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Abstract We present the latest enhancement of the non-
linear monotone finite volume method for the near-well
regions. The original nonlinear method is applicable for
diffusion, advection-diffusion, and multiphase flow model
equations with full anisotropic discontinuous permeability
tensors on conformal polyhedral meshes. The approxima-
tion of the diffusive flux uses the nonlinear two-point
stencil which reduces to the conventional two-point flux
approximation (TPFA) on cubic meshes but has much better
accuracy for the general case of non-orthogonal grids and
anisotropic media. The latest modification of the nonlinear
method takes into account the nonlinear (e.g., logarithmic)
singularity of the pressure in the near-well region and intro-
duces a correction to improve accuracy of the pressure and
the flux calculation. In this paper, we consider a linear
version of the nonlinear method waiving its monotonicity
for sake of better accuracy. The new method is general-
ized for anisotropic media, polyhedral grids and nontrivial
cases such as slanted, partially perforated wells or wells
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shifted from the cell center. Numerical experiments show
noticeable reduction of numerical errors compared to the
original monotone nonlinear FV scheme with the conven-
tional Peaceman well model or with the given analytical
well rate.
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1 Introduction

Cell-centered finite volume (FV) methods with the nonlin-
ear flux discretization on cell faces attract growing attention
in past few years [6]. An idea of the monotone schemes
with nonlinear coefficients was suggested in [9] and further
developed into a simple yet efficient monotone second-
order method with the nonlinear two-point discretization
of the diffusion and convection fluxes [3, 11, 12, 17].
Monotonicity of this method is understood in the sense of
non-negativity of the discrete solution. The method was
tested for the two- and three-phase black oil models [15]
on conformal hexahedral meshes, polyhedral meshes pro-
duced by dynamic octrees [21] and by dynamic octrees with
cut cells [16]. The later modification of the scheme com-
bined the nonlinear flux approximation with the ideas from
[1] (see also [20]) that assure the discrete maximum princi-
ple (DMP) and resulted in the nonlinear multi-point scheme
with compact stencil [2, 7, 13]. Applications of the scheme
with the DMP for two-phase flows were studied in [14].

The well model is the sensitive part of the black-oil sim-
ulator and has the major impact on calculated well rates.
The solution in the near-well region is highly influenced by
the well singularity. The idea to exploit that solution fea-
ture in the well model for FV schemes was suggested in
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[4]. This approach was combined with the nonlinear FV
scheme in [5] for the case of well-oriented prismatic grids
in isotropic media. Our new method generalizes these ideas
for anisotropic media, polyhedral grids, and arbitrary wells
not necessarily adjusted neither with cells centers or with
edges.

The key idea of the new near-well correction (NWC)
method is to use a nonlinear (e.g., logarithmic) correction
term for the reconstructed solution inside the flux discretiza-
tion scheme in the near-well region. For the isotropic case,
the linear-logarithmic reconstruction is used. The resulting
method is exact on both linear and logarithmic solutions by
construction and is generalized for the anisotropic media
and for slanted wells. Since the method is applicable on
arbitrary polyhedral grids, it requires no local grid refine-
ment or any other grid modifications, which are widely used
for modeling of areas with high pressure gradients [10].
Numerical experiments show the noticeable reduction of the
numerical errors compared to the original monotone nonlin-
ear FV scheme with the conventional Peaceman well model
or with the given analytical well rate.

2 FV discretization scheme for diffusion problems

In order to introduce the numerical scheme, we consider the
stationary diffusion equation.

Let � be a three-dimensional polyhedral domain with
the Lipschitz boundary � = �N ∪ �D . The diffusion equa-
tion for unknown pressure p with the Dirichlet or Neumann
boundary conditions is written in the mixed form:

q = −K∇p, div q = f in �,

p = g on �D,

q · n = 0 on �N.

(1)

Here, K(x) is a symmetric positive definite (possibly
anisotropic) diffusion tensor, f (x) is a source term, g(x) is
a given Dirichlet data for the Dirichlet part of the boundary
�D .

The cell-centered FV scheme uses one degree of freedom
per cell T , pT , collocated at cell barycenter xT . Integrat-
ing the mass balance Eq. 1 over T and using the divergence
theorem, we obtain:

∑

f ∈∂T

σT,f qf =
∫

T

f dx, qf =
∫

f

q · nf dS, (2)

where qf is the normal flux across the face f , and σT,f is
either 1 or -1 depending on the mutual orientation of the unit
normal vectors nf and nT (nT denotes the outward normal
vector for T ).

Two nonlinear schemes for the flux (2) discretization
were suggested in [11, 13] for 2D and [2, 3] 3D case. In

this work, we present a linear multi-point scheme that shares
similar construction principles.

3 Nonlinear near-well correction method

Consider a near-well region which spans well singularity
(see Fig. 1). The key idea of the method follows [4, 5].
We modify the nonlinear monotone FV scheme from [3]
and take into account the solution singularity near an iso-
lated well. In contrast to [5], our method is designed for
anisotropic media, arbitrary polyhedral cells, and arbitrary
well location.

In the original nonlinear FV method, the discrete fluxes
are calculated on the basis of the piecewise linear recon-
struction of the unknown field. The NWC method takes into
account the nonlinearity of the solution near the specific
object such as the well.

We consider the pressure field to be the sum of linear and
nonlinear functions for each cell in a near-well region:

pT = a x + b y + c z + d︸ ︷︷ ︸
plin

+ e F (x, y, z)︸ ︷︷ ︸
pF

, (3)

where F(x, y, z) is a function representing the singularity.
The finite volume discretization requires the normal

component of the flux q = −K∇p to be integrated on each
face f of T :

∫

f

q · nf dS = −
∫

f

(K∇pT ) · nf dS

= −
∫

f

(K∇plin) · nf dS −
∫

f

(K∇pF ) · nf dS. (4)

Combining (3) and (4) yields the mean normal flux

qf =
∫

f

q · nf dS

= −
∫

f

K

⎛

⎜⎝
a

b

c

⎞

⎟⎠ · nf dS − e

∫

f

(K∇F(x, y, z)) · nf dS

= a�1 + b�2 + c�3 + e�4. (5)

In the following, we shall omit index f whenever it does not
result in confusion.

Integrals for �1, �2, and �3 are calculated exactly. Inte-
gral for �4 can also be calculated exactly for some simple

Fig. 1 Logarithmic singularity in the near-well region
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cases of well, grid and tensor (see [5]), but for more gen-
eral cases the numerical integration should be used (see
Section 4). The coefficients �i depend solely on the mesh
and problem data, and are calculated explicitly, while the
coefficients (a, b, c, e) are recovered from the solution at
the neighboring cells.

Let T+ and T− be neighboring cells sharing a face f , x+,
x− denote centroids of these cells. We take four points xi

(xi �= x+) and call four vectors ti = xi −x+ the quadruplet.
Points xi denote centers of the neighboring cells or faces of
T , pi = p(xi ) and p+ = p(x+).

We assume the same representation (3) for vectors of
each quadruplet, which gives us:

⎛

⎜⎝
p1 − p+
p2 − p+
p3 − p+
p4 − p+

⎞

⎟⎠ =
⎡

⎢⎣
x1 − x+ y1 − y+ z1 − z+ F1 − F+
x2 − x+ y2 − y+ z2 − z+ F2 − F+
x3 − x+ y3 − y+ z3 − z+ F3 − F+
x4 − x+ y4 − y+ z4 − z+ F4 − F+

⎤

⎥⎦

⎛

⎜⎜⎝

a

b

c

e

⎞

⎟⎟⎠,

(6)

where F∗ = F(x∗, y∗, z∗).
The collocation points of the quadruplet should be cho-

sen carefully in order to avoid degenerated matrix in (6).
Our algorithm for quadruplet points selection is as follows:

Algorithm 1 Quadruplet points selection

1: Select the first point x1 = x−
2: Compose set � of all neighboring points of x+, xi �= x−
3: for every three different points x2, x3, x4 from � do
4: Compute determinant of the quadruplet matrix (6)
5: end for
6: if all quadruplets have degenerate matrix (6) then
7: Add more points to the set �

8: goto 3
9: end if

10: Choose quadruplet with the largest matrix determinant

Solving the system (6) with the largest matrix determi-
nant provides us the coefficients a+, b+, c+, e+ for the cell
T+:

a+ =
∑

j

(pj − p+) m1,j , b+ =
∑

j

(pj − p+) m2,j ,

c+ =
∑

j

(pj − p+) m3,j , e+ =
∑

j

(pj − p+) m4,j , (7)

where mi,j are the elements of the inverse matrix from (6).
Taking T− instead of T+ and considering −q · nf provides
us the second flux approximation.

Applying (7) to Eq. 5 gives us

q± = ±
∫

f

q · nf dS

= ±
[
�1

∑

j

(pj − p±) m±
1,j + �2

∑

j

(pj − p±) m±
2,j

+ �3

∑

j

(pj − p±) m±
3,j + �4

∑

j

(pj − p±) m±
4,j

]
, (8)

or

q± = ±
[∑

j

pj

∑

i

�i m±
i,j

︸ ︷︷ ︸
k±
j

−p±
∑

j

∑

i

�i m±
i,j

︸ ︷︷ ︸
k±
j

]

= ±
(∑

j

k±
j (pj − p±)

)
. (9)

The resulting flux approximation is obtained as the
weighted sum of q+ and q− with coefficients μ+ +μ− = 1

qf = μ+
(∑

j

k+
j (pj −p+)

)
− μ−

(∑

j ′
k−
j ′ ·(pj ′ −p−)

)
.

(10)

To construct the linear multi-point flux discretization, we
considered μ+ = μ− = 1/2. One may also construct a non-
linear scheme (similar to [2, 3]) using pressure-dependant
coefficients, but this is the subject for a future study.

4 Numerical issues of implementation

4.1 Well cell model

The near-well correction method replaces the conventional
Peaceman well model from [18] and is applicable to the
cases of arbitrary polyhedral cells, slanted wells and wells
separated from grid cell centers.

The original Peaceman formula was derived on the basis
of two key assumptions:

– The well flux is compensated by the sum of the linear
flux approximations for the well cell faces,

– It is considered for the perfect vertical well where all the
neighboring cells pressures are given by the Dupuit for-
mula to catch the logarithmic behavior of the solution
in the near-well region.

These assumptions require selection of an equivalent radius,
which is used for definition of the well cell pressure and
ensures flux continuity.

In contrast to the Peaceman approach, the new well
model is incorporated in the near-well correction scheme
which takes the singularity into account by construction
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and does not impose additional restrictions on the well cell
degree of freedom.

The new approach allows us to consider the general case
of the well not passing through the cell center. For each
well cell, we introduce an additional point on the well seg-
ment associated with the bottom hole pressure. Using this
point and considering only outer flux (μ+ = 1, μ− = 0)
in (10), we get an additional relation for the facial fluxes of
the well cell. Therefore, for the well cell faces, we have two
flux approximations with different stencils (see Fig. 2). For
each quadruplet calculation, the points inside the well are
projected to the well surface in order to avoid the singularity.

Summarizing fluxes for the well cell gives us the well
cell equation:

∑

f

⎡

⎣1

2

(∑

j

k+
j (pj − p+)

)
− 1

2

(∑

j ′
k−
j ′ (pj ′ − p−)

)
⎤

⎦

=
∑

f

(
∑

l

k+
l (pl − pw)

)
. (11)

If we use the given well flux qw condition, an additional
equation for unknown pw will occur:

∑

well cells

∑

f

(∑

l

k+
l (pl − pw)

)
= qw. (12)

4.2 Isotropic case

The particular choice of singularity function F in (3)
depends on geometric and physical assumptions. A perfect
well in isotropic media allows us to use the Dupuit for-
mula, providing F(x, y, z) = ln(r), where r(x, y, z) is the
distance to the well axis.

4.3 Anisotropic case

The 2D anisotropic case with K = diag(kx, ky) and ky >

kx is considered in [19] where the singularity function is the
solution of the isolated perfect well problem. The main steps
of derivation of F in this case are as follows.

First, the space transformation is applied:

x′ =
(

ky

kx

)0.25

x, y′ =
(

kx

ky

)0.25

y, (13)

and the new coordinates are transformed to the elliptic ones:

x′ = B cosh (ρ) cos (φ) , y′ = B sinh (ρ) sin (φ) , (14)

where B =
√

r2
w(ky − kx)/(kxky)1/2 is the coefficient

suggested in [19] and rw is the well radius.
In coordinates (ρ, φ), the analytical solution is:

p = pw − qw

2π
√

kxky

(ρ − ρw) . (15)

The elliptic coordinate ρ is expressed from (14) as:

ρ = arcosh

√√
x′2 + (y′ − B)2 + √

x′2 + (y′ + B)2

4B2
(16)

The singularity function F(x, y, z) is given by (16). The
integral �4 in (5) is calculated by the numerical integration
over the face with a high order quadrature formula

�4 = −
∫

f

K∇F(x, y, z) · nf dS = −
∫

f

v · nf dS. (17)

Here, vector v = K∇F(x, y, z) is given in the elliptic
coordinates:

v =
(

vx

vy

)
=

⎛

⎜⎜⎜⎝

kx
4
√

ky
kx

sinh ρ cos φ

B
(
sinh2 ρ+sin2 φ

)

ky
4
√

kx
ky

cosh ρ sin φ

B
(
sinh2 ρ+sin2 φ

)

⎞

⎟⎟⎟⎠ . (18)

In the 3D case, the permeability tensor may be full
anisotropic and the well may be not aligned with the grid
and/or tensor axes. Under assumption of the infinite well,
we consider the analytical solution to be pseudo-2D in the
plane orthogonal to the well (see Fig. 3) with a corre-
sponding 2D tensor K′

xy = diag(k′
x, k

′
y) recovered by the

following algorithm:

Algorithm 2 Construction of K′
xy

1: Apply coordinate rotation which makes the well vertical
2: Calculate tensor K′ in the rotated coordinates
3: Take the 2 × 2 leading submatrix of the tensor corre-

sponding to directions orthogonal to the well
4: Diagonalize the 2 × 2 submatrix to obtain k′

x and k′
y

The 2D tensor K′
xy can now be used in the appropriate

coordinate system to derive the analytical solution (15) and

Fig. 2 Well cell: stencils for the
reservoir pressure (left) and the
additional well pressure (right)
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Fig. 3 Slanted well in anisotropic media

solution gradient (18). The integral �4 is calculated similarly
to (17) by a high order quadrature formula in 3D.

4.4 Partially perforated well

In real world applications, no well is perfect due to the finite
length of the perforation. In this case, the exact solution for
the finite perforation segment may be used.

Consider the line segment [A, B] with the uniform flux
density q/2L in isotropic media, K = kI, A = (0, 0, −L),
B = (0, 0, L). One can consider each point of segment as a
point source. The flux from this point can be represented as
a uniform flux from infinitesimal part of the segment 
q =
q 
l/2L. Darcy flux at distance R is directed away from the
segment and has the following magnitude [8]:

|
u| = 
q

4π

1

R2
. (19)

If we consider a point at distance r to the well line and at
height z from the midpoint of the well segment, the distance
R from an infinitesimal part of the segment will be

R =
√

r2 + (z − l)2, (20)

where l is the distance from the midpoint of the well
segment to this part (see Fig. 4).

The components of 
u = (
ur, 
uz)
T at the point (r, z)

are:


ur = |
u| r

R
, 
uz = |
u| z − l

R
. (21)

The flux v(r, z) = (vr , vz)
T at the point (r, z) is the

sum of contributions from each infinitesimal part of the

r

z

(v  , v  )
r       z

l

dl

L

−L

R

B

A

Fig. 4 Flux from the infinitesimal part of the well segment

well segment. Integrating (21) over the segment [A, B], we
obtain:

vr =
L∫

−L

q r

8L π R3
dl = q

8L π

l − z

r
√

r2 + (z − l)2

∣∣∣∣
L

−L

= q

8L π

(
L − z

r
√

r2 + (z − L)2
+ L + z

r
√

r2 + (z + L)2

)
, (22)

vz =
L∫

−L

q (z − l)

8L π R3
dl = q

8L π

1
√

r2 + (z − l)2

∣∣∣∣
L

−L

= q

8L π

(
1

√
r2 + (z − L)2

− 1
√

r2 + (z + L)2

)
.

Now, we search for a smooth field p(r, z) such that
−k∇p = v(r, z). Integration of (22) provides us the pres-
sure field:

p = C − F(r, z), (23)

with the singularity function:

F(r, z) = q

8 Lπ k
[2 ln r

− ln

(√
r2 + (L − z)2 + (L − z)

)

− ln

(√
r2 + (L + z)2 + (L + z)

)]
. (24)

Table 1 Flux and solution error for the NFV and the NWC methods
for shifted well on the uniform rectangular grid 33 × 33 × 1

δ εNFV
p,anl εNWC

p,anl εNFV
p,pcm εNWC

p εNFV
q εNWC

q

0 1.4e–4 1.3e–11 1.8e–4 1.3e–11 5.0e–3 8.9e–11

0.1 1.5e–3 6.3e–12 1.5e–3 1.5e–11 5.0e–3 1.2e–10

0.3 5.6e–4 2.3e–11 5.8e–4 2.0e–11 5.0e–3 4.7e–10

0.5 7.1e–4 2.7e–11 7.1e–4 2.1e–11 5.0e–3 4.9e–10

0.7 1.1e–3 5.2e–11 1.1e–3 1.1e–11 5.0e–3 1.5e–9



1028 Comput Geosci (2017) 21:1023–1033

Fig. 5 Solution for the NWC
scheme and the new well cell
model for shifted well on
hexagonal prismatic grid,
δ = 0.5

The constant C can now be expressed via the pressure pw

fixed on the well surface at a point with local coordinates
(rw, 0). The final analytical pressure of the isolated partially
perforated well is the following:

p = pw − q

8 L π k

[
ln

r2

L− L+
− ln

r2
w

L + √
r2
w + L2

]
,

(25)

where L± = L ± z + √
r2 + (L ± z)2.

The solution (25) may be used in (3) for correction of the
fluxes in the near-well region.

We note that for L → ∞, F(r, z) tends to the solution
for the perfect well.

5 Numerical experiments

In order to test our approach, we study it on analytical solu-
tions. We consider 2D isotropic case with a shifted well on
cubic and hexagonal prismatic grids, 3D isotropic case with
slanted and partially perforated wells, 2D and 3D cases with
highly anisotropic media, and 2D case with two vertical
wells.

Table 2 Solution error for the NFV and the NWC methods for shifted
well on hexagonal prismatic grid

δ εNFV
p,anl εNWC

p

0 1.1e–4 8.2e–11

0.1 1.4e–3 2.0e–11

0.3 4.2e–3 1.0e–11

0.5 7.1e–3 1.1e–11

All variables used in experiments are nondimensional:
the well rate is 1 and the bottom hole pressure is 2. These
two parameters provide the analytical solution around the
well. The Dirichlet condition for known analytical solution
is set on the domain boundary.

The computational domain sizes are 100×100×3 for the
vertical well and 100 × 100 × 12.5 for the slanted and par-
tially perforated wells, the well radius rw = 0.01, the per-
meability tensor is a diagonal matrix K = diag(kx, ky, ky).
We consider different horizontal anisotropy ratios ky/kx .
For 2D cases, we consider a pseudo-2D domain: grid dimen-
sions are N × N × 1 with the no-flow conditions of the top
and the bottom boundaries.

In our experiments, we consider two scenarios:

1. An analytical rate for the well cell is given. This allows
us to compare the nonlinear monotone FV scheme
(NFV) and the new near-well correction (NWC) scheme
without the influence of the well cell model. For this
scenario, we compute relative L2 errors norms for
the pressure field compared to the known analytical
solution: εNFV

p,anl and εNWC
p,anl .

2. The well cell model for a given bottom hole pressure is
applied. The Peaceman formula is applicable only for

Table 3 Flux and solution error for the NFV and the NWC methods
for anisotropic case on non-orthogonal N × N × 1 grids with N = 67

ky/kx εNFV
p,anl εNWC

p εNFV
2p,anl εNWC

2p εNWC
q

10 5.3e–4 1.9e–9 5.6e–2 2.0e–7 4.7e–7

100 1.7e–4 9.0e–9 5.9e–2 2.7e–6 1.3e–5

1000 9.0e–4 7.0e–8 8.0e–2 6.2e–5 6.6e–4

10000 4.0e–5 5.7e–8 1.1e–1 1.5e–3 1.7e–3
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Fig. 6 Analytical solution (top)
and solution errors for the NFV
(bottom-left) and the NWC
(bottom-right) methods for
anisotropic case ky/kx = 10,000
on non-orthogonal grid with
N = 67

cubic grids and is used with the nonlinear monotone
scheme [15], while the new well cell model is used for
all experiments in combination with the NWC scheme.
In this case, we compute both relative L2 error norms
for the pressure (εNFV

p,pcm and εNWC
p ) and the well rate

errors (εNFV
q and εNWC

q ).

5.1 2D isotropic case, shifted well

We consider a cubic grid with a vertical well shifted from
the well cell centroid. The well is shifted along the diagonal

Table 4 Solution error for the NFV and the NWC methods, and the
flux error for the NWC method. 3D isotropic case with ten layers for
the slanted well

α εNFV
p,anl εNWC

p εNWC
q

0◦ 6.5e–4 1.0e–12 3.0e–11

30◦ 1.2e–4 3.6e–9 3.1e–4

45◦ 1.7e–4 3.7e–12 1.3e–4

60◦ 1.1e–4 1.7e–10 7.5e–7

of the domain by the value δd/2, where d is the cell diagonal
length. The analytical solution for K = I is:

p = pw − qw

2πhw

ln
r

rw
, (26)

where r = √
(x − δd/2)2 + (y − δd/2)2.

By construction, any well index-based method incor-
porating the well within a single cell, will not provide
the non-symmetric solution. In contrast, the new well cell
model can reproduce a non-symmetric solution.

Fig. 7 Solution error for α = 60◦ for the NFV (top) and the NWC
(bottom) methods. 3D isotropic case with ten layers for the slanted well
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Fig. 8 Analytical solution for
α = 60◦ for 3D anisotropic case
with ten layers for the slanted
well, K = diag{10, 100, 1}

For the sake of comparison, we apply the Peaceman cubic
grid formula with NFV method. Table 1 presents the numer-
ical errors for the shifted well on the uniform rectangular
grid 33 × 33 × 1: the relative error L2-norms for the NFV
and the NWC schemes with the analytical well cell rates, the
relative error L2-norm and the well rate error for the NWC
method coupled with the new well cell model. One can see
that the NWC scheme is exact for the shifted isolated perfect
well.

We also considered the similar problem on a hexag-
onal prismatic grid. Figure 5 presents the computational
grid and the non-symmetric solution for the NWC method.
The domain is not a parallelepiped in this case and the

boundaries are approximated by faces of hexagonal prisms.
Table 2 shows the relative L2-norms of pressure error for
the NFV scheme with the analytical well cell rate and for
the NWC method coupled with the new well cell model.

5.2 2D anisotropic case, non-orthogonal grid

The next example uses a non-orthogonal grid constructed
from the uniform rectangular grid by shifting nodes while
keeping the cell faces planar. We consider high anisotropy
cases with kx = 1, ky = 10, 100, 1000, 10,000 for different
grid sizes N along horizontal axes. The analytical solution
is given by (15) and (16).

Fig. 9 Solution error for
α = 60◦ for the NFV (top) and
the NWC (bottom) methods. 3D
anisotropic case with ten layers
for the slanted well,
K = diag(10, 100, 1)
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Table 5 Solution error for the NFV and the NWC methods, and the
flux error for the NWC method. 3D anisotropic case with ten layers
for the slanted well, K = diag(10, 100, 1)

α εNFV
p,anl εNWC

p εNFV
2p,anl εNWC

2p εNWC
q

0◦ 2.5e–5 2.8e–11 1.2e–1 1.3e–7 4.9e–7

30◦ 5.9e–6 1.7e–10 2.4e–2 8.6e–7 1.0e–5

45◦ 5.6e–6 2.2e–10 2.6e–2 1.0e–6 9.0e–6

60◦ 3.8e–6 2.5e–10 1.9e–2 1.2e–6 2.9e–5

Flux and solution errors for the NFV and the NWC meth-
ods are compared in Table 3 for different anisotropy ratios.
Due to the high anisotropy, the solution variation is very
small: p ∈ [1.995, 2.0] for ky/kx = 10,000. To capture
the error compared to this variation, we introduce ε2p, the
relative error normalized by ||panl − panl,min|| instead of
||panl ||. Since the Peaceman method is not applicable for
this case, we can present only the NWC method flux error
εNWC
q . The latter is the absolute (not relative) error and one

can see that the calculated flux error is small even for the
extremely high anisotropy.

Solution errors for both methods on the non-orthogonal
grid N × N × 1, N = 67, are presented in Fig. 6.

5.3 3D case, slanted well

In the 3D case, we consider the domain with the hexahedral
orthogonal grid and a slanted (not vertical) well. The grid
has ten layers and Dirichlet boundary conditions are given
for all boundaries. For the isotropic case, the analytical solu-
tion is given by formula (26) with r being the distance from
the point to the well.

The error dependence on the well tilt angle for the NFV
and the NWC methods are presented in Table 4. Angle
α = 0◦ denotes to the vertical well. Vertical cross-section
of the grid with the error fields for α = 60◦ for the NFV
and the NWC methods are presented in Fig. 7 (top) and
Fig. 7 (bottom), respectively.

For the anisotropic case, we consider the similar experi-
ment layout with anisotropic tensor K = diag(10, 100, 1).
The analytical solution for each cutplane orthogonal to the
well axis is given by (15) and (16) with the corresponding
2D tensor K′

xy = diag(10, 100 cos α + sin α).
Figure 8 shows two cross-sections of the analytical solu-

tion for this case. Errors for the NFV and the NWC methods
are presented in Fig. 9 and in Table 5. By analogy with the
anisotropic case from Section 5.2, we calculate εNFV

2p,anl and

εNWC
2p to show the real magnitude of the error compared to

the solution variation.
One can see that the solution error for the method without

nonlinear correction is noticeable compared to the solution
variation (see εNFV

2p,anl) while the NWC method produces

almost zero error. The numerical flux error εNWC
q is also

small for the considered anisotropy ratio.

5.4 3D isotropic case, partially perforated well

The partially perforated well case repeats the previous test
case layout with the reservoir dimensions 100×100×12.5.
The well perforation is a vertical finite segment [A, B],
where A = (50, 50, 1.95) and B = (50, 50, 10.55). The
permeability tensor is scalar, K = I. For the analytical
solution, we use (25).

Figure 10 (top) presents the vertical cross-section of the
grid with the analytical solution for the partially perforated

Fig. 10 Analytical solution
(top) for the partially perforated
well and solution error for the
NFV (middle) and the NWC
(bottom) methods
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Table 6 Solution error for the NFV and the NWC methods for the
partially perforated well case. Both schemes use the analytical flux to
the well cells

N εNFV
p,anl εNWC

p,anl

33 1.0e–3 5.5e–10

67 4.4e–4 3.3e–8

99 2.6e–4 4.6e–9

well case. Errors for the NFV and the NWC methods are
shown in Fig. 10 (middle and bottom). Both schemes use
the analytical flux to the well cells proportional to the per-
foration size inside a cell. Table 6 contains solution errors
for two methods.

5.5 2D isotropic case, two wells

The last experiment deals with two wells in the box domain.
Domain dimensions are [−100; 100] × [−50; 50] × [0; d].
We consider the domain as pseudo-2D and neglect z coordi-
nate in further description. The domain contains two vertical
perfect wells located at (−50, 0) and (50, 0). The well rates
are q1 = 1, q2 = 4. The permeability tensor is scalar, K = I.

The analytical solution for this problem is suggested in [8]:

p = q1 ln r1

2πkhw

+ q2 ln r2

2πkhw

+ C,

where hw is the well height (hw = d = 3 in our case), and
C is some constant.

In order to fix a unique solution, we set the pressure in the
middle point x0 = (0, 0), P0 = p(x0) = 1.5. The analytical
solution then becomes (see Fig. 11):

p = P0 − q1 ln (r1/rw,p1)

2πkhw

+ q2 ln (r2/rw,p2)

2πkhw

,

where r1, r2 are the distances from the current point to the
wells 1 and 2, respectively, and rw,p1, rw,p2 are the dis-
tances from the middle point x0 to the wells. Pressures on
the wells are obtained from this formula.

The radii of the near-well regions used in the logarithmic
correction for both wells are R1 = R2 = 30.

Fig. 11 Analytical solution for two wells problem

Table 7 Solution relative errors and flux errors for q1 and q2 for the
problem with two wells for cubic grids

100/h εNFV
p,anl εNWC

p,anl εNFV
p,pcm εNWC

p

33 1.2e–2 2.8e–5 1.2e–2 2.8e–5

67 5.1e–3 7.0e–6 5.2e–3 7.6e–6

99 3.1e–3 3.2e–6 3.1e–3 4.1e–6

100/h εNFV
q1

εNFV
q2

εNWC
q1

εNWC
q2

33 4.6e–3 1.9e–2 2.1e–5 4.1e–5

67 4.6e–3 1.9e–2 2.3e–5 5.4e–5

99 4.6e–3 1.8e–2 2.0e–5 7.0e–5

For the two wells case, we use the simplest cubic grids
that are the best meshes for the Peaceman method. Grid
dimensions are 66×33×1, 134×67×1 and 198×99×1.

Table 7 shows the relative errors for the NFV and the
NWC methods for the analytical well rates, relative errors
for the pressure and the well rates (the first and the second
well) for the numerical well models: NFV + Peaceman and
the NWC method.

Figure 12 presents the error fields for the NFV scheme
with the Peaceman well model and the NWC method in the
log-scale. Note that the NFV scheme reduces to the standard
FV scheme with the linear two-point flux approximation on
cubic mesh and isotropic media. The largest error of the
NFV scheme is concentrated in regions around the wells that
are covered by the near-well regions of the NWC method.
The NWC method gives considerably smaller errors than
the conventional method.

Fig. 12 Relative errors for the NFV scheme with Peaceman well
model (top) and the NWC (bottom) methods in the log-scale. Cubic
grid 134 × 67 × 1
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6 Discussions and conclusions

We presented the new near-well correction (NWC) method
for the general case of anisotropic media, polyhedral grids,
and arbitrarily oriented wells including slanted, shifted and
partially perforated cases.

Numerical experiments show the noticeable improve-
ment of accuracy compared to the original monotone non-
linear FV scheme with the conventional Peaceman well
model or with the given analytical well rate. Practical impli-
cation of the improved accuracy is more accurate calculation
of the well rates even on coarse grids.

We used the linear version of the method and achieved
better accuracy compared to the nonlinear scheme by the
cost of waiving the solution monotonicity in the near-well
region. Choosing the nonlinear weights in (10) may help to
retrieve additional properties of the solution such as mono-
tonicity or preserving the DMP, which is the subject of
future study.

The local grid refinement, which is widely used for mod-
elling areas with high-pressure gradients, is not required
in our approximation, since the NWC method provides
enhanced accuracy for arbitrary well cells.

The study presented in this paper covers a single-phase
flow; however, the approach can also be extended to the
multiphase flows model. The construction of the method
also allows us to consider more complex structures (e.g.,
wells with hydraulic fractures), as soon as we can com-
pute local solution (analytical or numerical) for the flow
generated by this structure.
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