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Abstract: The paper proposes a stable time-splitting method for the numerical simulation of free-surface vis-
cous flows. The key features of the method are a semi-Lagrangian scheme for the level-set function trans-
port improved with MacCormack predictor–corrector step with limiting strategy and an adaptive volume-
correction procedure. The spatial discretization is done by a hybrid finite volume/finite differencemethod on
dynamically adaptive hexahedral meshes. Numerical verification is done by comparing full-scale 3D numer-
ical simulations of the sloshing tank and the coastal wave run-up with other numerical and experimental
results known from the literature.
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Free surface flows over submerged and partially submerged obstacles are of great practical interest. Exam-
ples of such flows in naval engineering include the ba�ed oil tanks and run-up of the sea waves over oil
ridge or coastal constructions. Numerical simulations play an important role in predicting fluid motion and
its interaction with structures in different situations. For successful numerical simulations one has to use
free surface capturing techniques combined with local mesh adaptivity in order to resolve different length
scales in fluid solution and geometry. For realistic large-scale 3D problems, free surface capturing and local
mesh adaptivity cause serious challenge in designing an accurate and reliable numerical method. This work
continues our efforts in developing such amethod for 3D free surface flows using dynamically adapted octree
hexahedral meshes (see [13–16, 18, 23, 24]).

In the present paper we propose a simple yet accurate and stable time-splitting scheme for the system of
fluid flow equations coupled with the transport equation for the indicator function of the free surface. The
presented approach features the semi-Lagrangian method for the surface transport enhanced with the Mac-
Cormack predictor–corrector step and a limiting strategy. We apply the level-set method to the free-surface
transport description. Semi-Lagrangian method is also used for the re-initialization of the level-set function.
A particular attention is paid here to the volume correction method applied after re-initialization and semi-
Lagrangian advection steps. The volume correction proposed here is based on the local adjustments of the
discrete level-set function.

In our earlier work [15] we proved the stability of the splitting semi-discrete scheme similar to the one
studied here, but with only the first order semi-Lagrangian method for the fluid and level-set transport. An
improvement for better accuracy of this approach on adaptive octreemeshes was suggested in [24], where the
semi-Lagrangianmethodwas usedwith a higher order interpolation, a limiting strategy and a back and forth
correction of the numerical solution. The resultingmethodwas verified on several benchmarkswith excellent
results and used in realistic applications. For the spatial discretization we apply a hybrid finite volume/finite
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difference method on octree hexahedral meshes. The discretization includes a higher order interpolation
with limiting strategy for the semi-Lagrangian transport (see details in [16, 24]). In this paper, we replace the
computationally expensive semi-Lagrangian step with back and forth correction for transport by a cheaper
yet accurate semi-Lagrangian MacCormack predictor–corrector method. Another new contribution here is
an improved volume correction scheme applied after the transport and re-initialization steps. We avoid the
redundant details about spatial discretization which can be found in [16, 24]. Only those details about spatial
discretization that are important for the presentation of the limiting and volume correction procedures are
included in this paper.

Let us comment on the related papers on this topic. The volume preserving variants of the level-set
method based on localized mass correction were previously addressed in [1, 2, 25], the back and forth er-
ror compensation and correction methods were suggested to improve the accuracy of the level-set function
transport in [6, 7], also with a limiting strategy [9], an idea to replace themore expensive back and forth error
compensation with MacCormack correction in the context of the semi-Lagrangian approach was proposed in
[22], semi-Lagrangian method for the re-initialization of an indicator function was used in [26].

The rest of the paper is organized into three sections. Section 1 introduces the mathematical model. Sec-
tion 2 presents the time stepping scheme with an emphasis on new findings which provide higher order ap-
proximation in time and improve monotonicity and conservation properties of the overall method. Section 3
collects the results of numerical experiments which validate our approach for numerical simulation of free
surface flows over partially submerged obstacles.

1 Mathematical model
Amotion of viscous incompressible fluid is driven by the Navier-Stokes equations for unknown fluid velocity
vector field u and pressure p

{{
{{
{

ρ (∂u∂t + (u ⋅ ∇)u) − div σ(u, p) = g

∇ ⋅ u = 0
in Ω(t), t ∈ (0, T] (1.1)

where σ(u, p) = ν[∇u + (∇u)T] − p I is the stress tensor of the fluid; g is the external force (e.g., gravity), ρ
is the density, and ν is the kinematic viscosity, all are assumed to be given. The equations are posed in the
time-dependent fluid domain Ω(t), t ∈ [0, T]. At the initial time t = 0 the domain and the velocity field are
known:

Ω(0) = Ω0, u|t=0 = u0, ∇ ⋅ u0 = 0. (1.2)

Finding the evolution of the domain Ω(t) for t > 0 is a part of the problem. For the definition of the domain
evolution we use the level-set approach. This is an Eulerian approach using the indicator function for the
implicit definition of the domain Ω(t) ∈ ℝ3 occupied by the fluid:

φ(t, x) =
{{{
{{{
{

< 0, x ∈ Ω(t)
> 0, x ∈ ℝ3 \ Ω(t)
= 0, x ∈ Γ(t), ∀t ∈ [0, T].

(1.3)

The level-set function φ(t, x) is assumed to be at least Lipschitz continuous. Then for the free-surface flow,
one can show that φ(t, x) satisfies the transport equation [19]:

∂φ
∂t + ũ ⋅ ∇φ = 0 inℝ3 × (0, T]. (1.4)

The transport field ũ coincides with the velocity u in Ω(t) and is extended to ℝ3. The initial condition (1.2)
defines φ(0, x). Equations (1.4) and (1.1) are coupled through the boundary equations for (1.1) and definitions
of ũ and Ω(t).
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To set up suitable boundary conditions, let ∂Ω(t) = ΓW ∪ Γ(t)∪ Γout ∪ Γ in, where ΓW is the static boundary
(walls), Γ(t) is the free surface of fluid, Γin and Γout are inflow and outflow parts of the boundary, respectively.
In general, the sets ΓW , Γin, and Γout are time-dependent.On the static part of theflowboundary, theboundary
conditionBu|ΓW for the velocity is given by either no-slip boundary condition

u = 0 on ΓW (1.5)

or no-penetration and free-slip boundary conditions:

u ⋅ n = 0, ∂(u ⋅ ti)
∂n = 0, i = 1, 2, on ΓW (1.6)

where ti and n are tangential and normal vectors on ΓW . We assume that u is given on Γin and σ(u, p)n = 0
on Γout. The flows of our interest have large Weber numbers and so we ignore the capillary forces. Hence, on
the free surface boundary Γ(t) one has vanishing normal stress,

σ(u, p)n = 0 on Γ(t) (1.7)

where n is the normal vector to Γ(t). The normal vector n to the implicitly defined Γ(t) can be computed as
n = ∇φ/|∇φ| or simplyn = ∇φ, if the level-set functionφ possesses the signed distance property, i.e., satisfies
the Eikonal equation

|∇φ| = 1. (1.8)

2 Discretization in time
In this section, we describe the time-stepping procedure. The numerical method splits the coupled fluid–
level-set system of equations into the transport problem for φ, convection–diffusion problem for velocity,
and the Poisson problem for the pressure. The divergence-free constrain is enforced by the projection as in
the classical projection schemes by Chorin, Yanenko, Pironneau and others (see, for example, [4, 20]).

At each time step t = tn we use the notation un, pn, and φn for approximations to the velocity field
u(tn), the pressure p(tn), and the level-set function φ(tn). The initial condition (1.2) provides u0 = u(t0) and
φ0 = φ(t0). The fluid domain is implicitly given byφn throughΩn := {x ∈ ℝ3 : φn(x) < 0}. The time-stepping
scheme is as follows.

Givenun andφn such that divun = 0, |∇φn| = 1, n = 0, 1, . . . ,wefindun+1, pn+1, andφn+1 byperforming
the following steps:
1: The mesh is refined according to the prediction of the new position of the zero level set. The refinement
is important for large time steps when Step 2 may advect the zero level set into coarse cells with a loss of
well-resolved features.

2: Semi-Lagrangian step, Ωn → Ωn+1. Given φn and un, compute φn+1 by a semi-Lagrangian MacCormack
predictor–corrector scheme (see Section 2.1).

3: Volume correction. Update the level-set function φn+1 to conserve the volume of fluid (see Section 2.2).
4: Remeshing. Locally update the octree mesh by adapting it to ∂Ωn+1;
5: Re-interpolation. Map all discrete variables to the new grid (see Section 2.4).
6: Re-initialization. Update the level-set function φn+1 to satisfy the Eikonal equation (1.8) and make the

volume correction again (see Section 2.3).
7: Convection–diffusion solve. Compute the new velocity field ũn+1 in Ωn+1 by solving the convection–

diffusion equation (see Section 2.5).
8: Projection step. Project the vector field ũn+1 onto the discrete divergence-free subspace. Compute the new

velocity un+1 and pressure pn+1 (see Section 2.6).

In the following sections we discuss these steps in more detail.
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The stability of a simpler semi-discrete scheme was studied in [15]. The simple method is built of semi-
Lagrangian steps for both φn and un, diffusion step for velocity ũn+1; it does not include re-initialization,
volume correction, remeshing, or re-interpolation. This scheme is shown to conserve global momentum and
angular momentum, and to satisfy an energy inequality.

2.1 Semi-Lagrangian step

The physical velocity field un is defined in Ωn. To evolve φ, we need to extend un toℝ3 (in practice, to a bulk
computational domain). We use the closest-point extension of the velocity at the boundary to the exterior of
fluidun|Ωn → ũn|ℝ3 . The semi-Lagrangian step is the solution of the characteristic equation backward in time

∂x(τ)
∂τ = ũ

n(x(τ)), x(tn+1) = y, y ∈ ℝ3, τ ∈ [tn+1, tn]. (2.1)

Equation (2.1) defines an isomorphism X : y → x(tn) on ℝ3; one finds φn+1 from φn+1(y) = φn(X(y)). The
numerical integration of (2.1) is based on the trapezoidal rule

x(tn +
∆t
2 ) = x0 −

∆t
2 u(x0, tn), x(tn) = x0 − ∆tũn+1/2 (2.2)

where ũn+1/2 is extrapolated linearly in time:

ũn+1/2 = (1 + η)u(x(tn +
∆t
2 ) , tn) − ηu(x(tn +

∆t
2 ) , tn−1) , η = tn+1 − tntn − tn−1

, ∆t = tn − tn+1.

The tri-cubic interpolation combined with a limiter to enforce monotonicity [24] is used to define the values
of φ in x(tn). The same operations are performed for the ‘missing’ velocity values in x(tn + ∆t/2).

The semi-Lagrangianmethod as described above produces an error which can be reduced by theMacCor-
mack predictor–corrector schemewith a limiter.We describe this correction procedure below. Backward inte-
grating in time, interpolating and limiting define a nonlinear operatorB(φn+1). In the same way the numeri-
cal integration can be performed forward in time. It defines another nonlinear operatorF(φn). A combination
ofB andF in aMacCormack predictor–corrector type ofmethod and using ‘minmod’ limiting procedure gives
the following algorithm.

Algorithm 1 Semi-Lagrangian MacCormack method with limiting.
1: Perform forward semi-Lagrangian step φ̂n+1 = Fφn.
2: Perform backward semi-Lagrangian step φ̂n = Bφ̂n+1 = BFφn.
3: Compute error estimate e = 1

2 (φ
n − φ̂n) = 1

2 (I −BF)φn and correct φ̃n+1 = φ̂n+1 + e = (F + 12 (I −BF))φn.
4: Perform backward semi-Lagrangian step φ̃n = Bφ̃n+1 and compute error estimate ê = φn − φ̃n − e =
(I −B)e.

5: Compute ẽ by limiting e at nodes where |ê| > |e| using (2.3).
6: Compute φn+1 = φ̂n+1 + ẽ.

We note that if at node x0 one detects |ê(x0)| > |e(x0)|, the limiting of e is applied at all nodes xi involved
in the interpolation procedure for x0. This is done by inspecting a row rF(x0) and a row rB(x0) of the discrete
operators F andB as shown below:

for all x0 initialize ẽ(x0) = e(x0)
for all x0 s.t. |ê(x0)| > |e(x0)|

for all xi contributing to rF(x0) or rB(x0)
ẽ(xi) = minmod(e(x0), ẽ(xi)).

(2.3)
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The function minmod(a, b) is:

minmod(a, b) =
{{{
{{{
{

min(a, b), a, b > 0
max(a, b), a, b < 0

0, otherwise.

The method presented here is a simpler analogue of the semi-Lagrangian BFECC method with the limiter
[9, 24].

2.2 Volume correction

Advection and re-initialization steps for the level-set function lead to the divergence (loss or gain) of the fluid
volume. The higher accuracy of the MacCormack predictor-corrector method ameliorates the situation, but
does not eliminate the volume loss/gain, which becomes perceptible over long-time simulations. Therefore,
we apply volume correction after advection and re-initialization sub-steps.

The volume correction is performed through the following steps.

Algorithm 2 Volume correction.
1: Compute the level set correction constants φC in each surface computational cell (see Section 2.2.2).
2: Average out the cell-wise level set corrections φC to nodes adjacent to surface computational cells. This

gives the nodal function φN . Extension of the nodal correction level-set function φN to the whole domain
(see Sections 2.2.2–2.2.3).

3: Solve a nonlinear problem for a constant Q such that the correction of level-set function φn+1 by Q φN
minimizes the difference between the volume of |Ωn| and |Ωn+1| (see Section 2.2.4).

2.2.1 An estimate of error in fluid volume

From the semi-Lagrangian method we know backward characteristics. Using this information, we consider a
cell C(tn+1) intersected by the free surface at time tn+1 (further we call any such cell ‘surface cell’) and track
its original C(tn), which is a polyhedron. In the nodes of C(tn) we interpolate the level-set function φ̂n with
the third order method of interpolation with limiter (see [24]) and calculate the volume of the subset of C(tn)
where φ̂n is negative, fluid volume for C(tn) denoted further by V (φ̂n , C(tn)).

The error at the cell is computed as a weighted difference between the fluid volume for C(tn) and the fluid
volume for the cell at initial position C(tn+1) with the advected level set φn+1 as follows:

Err = 󵄨󵄨󵄨󵄨󵄨V (φ
n+1, C(tn+1)) V (C(tn)) − V (φ̂n , C(tn)) V (C(tn+1))󵄨󵄨󵄨󵄨󵄨 . (2.4)

Note that here we also account for possible compression or expansion of the cell due to the violation of the
incompressibility condition for interpolated velocity. If we ignore this effect, Err is computed as the error in-
dicator based on the interpolations of different orders, as it is done in embedded Runge–Kutta time-stepping
methods [5].

The volume is calculated by splitting each computational cell into tetrahedra and extracting an isosur-
face of the nodal level-set function on each tetrahedron. The isosurface splits the tetrahedron into either two
prisms or into a prism and a tetrahedron. Each prism can be split into three tetrahedra. Therefore, the space
occupied by liquid can be split into a set of tetrahedra, which provides the cell fluid volume as the sum of
the volumes of all tetrahedra. Note, that a computational cell is not necessarily a hexagon but may contain
hanging nodes on octree mesh. We account these nodes when we split the cell into tetrahedra.
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2.2.2 Local correction

For each given surface cell C we use a combination of the secant algorithm and the conjugate gradient algo-
rithm as in [2] to find such a constant φC that

Err(φC) =
󵄨󵄨󵄨󵄨󵄨V (φ

n+1 + φC , C(tn+1)) V (C(tn)) − V (φ̂n , C(tn)) V (C(tn+1))󵄨󵄨󵄨󵄨󵄨 = 0. (2.5)

Further for each node x adjacent to any surface cell C we average nodal volume correction according to

φN(x) = ∑
k
φCkV (Ck) /∑

k
V (Ck) (2.6)

where the summation runs over all cells sharing x.

2.2.3 Smooth extension

To avoid non-smooth artifacts on the surface after the volume correction, we first iteratively project φN at
nodes x adjacent to the surface. At the kth iteration of the algorithm for each node xn adjacent to a surface
cell C we find the closest-point projection xs = xn − φn+1∇φn+1 on the surface and assign φk

N(xn) = φ̃
k−1
N (xs)

where φ̃ is the trilinear interpolation. The algorithm stops once either a critical number of iterations or a
steady state is reached.

For the rest of the nodes, φN is also iteratively extended by similar procedure with

xs = xn − sign(φn+1)∇φn+1△x.

Here △x is twice as big as the size of the smallest mesh cell. This results in extension of φN to the whole
computational domain. In practice, φN is extended to a narrow band around the surface consisting of only
few layers of computational cells.

2.2.4 Minimization problem

Finally, we solve the following nonlinear problem for the unknown factor Q using the secant algorithm
󵄨󵄨󵄨󵄨󵄨V (φ

n+1 + QφN , Ωcomp) − V (φn , Ωcomp)
󵄨󵄨󵄨󵄨󵄨 = 0 (2.7)

whereΩcomp is the computational domain. Addition ofQφN with the optimal factorQ to the level-set function
φn+1 completes the volume correction algorithm.

2.3 Re-initialization method

After application of the semi-Lagrangianmethod to the transport of the level-set functionφn+1, the latter does
not satisfy equation (1.8). The level-set function φn+1 is corrected to satisfy Eikonal equation by the following
algorithm.

Algorithm 3 Re-initialization.
1: Re-initialize the level-set function in cells adjacent to the surface.
2: Estimate volume loss near surface.
3: Correct volume loss with the algorithm from the previous section.
4: Correct the level-set function in the rest of the domain.
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2.3.1 Re-initialization near surface

We first perform re-initialization in the set of cells closest to the free surface. For each such cell we extract the
triangulated isosurface of φn+1 = 0. To achieve this, we split each computational cell into a set of tetrahedra
accounting for thepresenceof hangingnodes in the octreemesh.Oneach tetrahedronwecompute the surface
corresponding to φn+1 = 0.

At each node k shared by a surface cell with the center xk we seek for the closest triangle and obtain the
initial position for the closest point x̂s on the surface. We further improve the position of the point x̂s to xs
using the gradient descent algorithm xs = x̂s −φn+1∇φn+1 to find the zero of the level-set function. The latter
is computed with the 4-th order interpolation method with the limiter. Since the level-set function does not
satisfy the signed distance property, one may iteratively refine the position of xs.

The corrected value for level set at node k becomes φ̃n+1
k = sign(φ

n+1
k ) |xs − xk|.

2.3.2 Volume loss estimation and correction

The algorithm for the volume correction is similar to the one described in Section 2.2.2, except for the estima-
tion of the volume error indicator. For each surface cell C we estimate the volume divergence as follows:

Err = 󵄨󵄨󵄨󵄨󵄨V (φ
n+1, C) − V (φ̃n+1, C)󵄨󵄨󵄨󵄨󵄨 . (2.8)

The volume correction for the re-initialization algorithm proceeds similarly to Algorithm 2.

2.3.3 Semi-Lagrangian re-initialization

The semi-Lagrangian method is used for the extension of the corrected level-set function to the rest of the
domain. In other words, the method is applied to all the nodes except for those, where φ̃n+1 was defined
already in Section 2.3.1. Therefore, the extension does not shift the interface and does not change the sign
of the level-set function. The re-initialization step presented below is an iterative process and is close to a
method from [26]. At the kth iteration, for eachnode iwith vector of coordinatesxi and level set value φ̃n+1,k−1

i
we compute xs = xi − sign (φ̃n+1,k−1

i )∇φ̃n+1,k−1/|∇φ̃n+1,k−1|△x. Then we interpolate the level-set function
at the point xs with the 4-th order method with limiter. Next we check the sign of φ̃n+1,k

i φ̃n+1,k−1(xs). If it
is positive, then we do not cross the zero level set and we set φ̃n+1,k

i = φ̃n+1,k−1(xs) + sign (φ̃n+1,k−1
i )△x

with account of the distance passed by the characteristic. Otherwise, we search for a point xz on the segment
between xi and xs, such that φ̃n+1,k−1(xz) = 0 and define φ̃n+1,k

i = sign(φn+1,k−1
k ) |xz − xk|.

Usually, the correction of the level-set function is needed just in a band of a few cells away from the
surface. The width of the band may increase with larger time steps.

2.4 Remeshing and re-interpolation

Remeshing step 4 is needed for a better resolution of the moving free surface. The grid adaptation accounts
for the new position of the zero level set of φn+1. In principle, the adaptation can be based on the information
given by the nodal values of φn+1 and discrete derivatives of φn+1. In numerical experiments in this paper
we use the following indication for grid refinement: the cell is split if its nodal values have both negative and
positive signs. This means that the zero isosurface of φn+1 passes through the cell. Such indicator produces
a thin layer of highly refined cells near the free surface.

After the remeshing step all discrete variables (level-set function, velocity, pressure) have to be re-
interpolated to the new grid. The re-interpolation for the pressure is based on the limited second order least
squares reconstruction. For each component of the velocity the re-interpolation is linear along the direction
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of the component and second-order least squares in the transversal directions. For the level-set function, we
use the third-order interpolation.

We note that the time stepping scheme involves two stages of remeshing. At step 1 the mesh is refined
prior the advection of the level-set function. Large time steps may result in large shifts of the zero level set
and hence some geometrical information about ∂Ωn may be lost due to the shift of the free surface to the
region with coarser cells. To prevent this, we refine all cells having at least one node where the advected
level-set function (predicted by the first order characteristic) changes its sign.

2.5 Convection–diffusion step

Next we handle viscous and inertia terms. We denote Γ1 = ΓW ∪ Γin, Γ2 = Γ(tn+1) ∪ Γout. The step consists in
finding a discrete solution of the following boundary value problem: Find ũn+1 in Ωn+1 such that

{{{{
{{{{
{

αũn+1 + βun + γun−1
△tn

+ (un + ξ(un − un−1)) ⋅ ∇ũn+1 − ν∆ũn+1 = −∇p
n

ρ + g

ũn+1|Γin = uin, Bũn+1|ΓW = 0, (∇ũn+1 + ∇ũn+1
T
)n
󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ2
= 0.

(2.9)

Here ξ = △tn/△tn−1, α = 1+ ξ/(ξ +1), β = −(ξ +1), γ = ξ2/(ξ +1). We consider two options for the solution of
(2.9). The first option is discretization of (2.9) by the hybrid finite volume/finite difference method from [16].
The discretization is hybrid since a finite volume method is applied to handle the inertia terms, whereas a
finite difference method is used for the diffusion terms and the pressure gradient. The method approximates
both differential operator and boundary conditions with the second order of accuracy. We refer to [16] for the
treatment of the boundary conditions. The second option is to use the operator splitting framework: first we
treat the inertia term by the semi-Lagrangian MacCormack method described in Section 2.1, then we apply
the finite difference method to the diffusion term. The second option has the second order accuracy as well
but may provide slightly smoother velocity fields.

2.6 Projection step

At this step we project the solution of (2.9) ũn+1 onto the subspace of discretely divergence-free functions:

{{{{{
{{{{{
{

α(un+1 − ũn+1)/△tn −
∇q
ρ = 0

divun+1 = 0
n ⋅ un+1|Γ1 = 0, q|Γ2 = 0.

(2.10)

This equation recovers both divergence-free velocity un+1 and pressure pn+1 due to

pn+1 = pn − q + ν div ũn+1. (2.11)

The ‘extra’ divergence term in the pressure correction step (2.11) minimizes numerical boundary layers in the
pressure [8, 21]. The solution of the problem (2.10) reduces to the solution of the Poisson equation:

{{{{
{{{{
{

−
∆q
ρ =

α
△tn

div ũn+1

q|Γ2 = 0,
∂q
∂n

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ1
= 0.

(2.12)

Authenticated | yuri.vassilevski@gmail.com author's copy
Download Date | 4/18/18 3:44 PM



K. D. Nikitin et al, Free surface flow and semi-submerged obstacles | 103

3 Numerical experiments
In this sectionwe consider twobenchmarkproblems, the sloshing tankand run-upof thewaveon the inclined
bottom and partially submerged barrier. We also apply the method to simulate fluid sloshing in a container
with ba�es.

In sloshing simulations, we use the semi-LagrangianMacCormackmethod both for the level-set function
and inertia terms in the momentum equations. In these experiments, the free surface is smooth enough and
hence we use the volume correction method in its simplest form (constant shift φN ≡ 1). In wave run-up
simulations, however, we need the advanced volume correction presented in Section 2.2 in order to handle
properly the complex dynamics of the free surface. Both options for the numerical solution of (2.9) can be
considered for these simulations.

3.1 Sloshing tank: grid alignment

First we consider a benchmark problem [3, 10, 16] with a fluid sloshing in a rectangular tank. The setup of the
experiment is illustrated in Fig. 1a. The tank dimensions are W = 0.8 m, H = 0.1 m, and D = 0.3 m. On the
bottom and side boundaries the free-slip no-penetration conditions (1.6) are imposed.

The fluidwith viscosity ν = 10−6m2s−1 and density ρ = 103 kgm−3 is driven intomotion by two forces. In
addition to a constant gravity force g = 9.81 m2s−2, we apply a horizontal shift with sinusoidal acceleration
Ag sin ωt with A = 0.01 and ω = 2πf , f = 0.89 Hz. The horizontal shift is applied during first ten periods
and terminated after that. The frequency of the shift is chosen to excite the first mode of wavemotion, i.e., the
motion with a wave length equal to the double width of the tank. The statistic of interest in this experiment
is the evolution of free surface contact line along the middle line of the tank side walls. We shall call it the
wave height.

The time evolution of the wave height is shown in Fig. 2. These data were computed for the 2D setting of
the problem in [10]. These results are supposed to correspond well to the physical observations [17].

It was shown in [16] that the hybrid FV/FD method on octree meshes recovers correctly the time depen-
dence of the water level at the tank walls. To study the accuracy of this method for complex boundaries, we
compare the results of the simulation on grids aligned and non-aligned to the tank walls. In the second case
we rotate the tank by 15∘ in the horizontal plane and obtain a stepwise computational domain shown in

D

H

W

Ag sin(wt)

g

(a) (b)

Fig. 1: (a) Problem setup for sloshing tank test, (b) example of the computational grid for the rotated domain with stepwise
boundary.
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Fig. 2: Time histories of the wave height at two opposite tank walls from [10].
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Fig. 3: Time histories of the wave height at the left tank wall for uniform grids: (a) hmax = hmin = 1/64, (b) hmax = hmin = 1/128.

Fig. 1b. A grid non-aligned to the boundary requires accurate treatment of boundary conditions [16] and may
produce undesirable grid orientation impact to fluid flow.

The comparison of thewave height histories on the left tankwall of the original and rotated tank is shown
in Fig. 3. On the coarse grid (hmax = hmin = 1/64), deviation in the wave heights is clearly observed in Fig. 3a.
However, on the fine grid (hmax = hmin = 1/128), the wave heights curves are indistinguishable (see Fig. 3b).

The experiment demonstrates that grids non-aligned to the boundary and the axis of excitation do not
cause any significant deterioration of accuracy to the numerical solution provided that the grid is fine enough.
Therefore, the present method appears to be reliable tool for the numerical study of sloshing in tanks with
complex boundaries.

3.2 Sloshing in tank with baffles

Internal ba�es are widely used in the design of ocean tankers and liquid carrying trucks. Ba�ing is known
to damp sloshing and thus it makes the container more stable during transportation (see Fig. 4).

In order to assess the damping effect of internal ba�es, we consider the sloshing experiment from the
previous section with three types of containers: a tank without ba�e (see Fig. 5a), a tank with a bottom ba�e
(see Fig. 5b), a tank with a surface ba�e (see Fig. 5c).

The computational meshes are dynamically refined to the free surface up to the meshsize hmin, while
the coarsest cell size is fixed to hmax. We use the following combinations of the mesh refinements: (1) hmax =
hmin = 1/64, (2) hmax = hmin = 1/128, (3) hmax = 1/32, hmin = 1/128, and (4) hmax = 1/32, hmin = 1/256. In
this simulation we use adaptive time step, ∆tk = min{0.0187, CFL ⋅ hmin/maxx |u(x, tk)|}, with CFL = 1.0.

Authenticated | yuri.vassilevski@gmail.com author's copy
Download Date | 4/18/18 3:44 PM



K. D. Nikitin et al, Free surface flow and semi-submerged obstacles | 105

Fig. 4: Container of a tanker.

(a)

(b) (c)

Fig. 5: Cutaway of the computational grid hmax = 1/32, hmin = 1/128: (a) no baffle, (b) a bottom baffle, (c) a surface baffle. Cell
types are marked by colors: walls and baffles (blue), water (green), surface (red), air (light green).

In Fig. 6wepresent the numerical sloshing in containers of the above three types on the dynamic adaptive
grids with hmax = 1/32, hmin = 1/256. Waves in the container without ba�e preserve their amplitude for
manyperiods since the inducedwave length is equal to the doublewidthW of the tank and the computational
methodhas lownumerical dissipation [16]. In the containerwith the bottomba�e, thewaveheight is damped
by a factor of 2.5. In the container with the surface ba�e, the wave heights are 10 times smaller compared to
the original experiment. The simulation demonstrates that the correct positioning of the internal ba�e may
reduce the sloshing effect significantly.

The grid convergence of the wave heights on the left wall is demonstrated in Fig. 7. In the container
without ba�e and in the container with the bottom ba�e we observe the grid convergence, the frequencies
of sloshing are equal to the excitation frequencies. In the container with the surface ba�e finer grids produce
a large number of additional modes.

3.3 Propagation of waves behind a semi-submerged barrier

For the final experiment we consider the interaction of run-up waves with a protective barrier. Protective bar-
riers serve to reduce the wave load on floating objects, power units, piers, and platforms behind them. The
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Fig. 6:Wave heights on the left wall of the sloshing tank for the experiment without a baffle, with a bottom baffle and with a
surface baffle. All curves are computed on the grid with hmax = 1/32, hmin = 1/256.
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Fig. 7: Grid convergence of the wave heights on the left wall of the sloshing tank for the experiment (a) without baffle, (b) with a
bottom baffle, (c) with a surface baffle.

physical experiment is described and compared with the numerical simulation results in [11]. The simula-
tion in [11] was based on the nonlinear planar potential flows model [12] discretized by finite differences on
adaptive moving grids.

The experiment setup is presented in Fig. 8. The fluid waves are excited by the wave generator: a vertical
column of height hw filled with water generates the waves upon its release. The wave generator is separated
from themain tank by the vertical wall with a gap ze at the bottom. The first part of tank floor is horizontal and
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13.3m
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B3B4 B1

a

Fig. 8: Scheme of the experiment with propagating wave.
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Fig. 9:Wave heights in cross-section B1: (a) physical experiment, (b) present numerical model.

the second one is inclined at angle α, tan(α) = 0.02. We put the vertical barrier above the inclined part with
the same gap ze and study how it affects the wave propagation. In this experiment we neglect the viscosity
ν = 0.

For verification of our numerical model we collect data from three height recorders located at the hori-
zontal part (B1), 0.16 m before the barrier (B3), and 3.1 m after the barrier (B4).

Thewave generator provides physicallymeaningful wave frontwith themainwave and secondarywaves.
Implementation of thewave generation technique similar to the physical experiment allowed us to reproduce
measurements of the wave recorders with good accuracy. Measured and numerical wave heights at cross-
section B1 corresponding to the largest (in time) height 17 cm are shown in Fig. 9. The numerical wave was
produced by thewave generator with hw = 85 cmand ze = 10 cm. Thewave profile in time is shown in Fig. 10.
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Fig. 10:Wave profile.
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Fig. 11:Wave heights. Top level: experimental data (dashed) and numerical results from [11] (solid). Bottom level: present nu-
merical model. Left: before the barrier (cross-section B3), right: after the barrier (cross-section B4).

Toproduce higherwaves in the physical experiment, one pumpsmorewater in the tank of thewave generator.
This reduces the initial water level in the basin by 2 cm. The numerical model reproduces this situation as
well.

The wave generator with hw = 75 cm and ze = 8 cm produces the maximum wave height ≈ 11cm at
cross-section B1. We compare it to a bit smaller physical wave with height 10.2 cm. Figure 11 presents the
comparison of the wave heights before (cross-section B3) and after (cross-section B4) the barrier. We observe
good matching of the wave arrival time and the number of registered waves. The computed splash before the
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barrier is slightly lower than the one observed in the experiment, while the wave height after the barrier is
somewhat larger than measured.

4 Conclusions
We introduced a time-splitting method for the numerical simulation of free-surface viscous flows. For ac-
curate and stable numerical results, several components of the method needed careful considerations. The
critical components include higher order numerical schemes for the discrete level-set function transport and
re-initialization. Furthermore, a volume correction method based on local updates and higher order volume
error estimators was found important for the overall accuracy of the approach. The numerical method was
tested for several benchmark problems, where direct comparison with physical experiment or other numeri-
cal results is possible. Such comparison demonstrated that the present method is able to predict statistics of
practical interest. Application of the method to the simulation of fluid sloshing in ba�ed tanks revealed the
expected damping properties of various ba�ing and confirmed the functionality of our numerical approach.

Funding: The work has been supported by the Russian Science Foundation (Grant 14-11-00434). The work
was based on the computational technology within RFBR grants 14-01-00830, 17-01-00886.
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