(
e α2ξ2 − α1ξ2 − 1

α2
2

)
(4.5)

+ α3ξ
2
1ξ

2
2 + α4ξ

2
1ξ

3
2 + ξ24G(ξ1, ξ2, ξ

2
4),

where q1 = 1.78 kPa, q2 = 0.7 kPa, g1 = 146 kPa, g2 = 85 kPa, α1 = α2 = 23.5, α3 = 5550 kPa,
and α4 = 26400 kPa. The function G(ξ1, ξ2, ξ

2
4) from Eq. (4.5) cannot be defined on the basis of the

collection of experimental data used (the experiment was conducted for ξ4 = 0). For the case of an
elastic potential defined by (4.5), the necessary conditions of the strong ellipticity take the form

∂2ψ

∂ξ21
+ ξ24

∂2ψ

∂ξ24
− 2ξ4

∂2ψ

∂ξ1∂ξ4
− ∂ψ

∂ξ1
+ 2ξ4

∂ψ

∂ξ4
> 0, (4.6)

∂2ψ

∂ξ22
− ∂ψ

∂ξ2
> 0,

∂2ψ

∂ξ24
> 0.

The second inequality of (4.6) is related to the following known fact: the rigidity of soft tissues grows
for large extensions (see [9]). This is expressed in the exponential law describing their mechanical
behavior. For ξ4 = 0, the elastic potential (4.5) corresponds to the constitutive relation for an
isotropic material expressed by a function ψiso = ψiso(ξ1, ξ2), necessary conditions in the form of the
exponential growth of ψ with respect to ξ1 and ξ2 are satisfied, and ψiso satisfies the strong ellipticity
condition for all values of ξ1 and ξ2.

To describe the mechanical behavior of the pericardium for various values of ξ1, ξ2, and ξ4, one has
to find a function G(ξ1, ξ2, ξ

2
4) from Eq. (4.5) using the experimental data such that ξ4 �= 0. In this

case, conditions (4.6) impose restrictions on the form of the function G(ξ1, ξ2, ξ
2
4), guaranteeing the

fulfillment of the ellipticity condition for the equilibrium equations. By virtue of Remark 4.1 and the
general form of the function G(ξ1, ξ2, ξ

2
4), we do not provide the investigation of sufficient ellipticity

conditions for the equations.

5. Conclusions

For hyperelastic materials, the fulfillment of strong ellipticity conditions is directly related to the
correct description of the mechanical behavior of the material. The specified condition is a necessary
condition for the stability of the equilibrium elastic deformation. One of the main corollaries from
the strong ellipticity condition is that the propagation velocity of waves in the material is real. In
the present paper, we have investigated the strong ellipticity condition for constitutive relations of
hyperelastic materials in the case where the deformation measure is based on the QR-expansion of
the deformation gradient. We have obtained a matrix such that the strong ellipticity condition is
equivalent to its positive definiteness. For the fulfillment of the strong ellipticity condition, we obtain
necessary conditions imposing restrictions on the form of the elastic potential in new invariants. In
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particular, for the known pericardium hyperelastic model restored according to experimental data, we
have obtained restrictions on the form of the elastic potential.

6. Appendix

6.1. Derivatives of invariants. Since

ξ1 = log F̃11, ξ2 = log F̃22, ξ3 = log F̃33, ξ4 =
F̃12

F̃11

, ξ5 =
F̃13

F̃11

, ξ5 =
F̃23

F̃22

,

it follows that the corresponding derivatives are expressed in the form

∂ξ1

∂F̃ij

=
1

F̃11

δi1δj1,
∂ξ2

∂F̃ij

=
1

F̃22

δi2δj2,
∂ξ3

∂F̃ij

=
1

F̃33

δi3δj3,

∂ξ4

∂F̃ij

=
1

F̃11

δi1δj2 − F̃12

F̃ 2
11

δi1δj1,

∂ξ5

∂F̃ij

=
1

F̃11

δi1δj3 − F̃13

F̃ 2
11

δi1δj1,

∂ξ6

∂F̃ij

=
1

F̃22

δi2δj3 − F̃23

F̃ 2
22

δi2δj2,

where δij is the Kronecker symbol.

6.2. The matrix Π. Let

H1 = e′1 ⊗E1, H2 = e′2 ⊗E2, H3 = e′3 ⊗E3,

H4 = e′1 ⊗E2, H5 = e′2 ⊗E3, H6 = e′1 ⊗E3.

Then the matrix Π is defined as follows:

Π =

[
(QTHα) :

∂2W

∂F̃∂F̃
: (QTHβ)

]

6×6

. (6.1)

Assume that

∂2ψ

∂ξi∂ξj
=

∂2ψ

∂ξj∂ξi
.

Taking into account that Πij = Πji, we get the following expressions for the elements of the matrix Π:

Π11 =
∑

n=1,4,5

∑
m=1,4,5

∂2ψ

∂ξn∂ξm

∂ξn

∂F̃11

∂ξm

∂F̃11

+
∑

n=1,4,5

∂ψ

∂ξn

∂2ξn

∂F̃11∂F̃11

, (6.2)

Π12 =
∑

n=1,4,5

∑
m=2,6

∂2ψ

∂ξn∂ξm

∂ξn

∂F̃11

∂ξm

∂F̃22

,

Π13 =
∑

n=1,4,5

∂2ψ

∂ξn∂ξ3

∂ξn

∂F̃11

∂ξ3

∂F̃33

=
1

F̃33

∑
n=1,4,5

∂2ψ

∂ξn∂ξ3

∂ξn

∂F̃11

,

Π14 =
∑

n=1,4,5

∂2ψ

∂ξn∂ξ4

∂ξn

∂F̃11

∂ξ4

∂F̃12

+
∂ψ

∂ξ4

∂2ξ4

∂F̃11∂F̃12

=
1

F̃11

∑
n=1,4,5

∂2ψ

∂ξn∂ξ4

∂ξn

∂F̃11

− 1

F̃ 2
11

∂ψ

∂ξ4
,

Π15 =
∑

n=1,4,5

∂2ψ

∂ξn∂ξ6

∂ξn

∂F̃11

∂ξ6

∂F̃23

=
1

F̃22

∑
n=1,4,5

∂2ψ

∂ξn∂ξ6

∂ξn

∂F̃11

,

Π16 =
∑

n=1,4,5

∂2ψ

∂ξn∂ξ5

∂ξn

∂F̃11

∂ξ5

∂F̃13

+
∂ψ

∂ξ5

∂2ξ5

∂F̃11∂F̃13

=
1

F̃11

∑
n=1,4,5

∂2ψ

∂ξn∂ξ5

∂ξn

∂F̃11

− 1

F̃ 2
11

∂ψ

∂ξ5
,
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Π22 =
∑
n=2,6

∑
m=2,6

∂2ψ

∂ξn∂ξm

∂ξn

∂F̃22

∂ξm

∂F̃22

+
∑
n=2,6

∂ψ

∂ξn

∂2ξn

∂F̃22∂F̃22

,

Π23 =
∑
n=2,6

∂2ψ

∂ξn∂ξ3

∂ξn

∂F̃22

∂ξ3

∂F̃33

=
1

F̃33

∑
n=2,6

∂2ψ

∂ξn∂ξ3

∂ξn

∂F̃22

,

Π24 =
∑
n=2,6

∂2ψ

∂ξn∂ξ4

∂ξn

∂F̃22

∂ξ4

∂F̃12

=
1

F̃11

∑
n=2,6

∂2ψ

∂ξn∂ξ4

∂ξn

∂F̃22

,

Π25 =
∑
n=2,6

∂2ψ

∂ξn∂ξ6

∂ξn

∂F̃22

∂ξ6

∂F̃23

+
∂ψ

∂ξ6

∂2ξ6

∂F̃22∂F̃23

=
1

F̃22

∑
n=2,6

∂2ψ

∂ξn∂ξ6

∂ξn

∂F̃22

− 1

F̃ 2
22

∂ψ

∂ξ6
,

Π26 =
∑
n=2,6

∂2ψ

∂ξn∂ξ5

∂ξn

∂F̃22

∂ξ5

∂F̃13

=
1

F̃11

∑
n=2,6

∂2ψ

∂ξn∂ξ5

∂ξn

∂F̃22

,

Π33 =
∂2ψ

∂ξ23

(
∂ξ3

∂F̃33

)2

+
∂ψ

∂ξ3

∂2ξ3

∂F̃33∂F̃33

=
1

F̃ 2
33

∂2ψ

∂ξ23
− 1

F̃ 2
33

∂ψ

∂ξ3
,

Π34 =
∂2ψ

∂ξ3∂ξ4

∂ξ3

∂F̃33

∂ξ4

∂F̃12

=
1

F̃33

1

F̃11

∂2ψ

∂ξ3∂ξ4
,

Π35 =
∂2ψ

∂ξ3∂ξ6

∂ξ3

∂F̃33

∂ξ6

∂F̃23

=
1

F̃33

1

F̃22

∂2ψ

∂ξ3∂ξ6
,

Π36 =
∂2ψ

∂ξ3∂ξ5

∂ξ3

∂F̃33

∂ξ5

∂F̃13

=
1

F̃33

1

F̃11

∂2ψ

∂ξ3∂ξ5
,

Π44 =
∂2ψ

∂ξ24

(
∂ξ4

∂F̃12

)2

=
1

F̃ 2
11

∂2ψ

∂ξ24
,

Π45 =
∂2ψ

∂ξ4∂ξ6

∂ξ4

∂F̃12

∂ξ6

∂F̃23

=
1

F̃11

1

F̃22

∂2ψ

∂ξ4∂ξ6
,

Π46 =
∂2ψ

∂ξ4∂ξ5

∂ξ4

∂F̃12

∂ξ5

∂F̃13

=
1

F̃ 2
11

∂2ψ

∂ξ4∂ξ5
,

Π55 =
∂2ψ

∂ξ26

(
∂ξ6

∂F̃23

)2

=
1

F̃ 2
22

∂2ψ

∂ξ26
,

Π56 =
∂2ψ

∂ξ6∂ξ5

∂ξ6

∂F̃23

∂ξ5

∂F̃13

=
1

F̃11

1

F̃22

∂2ψ

∂ξ6∂ξ5
,

Π66 =
∂2ψ

∂ξ25

(
∂ξ5

∂F̃13

)2

=
1

F̃ 2
11

∂2ψ

∂ξ25
.
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