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The article introduces a cell-centered finite-volume method for the Biot problem in 
heterogeneous anisotropic media, characterized with full-tensor properties. We derive the 
expression for the coupled flux and the interpolation method across the discontinuity of 
the properties. The obtained flux expression consists of a two-point part, a transversal 
part and an additional contribution due to gravity. The interpolation method is the 
generalization of the harmonic averaging point concept to coupled problems. The method 
is stable despite collocation of both pressure and displacement at cell centers due to 
eigensplitting of the matrix coefficients in the flux expression and upstream approximation. 
A general type of boundary condition is integrated without introduction of auxiliary 
degrees of freedom. Our flux discretization method is a realization of our more general 
concept of stable flux discretization for saddle-point systems with vector of several 
unknowns. We demonstrate the applicability of the method on a set of challenging 
numerical benchmarks.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The poromechanics problem [1] is a multi-physics problem [2] addressing deformations of saturated porous media under 
load and accounting for mutual influence between structure movement and fluid flow [3,4]. Apart from the most popular 
application for predicting subsidence caused by oil recovery [5], the solutions of poroelastic problems are demanded in clay 
subsidence under load [6] or fluid drainage [7], earthquake impacts [8], drainage through blood vessels walls [9] etc. Most 
of applications deal with layered anisotropic media characterized by heterogeneous permeability tensor, compliance tensor 
and Biot tensor coefficient [10].

The most popular computational technologies within commercial and research poromechanical simulators [11] are based 
on a combination of the finite element method for the elasticity [12] and the finite volume method for the fluid flow 
[13,14]. Coupling between the two problems may be provided by the full spectrum of methods: from loose explicit to fully 
implicit approaches [15–18]. In the last decade a variety of new discretization methods have been suggested for the solution 
of the poroelastic problem, such as staggered finite-volume [19], mixed finite element [20], multipoint flux finite element 
[21]. The conservation property and implementation simplicity of the classical cell-centered finite volume method attracts 
growing attention [22] which is restricted, however, by possible inf-sup condition violation [23,24,22,25,26].
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The harmonic averaging point concept was introduced in [27] for the interpolation of pressure in the scalar anisotropic 
diffusion equation. The approach was extended in [28] to introduce the split definition of the flux for the same problem 
and further extended to elasticity problem [29], contact mechanics [30] and even poroelasticity [31]. Direct application to 
the latter resulted in an inf-sup unstable method.

The method presented in this paper follows our general strategy for the finite volume solution of multi-physics problems: 
(1) to avoid decoupling into sub-problems, and (2) to solve the problem in a locally conservative and fully implicit way 
via stable discretization of vector fluxes. This strategy allows us to work around the inconsistency of the FV method for 
poroelasticity appearing in heterogeneous media after decoupling of the Biot term from the Darcy flux. We assume the 
collocated arrangement of fluid pressure and structure displacement unknowns at cell centers and discretize the vector flux 
composed of the traction and Darcy/Biot fluxes.

The vector flux discretization for the poroelastic problem is a realization of our more general concept of stable two-
point flux discretization of saddle-point systems with vector of several unknowns. Within this concept, FV approximation 
of the vector flux on a cell face is given by a linear combination of collocated at neighboring cell centers unknown vectors 
with matrix coefficients which have non-negative eigenvalues. To produce such matrix coefficients, one has to perform their 
eigensplitting. This concept was applied to cell-centered FV discretizations of the mixed formulation of the Darcy problem 
[26,32], the incompressible Navier-Stokes equations [32–34] and expressed in [30] for coupled problems in the context 
of the hydraulic fracturing problem. In case of scalar equations (e.g. diffusion equation) these matrix coefficients reduce 
to non-negative reals which guarantee monotone FV methods [32]. We note that flux matrix eigensplitting was exploited 
earlier for FV discretizations of Maxwell [35] and Navier-Stokes [36] equations on simple computational grids, and is also 
known in the literature as flux difference splitting and flux vector splitting [37], split upwinding [38].

In the numerical part, we verify efficiency and accuracy of the method on general grids for heterogeneous full-tensor 
permeability, compliance, and Biot coefficients by solving four benchmark problems. Applicability of the method to industrial 
grids with faults and pinch-outs is demonstrated for the solution of the poromechanical problem on Norne oil field with 
synthetic definition of stiffness tensor and Biot coefficient from permeability and porosity data of the original oil field.

The present work is the second paper in the series of papers devoted to ultimately stable fully coupled fully implicit FV 
discretizations of coupled subsurface problems. The first paper addresses the mixed formulation of the Darcy problem [26]. 
The present paper develops further the method proposed recently in [31] and benefits good stability properties according to 
the numerical evidence. Our method features simultaneously the cell-centered collocation of pressure and displacement, no 
LBB-related inconsistency and CFL-restrictions, handles general heterogeneous anisotropic tensor permeability, compliance, 
and Biot coefficients, general polyhedral meshes, general boundary conditions. Our extension of the harmonic point notion 
to the poromechanics problem in heterogeneous media is another important novelty of the paper.

The paper is organized as follows. In section 2 we introduce the poromechanical problem whose finite volume dis-
cretization method is given in section 3. In section 4 we derive the vector flux discretization and introduce the poroelastic 
harmonic point to cope with discontinuity of tensor coefficients across mesh faces. In section 5 we present the numerical 
tests. The concluding remarks finalize the paper.

2. Problem definition

We consider a 3D bulk polyhedral domain � composed of a solid porous matrix which is saturated by fluid. Given an 
appropriate initial condition, the linear poroelasticity problem in � is:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− div (σ −Bp) = ρg∇z + q,

1

M

∂ p

∂t
− div

(
1

μ
K
(∇p − ρ f g∇z

))+B : ∂ε

∂t
= q,

S : σ = ε,

(1)

where div and div are vector and scalar divergences, p ∈ H1(�) is the fluid pressure, u ∈ H1(�)3 is the solid displacement 
vector, σ is the 2-nd rank stress tensor, ε = (∇uT + u∇T )/2 is the 2-nd rank strain tensor, g is the gravitational constant, φ
is the porosity, μ is the viscosity, ρ f is the fluid density, ρs is the solid density, ρ = ρ f φ +ρs(1 −φ) is the average density, 
q is the volumetric body force, q is the fluid source or sink. The piecewise constant media properties are defined by the 
symmetric 2-nd rank permeability tensor (matrix of order 3) K, the symmetric 2-nd rank Biot coefficient tensor (matrix of 
order 3) B, the Biot modulus M , and the 4-th rank elasticity compliance tensor (matrix of order 3 of matrices of order 3) 
S.

The general form of boundary conditions on the domain boundary ∂� is:⎧⎪⎪⎨
⎪⎪⎩

nT (α⊥u − β⊥tB) = γ⊥,(
I − nnT

)(
α‖u − β‖tB

)= γ ‖,
α p − β d = γ ,

(2)
f f f

2
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where I is the identity matrix of appropriate order, n is the unit outward normal vector to ∂�, vector tB and scalar d are 
defined in (9). Different combinations of parameters α⊥ , β⊥ , γ⊥ , α‖ , β‖ , γ ‖ , α f , β f , γ f impose different physics of the 
boundary conditions. In particular,

• α⊥ and β⊥ define Dirichlet, Neumann or Robin boundary conditions for the normal component in the mechanical part 
with reaction γ⊥;

• α‖ and β‖ define Dirichlet, Neumann or Robin boundary conditions for the transversal components in the mechanical 
part with reaction γ ‖;

• α f and β f define Dirichlet, Neumann or Robin boundary condition for the fluid flow with source γ f .

The Biot term contribution to the Darcy flux can be reformulated as follows

B : ∂ε

∂t
= div

(
B

∂u

∂t

)
− (B∇)T ∂u

∂t
. (3)

The elasticity compliance tensor S is assumed to be non-singular, i.e. the rock is compressible and the elasticity stiffness 
tensor C = S−1 is well-defined and thus the stress-strain relation is known:

σ = C : ε. (4)

The i j-th component of the stress tensor σ is expressed by:

σ i j = [C : ε]i j = 1

2

⎡
⎣ 2ci j11 ci j12 + ci j21 ci j13 + ci j31

ci j12 + ci j21 2ci j22 ci j23 + ci j32
ci j13 + ci j31 ci j23 + ci j32 2ci j33

⎤
⎦ : ∇uT = cT

i j (u ⊗ ∇) , (5)

where ⊗ is the Kronecker product, ci, j and u ⊗ ∇ are vectors of order 9:

ci j = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2ci j11
ci j12 + ci j21
ci j13 + ci j31
ci j12 + ci j21

2ci j22
ci j23 + ci j32
ci j13 + ci j31
ci j23 + ci j32

2ci j33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u ⊗ ∇ =
⎡
⎣ ∇u

∇v
∇w

⎤
⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u/∂x
∂u/∂ y
∂u/∂z
∂v/∂x
∂v/∂ y
∂v/∂z
∂ w/∂x
∂ w/∂ y
∂ w/∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

3. Finite volume method

We assume that the domain � is covered by a consistent polyhedral mesh and denote by V(�) the set of its cells, and 
by F(V ) the set of faces for each cell V ∈ V(�). Integrating equations (1) with relation (4) and expansion (3) over cell 
V ∈ V(�) and using Gauss formula yield⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
∮
∂V

(C : ε −Bp)dS =
∫
V

(ρg∇z + q)dV

−
∮
∂V

(
1

μ
K (∇p − ρg∇z) −B

∂u

∂t

)T

dS =
∫
V

(
q − 1

M

∂ p

∂t
+ (B∇)T ∂u

∂t

)
dV .

(7)

The second order quadrature for the approximation of the surface integrals in (7) reads as

−
∮
∂V

(C : ε −Bp)dS ≈ −
∑

f ∈F(V )

| f | (C : ε −Bp)|x f
n,

−
∮
∂V

(
1

μ
K
(∇p − ρ f g∇z

)−B
∂u

∂t

)T

dS ≈ −
∑

f ∈F(V )

| f |
(

1

μ
K
(∇p − ρ f g∇z

)−B
∂u

∂t

)T
∣∣∣∣∣
x f

n,

(8)

where | f | is the area of face f , x f is the center of f , and n is the normal to f oriented outwards of V . The above 
formulation employs vector tB and scalar dB which are the internal traction vector t and the Darcy flux d both augmented 
with the Biot terms as they appear in (8):
3
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t = −σn = −C : ε n, tB = t +Bpn, d = − 1

μ
nTK

(∇p − ρ f g∇z
)
, dB = d + nTB

∂u

∂t
. (9)

Using (5) and (6), we introduce the i-th component of the traction vector t:

ti = −σ i1nx − σ i2ny − σ i3nz = −nT

⎡
⎣ cT

i1
cT

i2
cT

i3

⎤
⎦u ⊗ ∇, (10)

then the full traction vector is given by

t =
⎡
⎣ t1

t2
t3

⎤
⎦= −

(
I ⊗ nT

)
C (u ⊗ ∇) , (11)

where the 9 × 9 matrix C is:

C = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2c1111 c1112+c1121 c1113+c1131 c1112+c1121 2c1122 c1123+c1132 c1113+c1131 c1123+c1132 2c1133

2c1211 c1212+c1221 c1213+c1231 c1212+c1221 2c1222 c1223+c1232 c1213+c1231 c1223+c1232 2c1233

2c1311 c1312+c1321 c1313+c1331 c1312+c1321 2c1322 c1323+c1332 c1313+c1331 c1323+c1332 2c1333

2c2111 c2112+c2121 c2113+c2131 c2112+c2121 2c2122 c2123+c2132 c2113+c2131 c2123+c2132 2c2133

2c2211 c2212+c2221 c2213+c2231 c2212+c2221 2c2222 c2223+c2232 c2213+c2231 c2223+c2232 2c2233

2c2311 c2312+c2321 c2313+c2331 c2312+c2321 2c2322 c2323+c2332 c2313+c2331 c2323+c2332 2c2333

2c3111 c3112+c3121 c3113+c3131 c3112+c3121 2c3122 c3123+c3132 c3113+c3131 c3123+c3132 2c3133

2c3211 c3212+c3221 c3213+c3231 c3212+c3221 2c3222 c3223+c3232 c3213+c3231 c3223+c3232 2c3233

2c3311 c3312+c3321 c3313+c3331 c3312+c3321 2c3322 c3323+c3332 c3313+c3331 c3323+c3332 2c3333

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

For time discretization, we shall use the stable Backward-Euler scheme

∂ p

∂t
≈ pn+1 − pn

	t
,

∂u

∂t
≈ un+1 − un

	t
. (13)

We further use τ := 	t−1 and for briefness omit the next time step indices, p := pn+1, u := un+1. Coupling together tB
and dB in (9), using the implicit time discretization (13), and using the reformulation (11), (12) of the internal traction 
vector t we arrive at the vector flux[

tB
dB

]
= −I ⊗ nT

[
C

1
μK

][
u
p

]
⊗ ∇ +

[
Bn

τnTB

][
u
p

]
+
[

1
μρgnTK∇z − τnTBun

]
. (14)

We use degrees of freedom collocated at cell centers: one fluid pressure p and three components u, v, w of displacement 
u per cell. Applying the simplest quadrature for approximation of the cell volume and cell face integrals we arrive at the 
finite volume formulation of (1):

∑
f ∈F(V )

| f |
[

tB
dB

]∣∣∣∣
x f

= |V |
[

ρg∇z + q
q − τ

(
p − pn

)
/M + τ (B∇)T

(
u − un

) ]∣∣∣∣
xV

, (15)

where |V | and xV are the volume and the center of cell V , respectively.
The discrete vector fluxes are derived in the next section. Since all the further derivations are performed on the flux 

level and the internal fluxes are unique on each interior face, the method is conservative [38]. Assembling the equa-
tion (15) over each cell V ∈ V(�) we get a linear system to be solved for pressure and displacement unknowns. In 
the present work, the term B∇ = 0. If B is a solution-dependent tensorial piecewise-constant function, the term with 

B∇ =
[

∂B
∂u

∂B
∂v

∂B
∂ w

∂B
∂ p

][ u
p

]
⊗ ∇ has to be retained.

4. Flux discretization

4.1. One-sided flux

We consider a cell V 1 ∈ V(�) with center x1, an adjacent face f ∈ F(V 1) with center x f , the normal n oriented out-
wards, and denote by r1 the distance from the cell center to the face r1 = nT (x f − x1) > 0.

Assumption 1. In a vicinity of face f the discrete displacement and discrete pressure may be recovered from the collocated 
values u1 and p1 to a continuous piecewise linear vector and scalar functions u and p, respectively: u1 = u|x , p1 = p|x . 
1 1

4
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Restrictions of u and p to the face center are u f = u|x f
and p f = p|x f

. Local continuity and linearity of u and p imply 

their piecewise-constant gradient 
[

u
p

]
⊗ ∇ and thus we can define

[
u1
p1

]
⊗ ∇ :=

([
u
p

]
⊗ ∇

)∣∣∣∣
V 1

=
[

∂u

∂x

∂u

∂ y

∂u

∂z

∂v

∂x

∂v

∂ y

∂v

∂z

∂ w

∂x

∂ w

∂ y

∂ w

∂z

∂ p

∂x

∂ p

∂ y

∂ p

∂z

]T
∣∣∣∣∣

V 1

. (16)

Stiffness tensor C1, Biot coefficient tensor B1 and permeability tensor K1 are assumed to be constant in the cell V 1
with possible discontinuity across f .

Consider the V 1-sided approximation of (14) at face center x f[
tB
dB

]∣∣∣∣
x f

≈ −I ⊗ nT
[
C1

1
μK1

][
u1
p1

]
⊗ ∇ +

[
B1n

τnTB1

][
u f
p f

]
+ R1, (17)

where R1 =
[

0 0 0 μ−1ρ f gnTK1∇z − τnTB1un
f

]T
, value un

f is known from the previous time step or the initial con-

dition.
For linear functions u and p we can split the gradient into the normal and transversal components[

u1
p1

]
⊗ ∇ = r−1

1 (I ⊗ n)

([
u f
p f

]
−
[

u1
p1

])
+
(
I − r−1

1 I ⊗ n
(
x f − x1

)T
)[ u1

p1

]
⊗ ∇. (18)

Introducing 4 × 12 and two 4 × 4 matrices

W1 = I ⊗ nT
[
C1

1
μK1

]
, B1 =

[
B1n

τnTB1

]
, T1 = r−1

1 W1 (I ⊗ n) , (19)

and plugging (18), (19) into (17) we obtain the discretization of the vector flux[
tB
dB

]∣∣∣∣
x f

≈ T1

[
u1
p1

]
− (T1 − B1)

[
u f
p f

]
+
(

T1 ⊗ (x f − x1
)T − W1

)[ u1
p1

]
⊗ ∇ + R1. (20)

In (20), matrix T1 − B1 may have negative eigenvalues which are the source of numerical instability. The stabilized 
V 1-sided flux discretization is obtained by addition to (20) of the term

S1

([
u1
p1

]
−
[

u f
p f

])
+ S1 ⊗ (x f − x1

)T
[

u1
p1

]
⊗ ∇, (21)

with a 4 × 4 matrix S1 to be defined later. Expression (21) vanishes for linear pressures and displacements, therefore the 
first order approximation of the vector flux is expected.

Lemma 1. Let matrix S1 be given by

S1 = α1

[
b−1

1 B1nnTB1
b1

]
, (22)

with nonnegative parameter α1 satisfying

α1 ≥
√

(k1 − c1)2 + 4b2
1τ − (k1 + c1)

2b1
, (23)

and parameters

b1 =
√

nTB2
1n, c1 = 1

r1b2
1

(
nTB1 ⊗ nT

)
C1 (n ⊗B1n) , k1 = 1

r1μ
nTK1n. (24)

Then matrix T1 + S1 − B1 has non-negative eigenvalues.

Proof. We introduce a 4 × 4 projection matrix P1 and an auxiliary projected matrix T̂1:

P1 =
[

b−2
1 B1nnTB1

1

]
, T̂1 = P T

1 T1 P1 =
[

c1b−2
1 B1nnTB1

k1

]
, (25)

where c1 and k1 are given in (24). Due to the projection and the symmetry of T1 the property T1 − T̂1 ≥ 0 holds.
5
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The direct computation of the eigenvalues of T̂1 + S1 − B1 using Maxima computer algebra package [39] yields

λ1,2 = 1

2

(
k1 + c1 + 2α1b1 ±

√
(k1 − c1)2 + 4b2

1τ

)
, λ3,4 = 0. (26)

Non-negativity of the eigenvalues in (26) implies (23) and hence eigenvalues of T1 + S1 − B1 are non-negative. �
Remark 1. Symmetric matrix D B1 with D = diag(1, 1, 1, τ−1) is sign-indefinite with two non-zero eigenvalues ±b1. Splitting 
of D B1 into two sign-definite matrices

D B1 =
[

B1n
nTB1

]
=
[

−√
τb−1

1 B1nnTB1 B1n
nTB1 − 1√

τ
b1

]
+
[√

τb−1
1 B1nnTB1

1√
τ

b1

]
, (27)

motivates the choice of S1 in (22). Indeed, ignoring contribution of T̂1 to T̂1 + S1 − B1 is equivalent to setting k1 = c1 = 0
in (23) and thus D S1 − D B1 ≥ 0 for α1 = √

τ .

The final V 1-sided flux expression combining (20) and (21) reads as[
tB
dB

]∣∣∣∣
x f

≈ (T1 + S1)

[
u1
p1

]
− (T1 + S1 − B1)

[
u f
p f

]
+
(
(T1 + S1) ⊗ (x f − x1

)T − W1

)[ u1
p1

]
⊗ ∇ + R1. (28)

4.2. Flux in the bulk

We consider an internal face f shared by cells V 1 and V 2, with the normal n oriented towards V 2. Similarly to notations 
for cell V 1, pressure p2 and displacement u2 are collocated at the center x2 of cell V 2, the distance from x2 to the face is 
given by r2 = nT

(
x2 − x f

)
> 0. Tensors K2, C2 and B2 correspond to constant tensors of permeability, stiffness and Biot 

coefficient in cell V 2. Matrix C2 is a 9 × 9 matrix defined by the components of the stiffness tensor C2 according to (12).
Following the reasoning from section 4.1 we obtain the V 2-sided approximation of the vector flux at face f :[

tB
dB

]∣∣∣∣
x f

≈ (T2 + S2 − B2)

[
u f
p f

]
− (T2 + S2)

[
u2
p2

]
−
(
(T2 + S2) ⊗ (x f − x2

)T − W2

)[ u2
p2

]
⊗ ∇ − R2, (29)

with 4 × 12, and two 4 × 4 matrix coefficients

W2 = −I ⊗ nT
[
C2

1
μK2

]
, B2 = −

[
B2n

τnTB2

]
, T2 = −r−1

2 W2 (I ⊗ n) , (30)

and R2 =
[

0 0 0 τnTB2un
f − μ−1ρ f gnTK2∇z

]T
. Definitions in (19) and (30) differ in the orientation of the normal: 

for cell V 2 the outward normal is −n. The stabilizing matrix S2 is independent of the normal orientation and is obtained 
by application of (22), (23), (24) to cell V 2.

Equating the one-sided approximations (28) and (29), we get an expression for the pressure and displacement at face f :

[
u f
p f

]
= (T1 + S1 − B1 + T2 + S2 − B2)

−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(T1 + S1)

[
u1
p1

]
+ (T2 + S2)

[
u2
p2

]
+ R1 + R2

+
(
(T1 + S1) ⊗ (x f − x1

)T − W1

)[ u1
p1

]
⊗ ∇

+
(
(T2 + S2) ⊗ (x f − x2

)T − W2

)[ u2
p2

]
⊗ ∇

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

Using (31) in either (28) or (29) we get the vector flux discretization based on the collocated at cell centers displacements 
and pressures and reconstructed gradients:[

tB
dB

]∣∣∣∣
x f

≈ (T2 + S2 − B2)(T1 + S1 − B1 + T2 + S2 − B2)
−1

×
(

(T1 + S1)

[
u1
p1

]
+
(
(T1 + S1) ⊗ (x f − x1

)T − W1

)[ u1
p1

]
⊗ ∇ + R1

)
− (T1 + S1 − B1)(T1 + S1 − B1 + T2 + S2 − B2)

−1

×
(

(T2 + S2)

[
u2
p2

]
+
(
(T2 + S2) ⊗ (x f − x2

)T − W2

)[ u2
p2

]
⊗ ∇ + R2

)
.

(32)

The gradient reconstruction is discussed in section 4.4.
6
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4.3. Flux through the boundary

Now we consider a boundary face f = ∂� ∩ V 1 with face center x f and normal n oriented outside of the domain. The 
pressure p1 and the displacement u1 are assumed to be collocated in the V 1-cell center x1. Conditions (2) are equivalent 
to the system

B D

[
u f
p f

]
− B N

[
tB
d

]∣∣∣∣
x f

= R, (33)

where

B D =
[

α⊥nnT + α‖
(
I − nnT

)
α f

]
, B N =

[
β⊥nnT + β‖

(
I − nnT

)
β f

]
, R =

[
γ⊥n + γ ‖

γ f

]
. (34)

Since d does not contain the Biot term, we write approximation of [tB d]T :[
tB
d

]∣∣∣∣
x f

≈ −
(
I ⊗ nT

)[C1
1
μK1

][
u1
p1

]
⊗ ∇ +

[
B1n

0T

][
u f
p f

]
+ R̄1, (35)

where R̄1 = [ 0 0 0 μ−1ρ f gnTK1∇z
]T

. Using the gradient splitting (18) in (35) we get:[
tB
d

]∣∣∣∣
x f

≈ T1

[
u1
p1

]
− (T1 − B̄1)

[
u f
p f

]
+
(

T1 ⊗ (x f − x1
)T − W1

)[ u1
p1

]
⊗ ∇ + R̄1, (36)

where

B̄1 =
[

B1n
0T

]
. (37)

Plugging (36) into (33) we get an expression for the pressure and displacement at face f :[
u f
p f

]
= (B D + B N(T1 − B̄1)

)−1

×
(

R + B N

(
T1

[
u1
p1

]
+
(

T1 ⊗ (x f − x1
)T − W1

)[ u1
p1

]
⊗ ∇ + R̄1

))
.

(38)

The vector flux discretization at the boundary is obtained by using (36), (38) and the reconstructed gradient.

4.4. Gradient reconstruction

The final discrete fluxes on internal (32) or boundary (38), (36) faces rely on the gradients to be reconstructed at each 
cell of the mesh. For each face f ∈ F(V 1) we shall define a harmonic point generating four linear equations for the un-
known gradient. All faces from F(V 1) produce a system for unknown vector g = [ u1 p1

]T ⊗ ∇ ∈ �12 with a matrix 
A ∈ �4|F(V 1)|×12 and a vector b ∈ �4|F(V 1)|

Ag = b, (39)

which is solved by the least-squares method g = (AT A)−1 AT b.
In order to reconstruct the gradient locally, for each face we have to find a harmonic point where local recovery of 

the collocated pressures and displacements does not use the reconstructed gradient and the system (39) makes sense. The 
harmonic point with displacement uh and pressure ph satisfies[

u f
p f

]
=
[

uh
ph

]
+ (I ⊗ x f − Xh

)T
[

u1
p1

]
⊗ ∇ =

[
uh
ph

]
+ (I ⊗ x f − Xh

)T
[

u2
p2

]
⊗ ∇, (40)

where Xh is a 4 × 4 matrix of vectors of order 3 given by

Xh = I ⊗ x f +

⎡
⎢⎢⎣

tuu
h tuv

h tuw
h tup

h
tvu

h tv v
h tv w

h tvp
h

twu
h tw v

h tw w
h twp

h
tpu

h tpv
h tpw

h tpp
h

⎤
⎥⎥⎦ ,

(
I − nnT

)
tαβ

h = 0, ∀α,β ∈ {u, v, w, p}. (41)

From the geometrical viewpoint, the vectors on the diagonal of Xh are coordinates on the plane of face f and the off-
diagonal vectors are tangential to the plane of face f . Due to Assumption 1 the transversal components of the gradients are 
7
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continuous and vectors tαβ

h in (41) are required to satisfy this in (40). The vectors tαβ

h provide cancellation of the gradients 
when a combination of expressions in (40) is equated to (31). It turns out that the stabilization terms S1, S2 do not allow to 
cancel the gradient without violation of the geometrical constraints (41). Therefore, we repeat the same derivation of (31)
without the stabilization terms S1, S2 and derive existence of a harmonic point

X T
h = I ⊗ xT

f + (T1 + T2 − B1 − B2)
−1
(

T1 ⊗ (x1 − x f
)T + T2 ⊗ (x2 − x f

)T + W1 + W2

)
, (42)

such that the gradient terms are canceled, and displacement and pressure admit the harmonic averaging:[
uh
ph

]
= (T1 + T2 − B1 − B2)

−1
(

T1

[
u1
p1

]
+ T2

[
u2
p2

]
+ R1 + R2

)
. (43)

Now we consider a boundary face f = ∂� ∩ V 1. Using (40) and (38) we eliminate contribution of the gradient terms and 
get

X T
h = I ⊗ xT

f + (B D + B N(T1 − B̄1)
)−1

B N

(
W1 − T1 ⊗ (x f − x1

)T
)

, (44)

so that[
uh
ph

]
= (B D + B N(T1 − B̄1)

)−1
(

R + B N T1

[
u1
p1

]
+ B N R̄1

)
. (45)

Each face from F(V 1) contributes to system (39) four equations

(Xh − I ⊗ x1)
T
[

u1
p1

]
⊗ ∇ =

[
uh
ph

]
−
[

u1
p1

]
, (46)

where combinations of (42)-(43) and (44)-(45) are used on internal and boundary faces, respectively.

5. Numerical experiments

The solution of the problem consists in assembling and solving on each time step the linear system (15) with the fluxes 
defined by (32) on internal faces and combination of (38) and (28) on boundary faces. The gradients for the computation 
of fluxes are reconstructed as described in § 4.4. To evaluate the Biot term in the right hand side R1 of the fluxes (28), 
we update the interface displacement at the end of each time step using (31) and (38) on internal and boundary faces, 
respectively. The initial interface displacement is restored from the initial cell-centered pressures and displacements using 
the same formulas with zero parameter τ .

Further, we define the elastic material properties in Voigt notation. A 6 × 6 matrix representation of an anisotropic com-
pliance tensor S defined in terms of Young modulii Ex, E y, Ez , Poisson ratios νxy, νxz, νyz and shear modulii Gxy, Gxz, G yz , 
is

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Ex

− νyx
E y

− νzx
Ez

− νxy
Ex

1
E y

− νzy
Ez

− νxz
Ex

− νyz
E y

1
Ez

1
2G yz

1
2Gxz

1
2Gxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (47)

Due to the symmetry it holds νyx = E yνxy/Ex , νzx = Ezνxz/Ex , νzy = Ezνyz/E y and thus S has 9 independent parameters. 
For transversely isotropic material in O xy direction it holds E y = Ex , νxz = νyz , Gxy = Ex

2
(
1+νxy

) , G yz = Gxz and the material 
is described by 5 independent parameters Ex , Ez , νxy , νxz , Gxz . For isotropic material it holds Ex = E y = Ez = E , νxy = νxz =
νyz = ν , Gxy = Gxz = G yz = E

2(1+ν)
and the material is described by 2 independent parameters E, ν . The stiffness tensor C

in Voigt notation is given by a 6 × 6 matrix C = S−1 which is related to the 9 × 9 matrix C (12) via

C = BC BT , BT =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (48)

The types of used mechanical boundary conditions are listed in Table 1: Dirichlet condition 
m
D defines the bound-

ary displacement u, Neumann boundary condition 
m defines the applied force F, the roller boundary condition 
m fixes 
N R

8
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Table 1
Parameters of boundary conditions of different types.

Type α⊥ β⊥ α‖ β‖ γ⊥ γ‖


m
D 1 0 1 0 nT ub

(
I − nnT

)
ub


m
N 0 1 0 1 nT F

(
I − nnT

)
F


m
R 1 0 0 1 0 0


m
R P 1 0 0 1 λ 0


m
T 0 1 1 0 0 0

displacements in the normal direction and releases displacements in the transversal direction, the rigid plate boundary 
condition 
m

R P , constrains vertical displacement by a Lagrange multiplier λ, the pushing boundary condition 
m
T fixes dis-

placements in the transversal direction and releases displacements in the normal direction. The types of fluid boundary 
conditions are: Dirichlet condition 
 f

D imposes pressure with parameters α f = 1, β f = 0, γ f = pb , and Neumann condition 



f
N imposes impermeable wall with parameters α f = 0, β f = 1, γ f = 0.

In the absence of the gravity, the problem is independent of porosity φ, solid density ρs and fluid density ρ f .
The L2-integral error norms for the discrete displacements ui and pressures pi are computed as follows:

εu :=
√√√√ 1

|�|
∑

V i∈V(�)

|V i|
(
ui − u|xi

)T (ui − u|xi

)
, εp :=

√√√√ 1

|�|
∑

V i∈V(�)

|V i |
(

pi − p|xi

)2
, (49)

where u and p are exact displacement and pressure solutions.
The numerical experiments are based on INMOST toolkit for distributed mathematical modeling [32,40–43] which pro-

vides tools for mesh handling, linear system assembly via automatic differentiation, linear system solution, and visualization. 
We solve arising linear systems iteratively using the BiConjugate Stabilized Gradient method [44] with the second-order [45]
Crout-ILU [46] multilevel preconditioner [47]. The preconditioner features an adaptive dropping strategy based on estima-
tion of the condition number of the inverse factors [48] and maximum product transversal preordering [49]. The absolute 
tolerance of the iterative solver is 10−10, the relative tolerance is 10−16. The dropping tolerances are τ1 = 10−2, τ2 = 10−3, 
the condition estimator threshold for deferred pivoting is κ = 2.5. For the parallel run in § 5.8 we set two overlapping layers 
in the additive Schwarz method.

5.1. Linear analytical solution in general anisotropic medium

Consider a problem in the unit cube � = [0, 1]3 with the following stiffness tensor in Voigt notation:

C =

⎛
⎜⎜⎜⎜⎜⎝

93 46 22 13 72 35
46 95 41 62 56 24
22 41 89 25 33 21
13 62 25 87 13 25
72 56 33 13 99 57
35 24 21 25 57 78

⎞
⎟⎟⎟⎟⎟⎠ . (50)

The homogeneous anisotropic Biot tensor and the permeability tensor are given as follows:

B = 1

100

⎛
⎝ 1 6 5

6 67 27
5 27 76

⎞
⎠ , K= 1

1000

⎛
⎝ 25 2 39

2 42 7
39 7 100

⎞
⎠ . (51)

The eigenvalues of C , B and K are positive. The fluid parameters are the viscosity μ = 0.1 and the Biot modulus M = 0.1. 
The gravity is absent, g = 0. The time step is 	t = 1 is equal to the total simulation time T = 1.

The analytical solution

[
u
p

]
=

⎡
⎢⎢⎣

u
v
w
p

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1 2 3 4
6 7 8 9

11 12 13 14
16 17 18 19

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x
y
z
t

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

5
10
15
20

⎤
⎥⎥⎦ (52)

produces the right-hand sides q = (2.08, 17.21, −1780.93)T and q = 190. We set Dirichlet conditions 
m
D ∪ 


f
D with ub =

u(x, t) and pb = p(x, t) on the entire boundary ∂�. The initial conditions are given by the reference solution. The Biot term 
in the fluid equation accounting for the pore expansion effect vanishes in this setup.

The problem is solved on a regular cubic and tetrahedral grids displayed in Fig. 1. The error norms are given in Table 2. 
The method is exact for the linear solution and handles a general anisotropic material.
9
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Fig. 1. Grids used for the test in § 5.1.

Table 2
Error norms computed for the test in § 5.1.

Mesh |V(�)| εu εp

cubic 64 7.59e-13 1.69e-12
tetrahedral 384 3.16e-13 1.99e-12

Fig. 2. Setup of Terzaghi’s column consolidation problem (left) in § 5.2. Action of the stabilization method with 128 × 1 × 1 grid and time step 	t = 100 at 
T = 100 (middle) and T = 500 (right), horizontal axis corresponds to coordinate x ∈ [0, 1], vertical axis corresponds to fluid pressure.

5.2. Terzaghi’s problem

Consider one-dimensional problem for consolidation under constant load F of a column of height h, see Fig. 2. The exact 
solution [50] (page 124) and [51] is

u(x, t) = F (h − x)(1 − 2ν)

2G(1 − ν)

− 4F h(νu − ν)

π2G(1 − ν)(1 − νu)

∞∑
m=0

1

(1 + 2m)2
exp

(
−(1 + 2m)2 π2ct

4h2

)
cos
(
(1 + 2m)

πx

2h

)
,

p(x, t) = F B(1 + νu)

3(1 − νu)

− F B(1 + νu)

3(1 − νu)

∞∑
m=0

(−1)m
(

erfc

(
(1 + 2m)h − (x − h)√

4ct

)
+ erfc

(
(1 + 2m)h + (x − h)√

4ct

))
,

(53)

where α is the Biot coefficient, E is the Young modulus, ν is the Poisson’s ratio, G is the shear modulus, c is the consoli-
dation coefficient, νu is the undrained Poisson’s ratio, B is Skempton’s coefficient. The parameters of the isotropic medium 
are collected in Table 3. The above coefficients are given by

G = E

2(1 + ν)
, c = 2kG(1 − ν)(νu − ν)

μα2(1 − νu)(1 − 2ν)2
, νu = 3ν + αB(1 − 2ν)

3 − αB(1 − 2ν)
, B = 3α(1 − 2ν)M

E + 3α2(1 − 2ν)M
. (54)

The initial conditions are

u(x,0) = F (h − x)(1 − 2νu)

2G(1 − νu)
, p(x,0) = F B(1 + νu)

3(1 − νu)
. (55)

The boundary conditions 
m
N ∪ 


f
D with force F = (F ,0,0)T and pb = 0 are imposed at ∂� ∩ {x = 0}. The rest of the 

boundary corresponds to the impermeable roller boundary condition 
m
R ∪


f
N , see Fig. 2 (left). The size of the box is h = 10, 

a = 1, the applied force is F = 10. A pseudo one-dimensional cubic grid of size N × 1 × 1 is used in this test. The total 
10
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Fig. 3. Pressure (left) and displacement (right) at vertical axis against coordinate x ∈ [0, 10] at horizontal axis for Terzaghi’s problem § 5.2 at time instants 
T = 10000 (top) and T = 2 · 108 (bottom) on the 64 × 1 × 1 grid with time step 	t = 104.

Table 3
Parameters in for the test in § 5.2.

E ν k α M μ g

25 0.45 10−11 1 100000 10−3 0

Table 4
Error norms at T = 10000 for the test in § 5.2.

Method: stabilized non-stabilized

|V(�)| 	t εu εp εu εp

128 × 1 × 1 100 3.1e-4 2.4e-1 4.0e-5 2.4e-2
256 × 1 × 1 50 6.3e-5 6.3e-2 9.7e-6 5.7e-3
512 × 1 × 1 25 8.1e-6 9.4e-3 2.3e-6 1.3e-3
rate - 2.96 2.74 2.07 2.13

simulation time is T = 10000, which corresponds to a tiny fraction of the total consolidation time with the given parameters, 
see Fig. 3. In this problem, oscillations may develop in numerical methods at initial time steps due to abrupt change in the 
pressure near the boundary [52]. The impact of the stabilization method is illustrated on the coarse grid (N = 128, time 
step 	t = 100) at time T = 100 in Fig. 2 (middle) and at time T = 500 in Fig. 2 (right). The oscillations in the pressure 
are suppressed by the stabilization method. The solution with the stabilization method is found to contain a soft kink that 
slightly overshoots over the reference solution. Such effect is possibly caused by the contribution of the gradient terms to 
the flux. It can be addressed in the future work by approximating these gradient terms with a nonlinear finite volume 
method as in [28]. The convergence of the discrete solution is demonstrated in Table 4. In this test, according to Table 4, the 
oscillatory non-stabilized solution recovers in several steps and appears to be more accurate than the stabilized solution. 
The cause of this is the added dissipation of the stabilization method.

5.3. Mandel’s problem

The original two-dimensional problem [53] is defined in the domain [−a, a] × [−b, b]. The top and bottom sides at 
y = ±b are loaded by the vertical force 2F acting on rigid impermeable plates. The medium is isotropic. The left and right 
sides at x = ±a are free and permeable. The problem is symmetric with respect to x = 0 and y = 0. Due to its symmetry, 
the problem is solved in the 3D domain � = [0, a] × [0, b] × [0, a]. The force F is applied through an impermeable rigid 
plate at the top side y = b. The analytical solution in terms of force F , consolidation coefficient c, Young modulus E , drained 
ν and undrained νu Poisson’s ratios, shear modulus G and Skempton’s pore pressure B (54) reads as
11
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Table 5
Parameters for the test in § 5.3.

E ν k α M μ g

25 0.25 10−6 1 10000 10−3 0

Fig. 4. Setup of Mandel’s problem (left) in § 5.3. Reproduction of the Mandel-Cryer effect of non-monotone pressure behavior over time period T = 100
with 	t = 0.1 at the left side of the 8 × 16 × 1 cubic mesh, horizontal axis corresponds to time in log scale, vertical axis corresponds to fluid pressure 
(right).

u(x, t) = F

Ga

(
νx

2
+

∞∑
m=1

(
a sin

(ωmx

a

)
− νu x sin(ωm)

) cos(ωm)

ωm − sin(ωm) cos(ωm)
exp

(−ω2
mct

a2

))
,

v(y, t) = F

Ga

(
(ν − 1)y

2
− (νu − 1)y

∞∑
m=1

sin(ωm) cos(ωm)

ωm − sin(ωm) cos(ωm)
exp

(
−ω2

mct

a2

))
,

p(x, t) = 2F B(1 + νu)

3a

∞∑
m=1

sin(ωm)

ωm − sin(ωm) cos(ωm)

(
cos
(ωmx

a

)
− cos(ωm)

)
exp

(
−ω2

mct

a2

)
,

(56)

where ωm are positive roots of

cos(ωm) − νu − ν

1 − ν

sinωm

ωm
= 0. (57)

The initial guess for the i-th root is ωm = π/2 +πm which is then refined using the Newton method. The initial pressure 
and displacements satisfying (56) are given by

u(x,0) = Fνux

2Ga
, v(y,0) = F (νu − 1)y

2Ga
, p(x,0) = F B(1 + νu)

3a
. (58)

Force F applied to the impermeable rigid plate implies the integral constraint at the top boundary∫
∂�∪{y=b}

dST tB =
∑

f ∈(∂�∪{y=b})
| f |nT tB = Fa2, (59)

that is added to the system and requires introduction of unknown Lagrangian multiplier λ. The boundary conditions at the 
top side ∂� ∪ {y = b} are 
m

R ∪ 

f
N with γ⊥ = λ, where λ is the Lagrange multiplier for the additional constraint (59). With 

this condition the vertical movement of the rigid plate is constrained by the total force it applies on a sample. The initial 
value for λ is taken from the reference solution v(b, 0). On the right side ∂� ∪ {x = a} the boundary conditions are 
m

N ∪

f
D

with F = 0 and pb = 0. On the rest of the boundary the impermeable roller boundary conditions are imposed 
m
R ∪ 


f
N . 

Medium properties are given in Table 5. The setup is illustrated in Fig. 4 (left). The problem parameters are a = 1, b = 2, 
F = 10.

We consider two types of grids: N × 2N × 1 cubical grid and 2N × 2N × 1 prismatic grid. The prismatic grid is obtained 
by splitting each cube of the cubic grid into two prisms with alternating direction. The convergence of the discrete solution 
at T = 20 is shown in Table 6. The first order convergence is due to the Backward Euler method used for the approximation 
of the time derivative in the Biot term. The Mandel-Cryer effect of non-monotonic (in time) pressure behavior is displayed 
in Fig. 4 (right). The oscillations and their stabilization are demonstrated in Fig. 5 where a small time step is performed on 
the finest cubic grid.
12
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Table 6
Error norms at T = 20 for the test in § 5.3.

Cubic grid Prismatic grid

|V(�)| 	t εu εp |V(�)| 	t εu εp

8 × 16 × 1 0.2 4.7e-4 6.9e-3 2 · 8 × 16 × 1 0.2 3.6e-4 8.5e-3
16 × 32 × 1 0.1 1.8e-4 4.0e-3 2 · 16 × 32 × 1 0.1 1.6e-4 4.4e-3
32 × 64 × 1 0.05 7.9e-5 2.1e-3 2 · 32 × 64 × 1 0.05 7.6e-5 2.3e-4
rate - 1.19 0.9 rate - 0.97 1.08

Fig. 5. Oscillatory (non-stabilized) and non-oscillatory (stabilized) discrete pressure solution in Mandel’s problem § 5.3 on 32 × 64 × 1 cubic grid with 
time step size 	t = 10−4 at T = 10−4 (left) and T = 10−3 (right), horizontal axis corresponds to coordinate x ∈ [0.6, 1], vertical axis corresponds to fluid 
pressure.

Table 7
Parameters for the test in § 5.4.

E ν k α 1/M μ g

1000 0.25 0.01 1 0 1 0

5.4. Barry & Mercer problem

Next we consider the Barry & Mercer problem with pulsating source [54] with a known analytical solution. The solution 
is given in two dimensions. We set a problem in the unit cube � = [0, 1]3. The medium is isotropic and homogeneous. The 
stiffness tensor C is given by Young modulus E and Poisson’s ratio ν , the Biot tensor and the permeability tensor are given 
by B = αI, K = kI, respectively, where α is the Biot coefficient and k is the permeability parameter. The parameters are 
given in Table 7. The source term is given by

q = β sin(ωθt)δ(x − x0)δ(y − y0), (x0, y0, z0)
T = (1/4,1/4,1/2)T , (60)

where δ(·) is the Dirac function, θ = kE(1 − ν)/(1 + ν)/(1 − 2ν) and β = 0.1, ω = 1. The total simulation time is T = 1.2.
Analytical solution is given in terms of double summation:

gij(t) = −β sin(λi x0) sin(λ j y0)

θ
(
λ2

i j + ω2
) (

λi j sin(ωθt) − ω cos(ωθt) + ωe−λi jθt) ,

u(x, y, t) = −4
∞∑

i=1

∞∑
j=1

λi

λi j
gi j(t) cos(λi x) sin(λ j y),

v(x, y, t) = −4
∞∑

i=1

∞∑
j=1

λ j

λi j
gi j(t) sin(λi x) cos(λ j y),

p(x, y, t) = 4E(1 − ν)

(1 + ν)(1 − 2ν)

∞∑
i=1

∞∑
j=1

gij(t) sin(λi x) sin(λ j y),

(61)

where λi := π i, λ j := π j, λi j := λ2
i + λ2

j . The summation is computed to the accuracy of the terms 10−7 with the limitation 
i2 + j2 < 2 · 5002. The initial conditions are zero pressure and displacement.
13
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Fig. 6. Boundary conditions in the Barry & Mercer problem (left) in § 5.4, the pressure solution at time T = 0.4 (middle) and T = 0.65 (right) on the 
94 × 94 × 1 grid distorted by the magnified displacement 400 · u. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

Table 8
Error norms for the test in § 5.4.

|V(�)| 	t εu εp

10 × 10 × 1 0.08 6.3e-6 5.7e-1
22 × 22 × 1 0.04 1.7e-6 2.0e-1
46 × 46 × 1 0.02 6.5e-7 7.2e-2
94 × 94 × 1 0.01 2.9e-7 2.3e-2
rate - 1.14 1.61

The boundary conditions are shown in Fig. 6. The conditions at the boundary part ∂� ∩ ({x = 0} ∪{y = 0} ∪{x = 1} ∪{y =
1}) are given by 
m

T ∪ 

f
D . At the boundary part ∂� ∩ ({z = 0} ∪ {z = 1}) we set impermeable roller boundary conditions 


m
R ∪ 


f
N .

We consider a set of refined cubical grids of the size N × N × 1, where N ∈ {10, 22, 46, 94} and corresponding time step 
size 	t = {0.08, 0.04, 0.02, 0.01}. The choice of N is guided by the position of the source. The convergence of the discrete 
solution due to the stabilized method is demonstrated in Table 8. Higher than the first order convergence rate is observed. 
The reduction of convergence rate from the second order is attributed to the first order Backward Euler time integration 
formula.

5.5. Mandel’s problem with transversely isotropic material

Mandel’s problem with a transversely isotropic material was suggested in [55]. The problem provides an analytical so-
lution for transversely isotropic Biot tensor. The setup is similar to § 5.3 except that we swap y and z directions and the 
domain is � = [0, a] × [0, a] × [0, b] with a = 1 and b = 2, see Fig. 7 (left). The material properties are described by Young 
modulii Ex = E y , Ez , Poisson’s ratios νxy = νyz , νxz , shear modulii Gxz = G yz , Gxy = Ex

2(1+νxy)
, solid and fluid bulk modulii 

Ks , K f , porosity φ. The permeability is given by K = diag
(
kx,ky,kz

)
with kx = ky . The Biot coefficient B = diag

(
αx,αy,αz

)
and the Biot modulus M are defined by components of 6 × 6 stiffness tensor C = {ci j

}
1≤i, j≤6 in Voigt notation by

αx = αy = 1 − c11 + c12 + c13

3Ks
, αz = 1 − 2c13 + c33

3Ks
, M = Ks

1 + φ
(

Ks
K f

− 1
)

− 2c11+c33+2c12+4c13
9Ks

, (62)

where the solid bulk modulus is

Ks = 3

(1 − 2νxy − 2νxz)/Ex + (1 − 2νyz)/E y + 1/Ez
. (63)

The analytical solution is defined in terms of the following coefficients:

c = kxMc11

μ
(
c + α2M

) , A1 = α2
x c33 − 2αxαzc13 + α2

z c11

αzc11 − αxc13
+ c11c33 − c2

13

M (αzc11 − αxc13)
, A2 = αzc11 − αxc13

c11
. (64)
11 x

14
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Fig. 7. Setup of Mandel’s problem with transversely isotropic material (left) in § 5.5. Reproduction of the Mandel-Cryer effect of non-monotone pressure 
behavior over time period T = 100 with 	t = 0.1 at the left side of the 8 × 1 × 16 cubic mesh, horizontal axis corresponds to time in log scale, vertical 
axis corresponds to fluid pressure (right).

Table 9
Independent parameters for the test in § 5.5.

Ex Ez νxy νxz Gxz kx kz μ φ K f

2.5 1.5 0.15 0.35 2 10−4 10−7 10−2 0.5 1.5

Table 10
Error norm at T = 20 for the test in § 5.5.

Cubic grid Prismatic grid

|V(�)| 	t εu εp |V(�)| 	t εu εp

8 × 1 × 16 0.2 7.9e-3 1.2e-2 2 · 8 × 1 × 16 0.2 5.1e-3 9.6e-3
16 × 1 × 32 0.1 2.5e-3 4.5e-3 2 · 16 × 1 × 32 0.1 1.8e-3 3.8e-3
32 × 1 × 64 0.05 9.0e-4 1.9e-3 2 · 32 × 1 × 64 0.05 7.4e-4 1.7e-3
rate - 1.47 1.25 rate - 1.31 1.19

The analytical pressure and displacements are

p(x, t) = 2F

aA1

∞∑
m=1

(
cos
(ωmx

a

)
− cos(ωm)

) sin(ωm)

ωm − sin(ωm) cos(ωm)
exp

(
−ω2

mct

a2

)
,

u(x, t) = F x

a

c13

c11c33 − c2
13

− 2F x

a

αxαz M + c13

A1M(αzc11 − αxc13)

∞∑
m=1

cos(ωm) sin(ωm)

ωm − sin(ωm) cos(ωm)
exp

(
−ω2

mct

a2

)

+ 2Fαx

A2c11

∞∑
m=1

cos(ωm) sin
(ωmx

a

)
ωm − sin(ωm) cos(ωm)

exp

(
−ω2

mct

a2

)
,

w(z, t) = − F z

a

c11

c11c33 − c2
13

(
1 + 2

(
A2

A1
− 1

) ∞∑
m=1

cos(ωm) sin(ωm)

ωm − sin(ωm) cos(ωm)
exp

(
−ω2

mct

a2

))
.

(65)

The initial pressure and displacements are

p(x,0) = F

aA1
,

u(x,0) = F x

a

(
c13

c11c33 − c2
13

+ aαx

(A1 − A2)c11
− A2 (αxαz M + c13)

(A1 − A2)A1M(αzc11 − αxc13)

)
,

w(z,0) = − F z

a

(A1 − A2)c11

A1
(
c11c33 − c2

13

) .
(66)

The boundary conditions are similar to the ones in § 5.3. The medium properties are given in Table 9. The other param-
eters are Ks = 3.8136, αx = 0.6239, αy = 0.7109, M = 2.6779.

We consider the N × 1 × 2N cubic grid and the 2N × 1 × 2N prismatic grid. The convergence of the discrete solution at 
T = 20 is presented in Table 10. The method properly handles the transversely isotropic material.
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Fig. 8. Setup of Terzaghi’s problem with two materials (left) in § 5.6. Impact of the stabilization method on the grid 64 × 1 × 1 and time step 	t = 40 near 
the point of material discontinuity at T = 600, horizontal axis corresponds to coordinate x ∈ [6, 9], vertical axis corresponds to fluid pressure (right).

5.6. Terzaghi’s problem in two-layered medium

The pressure solution to the F -loaded consolidation of a column consisting of two materials of height h1 and h2, is given 
in [52] (page 44). The problem provides an analytical solution for a discontinuous Biot coefficient. The setup and boundary 
conditions are similar to the ones in § 5.2. We derive the displacement by integrating the strain from the bottom to x. For 
ξ := h1 − x, ξ ∈ [−h2, h1] the analytical solution reads as

gm(t) = 2B F

ωm

exp
(−ω2

mc2t/h2
2

)
(1 + βθ) cos(θωm) sin(ωm) + (β + θ) sin(θωm) cos(ωm)

,

p(ξ, t) =
∞∑

m=0

gm(t)

{
cos(ωm) cos (θωmξ/h1) − β sin(ωm) sin (θωmξ/h1) , ξ > 0,

cos(ωm) cos (ωmξ/h2) − sin(ωm) sin (ωmξ/h2) , ξ < 0.

u(ξ, t) = F

{
m1ξ + m2h2, ξ > 0,

m2(ξ + h2), ξ < 0.

−
∞∑

m=0

gm(t)

θωm

⎧⎨
⎩

α1m1h1 (cos(ωm) sin (θωmξ/h1) + β sin(ωm) cos (θωmξ/h1))

−α1m1h1β sin(ωm) + α2m2h2θ sin(ωm), ξ > 0,

α2m2h2θ (cos(ωm) sin (ωmξ/h2) + sin(ωm) cos (ωmξ/h2)) , ξ < 0.

(67)

The Skempton’s coefficients Bi , the consolidation coefficients ci and the confined compressibility coefficients mi are given 
by

Bi = αimi Mi

1 + α2
i mi Mi

, ci = ki

μ

Mi

1 + α2
i mi Mi

, mi = (1 + ν)(1 − 2ν)

E(1 − ν)
, (68)

where ki is the permeability, Ei is the Young modulus, νi is the Poisson’s ratio and μ is the fluid viscosity.
Parameter M2 is chosen so that B1 = B2 = B . The expressions for M2 and coefficients β and θ are

M2 = α1m1

α2m2

M1

1 + α1m1(α1 − α2)M1
, β = k2

k1

c1

c2
, θ = h1

h2

√
c2

c1
. (69)

Coefficients ωm = ω̄m/(1 + θ) and ω̄m are the positive roots of the equation

cos (ω̄m) − β − 1

β + 1
cos

(
θ − 1

θ + 1
ω̄m

)
= 0. (70)

The trigonometric problem (70) is solved using the combination of the Newton’s method with the golden ratio line 
search method starting from the initial guess ω̄m = π/2 + mπ .

The initial pressure and displacement are given by:

p(ξ,0) = B F , u(ξ,0) = F

{
m1(1 − α1 B)ξ + m2(1 − α2 B)h2, ξ > 0,

m2(1 − α2 B)(ξ + h2), ξ < 0.
(71)

The setup is illustrated in Fig. 8 (left). The heights and material properties for each layer are given in Table 11. The width 
is a = 1. We consider a set of N × 1 × 1 cubical grids. The instability develops near the point of material discontinuity even 
for large time step 	t = 40 and is successfully suppressed by the stabilization method, see Fig. 8 (right). The stabilized 
solution on the coarse 64 × 1 × 1 grid at different time instants is demonstrated in Fig. 9. The analytical solution develops 
into a step near the point of material discontinuity and thus challenges the numerical method. The proposed method 
without stabilization with the same parameters develops oscillations near the point of discontinuity as displayed in Fig. 10
and diverges. The convergence of the stabilized discrete solution is reported in Table 12.
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Table 11
Heights and material parameters for the test in § 5.6.

Material h E ν k α M μ

1 7.5 10 0.45 10−5 1 1000
10−2

2 2.5 2 0.15 10−8 0.8 by equation (69)

Fig. 9. Pressure (left) and displacement (right) at vertical axis against coordinate x ∈ [0, 10] at horizontal axis for Terzaghi’s problem in two-layered medium 
§ 5.6 at time instants T = 5 (top), T = 250 (middle) and T = 1000 (bottom) on the 64 × 1 × 1 grid with time step 	t = 5.

Table 12
Error norms at T = 1000 for the test in § 5.6.

|V(�)| 	t εu εp

64 × 1 × 1 4 9.6e-01 8.5e-2
128 × 1 × 1 2 6.2e-01 5.1e-2
256 × 1 × 1 1 3.6e-01 2.4e-2
512 × 1 × 1 0.5 1.7e-01 8.2e-3
rate - 1.03 1.57

5.7. Norne formation

The presented method is capable to handle general polyhedral grids demanded in engineering applications. The open 
porous media initiative [56] provides grid data of the Norne oil field featuring faults, pinch-outs and heterogeneity. The 
diagonal permeability tensor K = diag

(
Kx, K y, Kz

)
and porosity data φ are taken from the grid data. The permeability 

is isotropic in horizontal direction, Kx = K y . A mild vertical anisotropy is defined with the net-to-gross thickness ratio 
parameter [57].
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Fig. 10. Pressure (left) and displacement (right) at vertical axis against coordinate x ∈ [6, 9] at horizontal axis for Terzaghi’s problem in two-layered medium 
§ 5.6 at time instants T = 50 (top), T = 125 (middle) and T = 150 (bottom) on the 64 × 1 × 1 grid with time step 	t = 5.

Table 13
Properties of the wells in § 5.7.

Well xW yW zW WI pbhp

1 4.567151e+5 7.321079e+6 2.767665e+3 500000 300000
2 4.609346e+5 7.323503e+6 2.597767e+3 500000 1000
3 4.595400e+5 7.326078e+6 2.803586e+3 500000 0

We define the mechanical properties from the permeability and porosity. The Biot coefficient is B = 1
2 (1 + φ)I and the 

mechanical material properties are Ex = 5000(K̄x + 1), E y = 5000(K̄ y + 1), Ez = 5000(K̄ z + 1), G yz = 2500(K̄x + 1), Gxz =
2500(K̄ y + 1), Gxy = 2500(K̄ z + 1), νxy = νxz = 1/10, νyz = 1/5. Here K̄α = (Kα − min(Kα)) / (max(Kα) − min(Kα)) , ∀α ∈
{x, y, z}. The other coefficients are ρ f = 20, ρs = 120, M = 2(1 + φ), μ = 0.1, g = −9.8. These parameters are synthetic and 
are not tied to real physical properties.

The impermeable roller boundary condition 
m
R ∪ 


f
N is imposed on the entire boundary ∂�. The initial conditions 

corresponds to pressure at 250 and zero displacement. The flow is driven by three wells with properties collected in Table 13
(left). Positions of the wells in the reservoir are illustrated in Fig. 11. The well contributes to the right hand side:

q = W I

μ

(
p − pbhp

)
δ(x − xW ). (72)

We integrated the problem (1) till T = 100 with the time step 	t = 1. Fig. 11 demonstrates the pressure field (middle) 
and the displacement magnitude (right) at the final time T = 100.
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Fig. 11. Top view of the wells positions in the outline of the Norne oil field (left). Pressure (middle) and displacement magnitude (right) at time T = 100 in 
the problem § 5.7, scaled by 6 in vertical direction.

Fig. 12. Mesh distribution among 400 processors with the K-means method (left). Pressure in the cutaway of the grid at z = 170 (middle) and displacement 
magnitude in the cutaway of the grid at z = 190 (right) at time T = 100 in the problem § 5.8.

5.8. SPE10 dataset

We consider a larger SPE10 dataset [58] to evaluate the parallel performance of the simulator. The dataset contains 
60 × 220 × 85 entries of porosity and components of diagonal permeability tensor with strong vertical anisotropy. We 
define the mechanical properties and other parameters following the approach from § 5.7 except the gravity g = −0.01, in 
order to account for the vertical anisotropy. The problem is set on a regular 60 × 220 × 85 cartesian grid in the domain 
� = [0, 240] × [0, 440] × [0, 340]. The initial and boundary conditions are similar to the problem from § 5.7.

The flow is guided by 132 wells with W I = 500000 and pbhp = 80. The positions of wells are given by

xi j =
(

2 + (i − 1)
236

5
,1 + ( j − 1)

438

21
,170

)
,∀i ∈ [1,6],∀ j ∈ [1,22]. (73)

The mesh is distributed in advance with the K-means clustering algorithm described in [59]. The mesh distribution 
among 400 processors is illustrated in Fig. 12 (left). The problem is integrated with the time step 	t = 1 till T = 100. 
The pressure and displacement magnitude at the final time step are presented in Fig. 12 (middle, right). The simulator 
performance on two parallel computers is collected in Fig. 12. The machines are the Lomonosov supercomputer [60,61]
and the INM RAS cluster [62]. At the Lomonosov supercomputer we have a limit of 50 nodes with 14 core processors. In 
the table Nproc is the number of processors, Ttot is the total simulation time including input-output and synchronization 
barriers, Tasm is the matrix assembly time, T prec is the preconditioner preparation, Titer is the time needed for the linear 
iterations, Tupd is the solution update and recomputation of gradients and interface values. The total number of unknowns 
in the linear system is 4 488 000. (See Table 14.)
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Table 14
Solver scalability in problem § 5.8, the time is given in seconds.

Machine Nproc Ttot Tasm T prec Titer Tupd

INM RAS cluster
100 15079.4 1119.8 7245.2 4463 479.7
200 8791.2 582.9 3926.2 2800.9 252.4
400 4637 300.3 1965.6 1374.2 127

Lomonosov supercomputer
175 13298 798.7 6807.9 3779.5 361
350 6397.3 460.4 2111.1 2177.4 138.4
700 3536 234.1 1071.1 1112.4 70.5

6. Conclusion

The presented cell-centered finite-volume method is applicable for the poromechanics problem characterized by het-
erogeneous full tensor coefficients: the permeability tensor, the Biot coefficient tensor and the elasticity stiffness tensor. 
The cornerstone of the method is the stable discretization of the coupled vector flux and derivation of the harmonic point 
providing interpolation across material discontinuities.

The stabilization method proposed in this work addresses the inf-sup instability issue. The hourglass oscillation pattern is 
replaced with a smooth kink in the discrete solution. The presence of the kink indicates that the scheme may still suffer in 
the presence of sharp steps in the solution. To address these issues, the future research will be directed towards a nonlinear 
finite-volume extension of the method.
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