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Abstract: Aortic valve disease accounts for 45% of deaths from heart valve diseases.An appealing approach
to treat aortic valve disease is surgical replacement of the valve leaflets based on chemically treated autolo-
gous pericardium. This procedure is attractive due to its low cost and high effectiveness.We aim to develop a
computational technology for patient-specific assessment of reconstructed aortic valve function that can be
used by surgeons at the preoperative stage. The framework includes automatic computer tomography image
segmentation, mesh generation, simulation of valve leaflet deformation. The final decision will be based on
uncertainty analysis and leaflet shape optimization. This paper gives a proof of concept of our methodology:
simulation methods are presented and studied numerically.
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Due to increase in life expectancy in high-income countries, heart valve disease is now referred as the ‘next
cardiac epidemic’ [3]. Aortic valve disease (AVD) accounts for 45% of deaths from heart valve disease [3].
An appealing approach to treat AVD is surgical replacement of the valve leaflets based on chemically treated
autologous pericardium. This procedure is attractive due to its low cost and high effectiveness [19]. During the
surgical procedure, surgeons excise the patch of the patient pericardium, fix it with glutaraldehyde solution
with a buffer for 10minutes, and construct the new leaflets of the aortic valve. The decision on the new aortic
leaflet design is made during the surgical procedure based on surgeon’s experience and expertise. Success of
the operation relies on the valve competence under diastolic pressure in terms of coaptation characteristics.
Intra-operative testing of the reconstructed valve in its diastolic state is demanded [2]. A surgical planning
system based on patient-specific modelling will allow surgeons to compare different aortic leaflet designs, to
choose optimal replacement strategies and to reduce duration of surgery. This preoperative preparation stage
in its turn can enhance significantly the surgical outcome.

Model-based optimization of the valve leaflets is very important. Parametric geometric models suggest
an ‘ideal valve’ which optimizes coaptation and eliminates regurgitation (see, e.g., [8, 12]) disregarding pa-
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tient’s geometry, i.e., the features of patient’s anatomy. We aim to develop a computational technology for
patient-specific assessment of reconstructed aortic valve function that can be used by surgeons at the preop-
erative stage. The technological pipeline consists of four stages. The first stage ismedical image segmentation
providing patient-specific geometry of the aortic root and the aorta. The second stage is choosing trial valve
leaflet design based on geometric features of the aortic root. The next stage is simulation of those leaflets clo-
sure and estimation of coaptation characteristics under the diastolic pressure. The final stage is optimization
of leaflets design and/or size based on computed coaptation quantities. In this article we focus on the first
and the third stages of the pipeline, the problem of leaflet design and optimization will be addressed in our
future works.

Clinical application of the computational technology implies obtaining of simulation results on-the-fly to
be able to test different valve configurations. This imposes specific restrictions on the most time-consuming
part of the simulation: modelling of leaflets deformation (valve closure) should be as fast as possible. Most
of the studies on the numerical modelling of the aortic valve (AV) do not report simulation times. Computa-
tional complexity of a model correlates with its accuracy and detalization. For instance, the fluid-structure
interaction (FSI) model, themost realistic computational tool describing AV functionality, is compared in [22]
with the corresponding structural finite element model (FEM) in terms of stresses, coaptation, AV dynamics,
etc. Two models shared the same aortic root and aortic valve geometry, mechanical properties of the tissue
and the kinematic boundary conditions. The AV leaflets and the aorta were discretized by shell and linear
elements, respectively, and hybrid Eulerian-Lagrangian approach with penalty-based coupling was used for
FSI modelling. Dynamic simulations of one cardiac cycle were performed on workstation with 12 processors
by the commercial finite element solver LS-DYNA. Although only the FSI model recovers AV transient motion
andblooddynamics, AVdiastolic coaptation characteristics in terms of level and lengthwere almost the same
in the structural and FSI models (the difference was 0.1 mm). Simulations required 185 hours and 19 hours
for the FSI model and structural FEM, respectively. Computational complexity of structural FE modelling of
the mitral valve is reported in [25] for one closing cycle (13 hours on 16 processors) and in [18] for systolic
mitral valve closure (73–98 min on 16 processors). Although FE simulation of valve closure is much faster
than that of the whole cardiac cycle, the computational time is still prohibitively high for the use in real-time
patient-specific surgical planning. The reasons for high complexity of FE simulations of the heart valves are
large deformations, complex constitutive relations, and high numerical stiffness of the involved equations.

For real-time surgical planning system the method of modelling aortic valve closure in its diastolic state
should be computationally cheap and should provide the results within a few minutes on a personal com-
puter. In the present studywe consider and compare two efficientmethods for computation of the AV closure.
The first approach is the very popular in computer graphics Mass-spring model (MSM) [23]. MSM represents
the deformable body by a set of point masses interconnected by elastic springs. Although stresses can not
be recovered by MSM, in some cases large deformations may be recovered satisfactorily. In particular, com-
parisons of the MSM- and FEM-based predictions of the coaptation zone of the closed heart valve [10, 11, 18]
demonstrate feasibility and efficiency of MSM. The second approach is based on the hyperelastic nodal force
method [21, 24], which is a generalization of the triangular biquadratic springs method proposed in [5] for St-
Venant-Kirchhoff isotropic hyperelasticmembranes. Themethod [5] establishes a formal connection between
FEM andMSMbased on the variational principle and interpolation properties of barycentric coordinates. The
hyperelastic nodal force method [21, 24] expands the method [5] for other hyperelastic materials and obtains
easy-to-implement concise formulas for nodal elastic forces sacrificing corresponding springs representation.
In the scope of our study, we consider membrane formulations (no resistance to bending loads) applicable
to simulation of the AV diastolic state since ‘the leaflets are operating in the regime, where in-plane stresses
are relatively large, at least an order of magnitude greater than bending stresses’ [10].

Patient-specific modelling implies personalized aorta geometry and material models. We use an elabo-
rated algorithmofmedical image segmentation to retrieve thepatient’s aorta geometry. As thepatient-specific
pericardium material property is unknown, in order to estimate the impact of material parameters and ma-
terial models on coaptation characteristics, we carry out the sensitivity analysis. Besides the first application
of the hyperelastic nodal force method, the novelty of the study is experimental discovery that the coapta-
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tion profile is almost invariant to a type of isotropic hyperelastic material and depends only on the elastic
modulus, whereas the coaptation heights are sensitive to both material model and elastic modulus.

The outline of the paper is as follows. In Section 1 we describe the techniques for the geometric repre-
sentation of the aortic valve. The efficient methods of modelling valve closure are described in Section 2. The
results of numerical experiments are presented in Section 3.

1 Geometry of the aortic valve and its leaflets
A conventional image of contrast enhanced Computer Tomography Angiography (ceCTA) is processed at the
first stage of our computational technology. At this stage we reconstruct the boundaries of the patient’s aortic
root and detect the commissure points where the valve leaflets meet each other. Since we are interested in
assessment of the reconstructed valve with the new leaflets, we need only the aortic root geometry. Positions
of the future commissure points and suturing paths are assigned by the surgeon.

The aorta segmentation algorithm [4] is based on the Hough Circleness filter [6], the Isoperimetric Dis-
tance Trees (IDT) algorithm [7], andmathematicalmorphology operations. TheHoughCircleness filter detects
the biggest bright circle on the topmost 2D slice of the image and assign it to the cross-section of the ascending
aorta. The center of that bright circle is the seed for the region growth by a high-pass thresholding procedure.
It results in an initial mask Mi containing the aorta, the left ventricle and other bright parts of the ceCTA im-
age. MaskMi is processed further by the IDT algorithm andmathematical morphology operations to produce
a maskMa for the aorta and a top part of the left ventricle (see [4]). Having on input maskMa, ITK SNAP soft-
ware [26] and CGAL library [20] generate a surface mesh by the marching cubes algorithm. The surface mesh
includes the boundaries of the ascending aorta, the sinotubular junction, the aortic sinuses, the ventriculo-
aortic junction, and a part of the left ventricle (see Fig. 1). The surface mesh is used for visualization of the
patient-specific domain and manual assignment of the suturing path for the replaced leaflets.

The leaflet shape optimization procedure assumes that the shape is defined by a parameterized template.
In this work we use a tentative flat shape design shown in Fig. 2. The symmetric shape of the template is
based on the shape recommended by Dr. S.Ozaki [17]. The boundary has a circular arc (B − C) at the bottom
extended by straight tangent segments (B −A and C −D). The top part of the leaflet (A − E −D) represents the
free boundary. The following parameters define a leaflet uniquely: the radius of circular arc r, the circular arc
angle ∠BOC α (in this paper it is fixed, α = 160∘), the length of extension segments (B − A and C − D) a, the
length of free segments (A − E and E − D) b.

The total length of the sutured edge is equal to 2a + πrα/180, the total length of the free edge is equal
to 2b. The distance between the commissure points on the patient’s aortic wall should be smaller than the
length of the free boundary edge of the leaflet. The suturing path is chosen to fit the length of the sutured
edge of the leaflet.

AA

LV

STJ

VAJ

Fig. 1: Segmented boundaries of aortic root and part of left ventricle: ascending
aorta (AA), sinotubular junction (STJ), commissure point (green dot), suturing path
(yellow dashed line), ventriculo-aortic junction (VAJ), part of the left ventricle (LV),
aortic sinuses are between suturing path and sinotubular junction.
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Fig. 2: Leaflet template: the sutured part of the boundary (A − B − C − D), the free part
of the boundary (A − E − D).

(a) (b) (c)

Fig. 3: Quasi-uniform triangular meshes (mesh size h = 3mm) for different leaflets: (a) r = 11mm, a = 11mm, b = 11mm; (b)
r = 12mm, a = 13mm, b = 13mm; (c) r = 13mm, a = 13mm, b = 14mm.

The advancing frontmesh generator [13] fits ideally formeshing such parameterized domains. The leaflet
templates andmeshing algorithms are easily adjustable for other shape designs. Several examples of unstruc-
tured meshes for different leaflet sizes and shapes are presented in Fig. 3.

In order to set the initial position of the user-defined leaflet inside the aortic valve, we construct the plane
passing through the corresponding pair of commissure points parallel to the blood flow direction. The leaflet
mesh is then mapped to this plane so that points A and D coincide with the commissure points on the aortic
surface. All boundary nodes of the sutured edge (A − B − C − D) are distributed uniformly along the suturing
path on the aortic wall. Positions of the other mesh nodes of the sutured leaflet are computed by Algorithm 1
(see Section 2) with pressure P = 0.

2 Modelling of valve closure
The valve leaflet is represented by an oriented triangulated surface, whose position in the 3D space should
comply with the static equilibrium. The latter should be satisfied for each free mesh node with index i as a
point mass at which the resulting forces are applied:

Fresi ≡ F
p
i + F

e
i + F

c
i = 0 (2.1)

whereFpi ,F
e
i , andF

c
i are the force of blood pressure, the elastic force, and the contact force fromother leaflets,

respectively.
To find the static equilibrium,we apply the iterative process described by Algorithm 1. Here Gn(rn1 , . . . r

n
N)

is the oriented triangulated surface with N nodes andM triangles at the nth iteration, rni is the position of the
ith node at the nth iteration, ∆rni is the shift of the ith node applied at the nth iteration,F

res
i (G

n) is the resulting
force applied to the ith node at the current state of Gn, δ is a small coefficient converting the total force into
the shift. The iterations terminate when ‖∆rn‖ < 10−3‖∆r0‖.

The pressure force Fpi is defined by Fpi = P∑T ATnT/3, where P is the applied pressure, nT is the unit
normal to triangle T with area AT , ∑T ATnT is the sum of areas of all oriented triangles T sharing the ith
node.
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Algorithm 1

Require: mesh G0(r01, . . . r
0
N)

1: for i = 1, . . . , N do ⊳ initialization
2: set r0i as initial position of the ith node
3: end for
4: set pressure P, const δ, n = 0
5: repeat ⊳ iteration
6: for i = 1, . . . , N do
7: compute total force Fresi ← Fresi (G

n)
8: ∆rni = δ ⋅ F

res
i

9: rn+1i = r
n
i + ∆r

n
i

10: end for
11: update mesh surface Gn+1(rn+11 , . . . rn+1N )
12: n ← n + 1
13: until the process has converged

commisure

coaptation zone
coaptation profile

coaptation height

Fig. 4: Characteristics of the coaptation zone.

The leaflets can not interpenetrate, they interact with each other forming a coaptation zone to be eval-
uated. The coaptation zone, the coaptation profile, and other basic notions for one leaflet are schematically
represented in Fig. 4. To describe the contact interaction, we introduce the contact forces which are similar
to the reaction forces [18]. To this end, for each surface triangle T with vertices ri, rj, rk, and the external unit
normal nT we define its barycenter as rT = (ri + rj + rk)/3, and for the current mesh G we define the threshold

d = 1.1M−1 ∑
T∈G

max(‖rT − ri‖, ‖rT − rj‖, ‖rT − rk‖).

For each grid node ri from the d-vicinity of triangle T (i.e., ||ri − rT || < d) we compute the new tentative
position r̃i neglecting the contact forces from the other leaflets. We also compute the signed distance to the
plane of the triangle dπi,T = (r̃i − rT , nT). If the signed distance d

π
i,T is below the threshold dπ = 0.7mm, then

we apply the contact force

Fci,T =
{{{
{{{
{

||Fi|| exp(−
k1dπi,T
||Fi||
)nT , dπi,T > 0

(||Fi|| − k2dπi,T)nT , dπi,T ⩽ 0
(2.2)

where Fi = Fpi + F
e
i , and k1 = 0.8 N/m and k2 = 20 N/m are the empirically selected constants. The total

contact force at the node of the leaflet grid is the sum of all contact forces from surrounding triangles forming
the other leaflets.

We still need to define the nodal elastic force Fei . We use two methods for computation of Fei .
The first method is based on the simple mass–spring model (MSM) [23]: Fsi = ∑eij Fij, where the sum-

mation is taken over all mesh edges eij incident to the mesh node i. The elastic force Fij of a virtual spring
connecting the ith and jth nodes depends on the spring deformation:

Fij = kij(󵄩󵄩󵄩󵄩rj − ri
󵄩󵄩󵄩󵄩 − Lij)

rj − ri
󵄩󵄩󵄩󵄩rj − ri
󵄩󵄩󵄩󵄩
, kij =

E(ε, α0)HAij

L2ij
(2.3)
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Fig. 5: Triangle before and after deformation.

where H is the average surface thickness, Aij is the surface area of the two triangles sharing the edge eij
of length Lij, Aij and Lij are computed on the flat undeformed grid, E = E(ε, α0) is the elastic modulus of
the leaflet tissue depending on the strain ε and structural characteristics α0. An example of E(ε, α0) for a
nonlinear anisotropic material is given in [10]:

E(ε, α0) = √E2f (ε) sin
2 α0 + E2cf (ε) cos2 α0 (2.4)

where Ef (ε) and Ecf (ε) are the parameters based on the experimental stress–strain curves in the fiber and
cross-fiber direction, respectively, ε is the relative elongation of the spring, α0 is the angle between the spring
initial orientation and a preferential direction of the collagen fibers within the leaflet tissue.

The second method is the hyperelastic nodal force (HNF) method suggested in [21, 24]. It defines the
elastic nodal force for arbitrary (isotropic or anisotropic) hyperelastic material with given elastic potential U.
We assume that each triangle T of the undeformed flat grid with area AT , edge lengths Lm and angles αm,
m = 1, 2, 3 (see Fig.5), is mapped by the leaflet deformation to a triangle T󸀠 with vertices ri,rj,rk and edge
lengths lm and that the discretized counterpart Ud(ri , rj , rk) of the elastic potential U is known. Then the
hyperelastic nodal force is

Fei (T) = −AT
∂Ud(ri , rj , rk)

∂ri
. (2.5)

For general elastic potentials given in terms of invariants of the right Cauchy–Green tensor, the authors of
[21, 24] derived easy-to-implement concise formulas for nodal elastic forces (2.5).

In particular case of an isotropic hyperelastic St.Venant–Kirchhoff membrane, the hyperelastic nodal
force is computed as the sum of reactions of deformed triangular biquadratic springs (TBS) [5]:

Fei (T) =∑
j ̸=i
𝜘Tk ∆

2lk (rj − ri) +∑
j ̸=i
(cTj ∆

2li + cTi ∆
2lj) (rj − ri)

∆2li = l2i − L
2
i =
󵄩󵄩󵄩󵄩rj − rk
󵄩󵄩󵄩󵄩
2 − L2i

𝜘Tk =
2 cot2 αk(λ + µ) + µ

16AT
=
E(2 cot2 αk + 1 − ν)

16(1 − ν2)AT

cTk =
2 cot αi cot αj(λ + µ) − µ

16AT
=
E(2 cot αi cot αj + ν − 1)

16(1 − ν2)AT

(2.6)

where λ and µ are Lame coefficients, E is Young’s modulus, ν is Poisson’s coefficient, indices i, j, k form the
even permutation, stiffnesses of springs 𝜘Tk and cTk are defined with respect to the undeformed geometry. It
is worth noting that the TBS forces are applicable to 2D isotropic St.Venant–Kirchhoff material only, whereas
the hyperelastic nodal forces are applicable to any 2D or 3D hyperelastic material (isotropic or anisotropic).

3 Numerical results
We present verification of the numerical models for an aortic valve closure benchmark and their sensitivity
study for a real anatomy geometry. All our simulations were run on a laptop Intel Core with i5-8250U CPU
1.60 GHz.
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(a) (b)

Fig. 6: Three closed cusps in benchmark problem proposed in [16] (a); the coaptation area of the leaflet and its profile (b).

3.1 Aortic valve closure benchmark

We verify themass-springmodel (MSM), the triangular biquadratic spring (TBS)method and the hyperelastic
nodal force (HNF) method by the benchmark problem [16]. We consider an aortic healthy valve with aortic
annulus (AA) diameter dAA = 24 mm and three symmetric leaflets with thickness H = 0.3 mm shown in
Fig. 6a (it corresponds to the base geometry, Fig. 1 in [16]). Four coaptation characteristics are calculated
in [16]: hE, hC−C, havr, and NCCA. The effective height hE is defined as the valve height of the closed valve
at pressure load of 3 mm Hg. The value hC−C is the coaptation height measured in the C − C plane which is
orthogonal to one of the coaptation planes, is parallel to the AA axis and is distanced from the AA axis by 5
mm. The average coaptation height havr is defined as the ratio of the coaptation area (bounded by the yellow-
red curve in Fig. 6b) and the free-edge length (the red curve in Fig. 6b) under the diastolic pressure of 80 mm
Hg. The normalized cusp coaptation area NCCA is defined as the ratio of the coaptation area and the total
cusp surface area (bounded by the green-red curve in Fig. 6b). The hE was calculated in [16] from so-called
dry staticmodels ignoring the blood flow, the other parameters were calculated from a general fluid-structure
interaction (FSI) model. The material of the leaflets is assumed in [16] to be linear elastic with E = 1MPa and
ν = 0.45.

We compare the coaptation characteristics computed byMSM (linear elasticmaterial with E = 1MPa, ν =
0.45), TBS method (St.Venant–Kirchhoff material with E = 1 MPa, ν = 0.45), HNF method (incompressible
neo-Hookean material with E = 1MPa, µ = E/3 and incompressible Gent material with E = 1MPa, µ = E/3,
Jm = 2.3). For the last two materials the elastic potentials are

UNH = Hµ/2(I1 + 1/I2 − 3) (3.1)

UGent = −HJmµ/2 ln(1 − (I1 + 1/I2 − 3)/Jm) (3.2)

where I1 and I2 are 2D strain invariants, H is the thickness before the deformation, µ is the shear modulus,
Jm is a material constant.

The obtained coaptation characteristics are given in Table 1. The grid for each leaflet contains 1313 tri-
angles. Further mesh refinement does not change the results except for the TBS model where hE = 11 mm,
hC−C = 3.6mm, havr = 3.5mm, NCCA= 28% on the mesh with halved mesh size. This implies slower mesh
convergence of the TBS scheme compared to the othermethods. The FSI-based value of hC−C is less than hC−C
from our structural simulations, although profiles of the coaptation area (see Fig. 6b) are similar to the profile
presented in Fig. 4 [16]. In the literature, the comparison of the coaptation characteristics for FSI-based mod-
els and dry static models is controversial: in [15] dry models overestimate the coaptation heights, whereas in
[22] they are almost the same. The discrepancy stems from different boundary conditions (see [22, Sect. 4.1]).

In general, the coaptation heights due to the dry static models deviate by nomore than 2mm, theymatch
hE, havr from [16] within 0.6 mm tolerance and overestimate hC−C from [16] by 1.5–2.3 mm.
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Tab. 1: Comparison of the coaptation heights hE , hC−C , havr and normalized cusp coaptation area NCCA.

Model hE , mm hC−C , mm havr, mm NCCA, % CPU time, sec

FSI, lin.elasticity [16] 10.5 1.5 2.7 21 n/a
MSM (2.3) 10.8 3.8 3.3 25 44
TBS (2.6) 10.8 3.1 2.9 24 58
neo-Hookean (2.5)–(3.1) 10.4 3.0 2.5 21 136
Gent (2.5)–(3.2) 10.8 3.4 3.1 24 203

E1 (kPa) E2 (kPa) E3 (kPa)

Longitudinal direction (Ef ) 137 568 968
Transverse direction (Ecf ) 63 570 1400
Average isotropic case 106 569 1200

Tab. 2: Elastic modulii derived from experimental data for
treated human pericardium [27] (λ∗1 = 0.175, λ

∗
2 = 0.3).

Leaflet template Isotropic ↑ → ↗
a h 14.3 14.3 14.2 14.2
b h 16.4 16.2 16.3 16.6
c h 16.8 16.2 17.0 16.9
a hc 0 0 0 0
b hc 11.6 10 10.1 12.2
c hc 11.9 13.4 12.7 13.2

Tab. 3:MSM-based values of the coaptation heights h and hc
(mm) for three templates and three anisotropy directions (↑,
→, ↗ are cases of vertical, horizontal and diagonal direction of
anisotropy, respectively).

E1 (kPa) E2 (kPa) h (mm) hc (mm)

50 300 18.4 13.6
50 569 17.2 10.9
106 300 17.3 12.9
106 569 16.4 11.6
106 700 15.7 11.6
180 569 15.6 9.7
180 700 15.4 9.2

Tab. 4: Sensitivity of MSM-based coaptation heights h and hc to elastic modulii
E1 and E2.

Tab. 5: Sensitivity of coaptation heights h, hc, and hC−C to elasticity model and values of elastic modulii.

model h, mm hc, mm hC−C , mm CPU time, sec

MSM E = 10MPa 15.4 7.3 13.1 282
TBS E = 10MPa, ν = 0.5 15.4 8.3 15.1 578
Neo-Hookean E = 10MPa, µ = E/3 13.0 7.3 12.9 527
Gent E = 10MPa, µ = E/3, Jm = 2.3 15.5 8.4 13.5 2072
MSM E = 1MPa 17.3 10.7 16.0 143
TBS E = 1MPa, ν = 0.5 16.7 12.1 16.2 426
Neo-Hookean E = 1MPa, µ = E/3 17.4 8.2 15.8 464
Gent E = 1MPa, µ = E/3, Jm = 2.3 16.3 10.5 15.9 2612
MSM E = 0.1MPa 21.5 19.6 20.3 166
TBS E = 0.1MPa, ν = 0.5 23.7 19.7 23.4 191
Gent E = 0.1MPa, µ = E/3, Jm = 2.3 23.6 19.0 23.2 546

3.2 Sensitivity analysis on realistic geometric data

Here we consider the case of patient-specific geometry based on the ceCTA data of a real patient. We examine
leaflet templates presented in Fig. 3. In our simulation we calculate under the diastolic pressure 80 mmHg
the maximal coaptation height h and the central coaptation height hc defined in Fig. 7a. These coaptation
characteristics are thought to be the main geometric criteria for further optimization of leaflet designs.
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(a) (b)

Fig. 7: Definitions of the coaptation zone, maximal coaptation height h and the central coaptation height hc (a); position of
leaflets inside the aorta (b).

(a)

(b)

Fig. 8: Coaptation profiles for different elasticity models and elastic modulii (a), suturing paths and commissures on the
aorta (b).

To be as close as possible to the clinical application, we assume that the leaflets are cut from the treated
human pericardium. There is no consensus on mechanical properties of fresh and treated human peri-
cardium. According to the review [1], human pericardium is isotropic (both fresh and treated) whereas ani-
mal pericardium is anisotropic. However, according to the experimental work [27], the human pericardium
is anisotropic (both fresh and treated). For this reason we estimate the influence of anisotropy using the
mass–spring model and the stress–strain data approximated by function [27]:

E(ε) =
{{{
{{{
{

E1, ε ⩽ λ∗1
E2, λ∗1 < ε < λ

∗
2

E3, ε ⩾ λ∗2

(3.3)
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withparameters defined in Table 2 and strain ε representedby the relative elongation.Weuse equation (2.4) to
calculate the elasticmodulii and consider different directions of anisotropy represented by fibers orientation.
The calculated coaptation heights are presented in Table 3. Each triangulated leaflet has about 400 elements.
Thickness of the pericardium H is equal to 0.3mm. An example of the computed coaptation zone is shown in
Fig. 7b. Themaximal coaptation height h does not depend on anisotropy directionwhereas the central height
hc is slightly sensitive to the anisotropy.

To study the sensitivity of the coaptation heights to the material parameters, we vary elastic modulii in
the range recovered for 44 patients [27]. We consider the mass-spring model and the template (b) shown in
Fig. 3. The material is considered to be isotropic with the stress–strain relationship (3.3) where E3 = 1200
kPa, λ∗1 = 0.175, λ

∗
2 = 0.3. The impact of the elastic modulii E1 and E2 on the coaptation heights is essential,

the deviations may achieve 4 mm (see Table 4).
We also study the influence of the material model on the coaptation heights h, hc, hC−C. We consider

MSM, TBS, neo-Hookean, Gent models with different elastic modulii, E = 105, 106, 107 Pa. The coaptation
heights are shown in Table 5 and the coaptation profiles are shown in Fig. 8a. The coaptation profile here
is the boundary of the coaptation zone projected to the undeformed flat triangulation. The profiles are non-
symmetric since the aortic annulus is non-symmetric (see Fig. 8b). Surprisingly, the coaptation profiles are
not sensitive to thematerialmodel but dependon the elasticmodulus E. However, the variations of h, hc, hC−C
among different models with the same elastic modulus E are considerable since the deformation of cusps is
model-sensitive. For different elastic modulii or elastic models the variations in the coaptation heights may
reach 3–10 mm (rf. Tables 4 and 5).

4 Conclusions
We presented the numerical framework for computing the coaptation characteristics of the reconstructed
aortic valve.We analyzed different approaches formodelling of the AV closure. The approaches are appealing
in clinical applications since they require only a few minutes of computations on a laptop. The coaptation
zone is the main factor for decision making in leaflet shape optimization. The shape optimization targets
the coaptation zone only, and we address the static equilibrium of the closed reconstructed valve under the
diastolic pressure. Our numerical results for the coaptation zone are in good agreement with the benchmark
problem [16]. To develop the computational patient-specific aortic valve reconstruction, we elaborated the
algorithm for automatic aorta segmentation and meshing and carried out elastic models sensitivity analysis
within the range of human pericardium mechanical properties [27]. We found that the coaptation profile is
insensitive to the elasticity models with the same elastic modulus. However, the variations of the coaptation
heights may achieve 3–10 mm for different modulii and models. This is large variation since the coaptation
heights must be at least 3–4 mm to avoid regurgitation (backward blood flow). The sensitivity to anisotropy
of the pericardiumwas assessed for the mass-spring model: the variations of the heights are about 1 mm that
is not essential for the application.

The practical outcome of our research is the conclusion that optimization of the coaptation profile on the
leaflet does not require the model specification, only the geometry and the elastic modulus matter. On the
other hand, optimization of the coaptation heights requires specification of the pericardium elastic model.

In our future work, we plan to compare our numerical model with real surgical cases of valve reconstruc-
tion and obtain more experimental data on mechanical data for fresh and treated pericardium.
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