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Abstract This work is concerned with a parallel solution of the Navier-Stokes
equations on dynamic adaptive moving meshes. The method is applied to the blood
flow problem in the moving domain of the left ventricle, reconstructed from the
time series of computer tomography scans. The moving mesh of the left ventricle
is dynamically adapted in the areas of high vorticity to improve capturing of the
flow features. For the flow approximation we use a fully implicit collocated finite
volume method. The methods are implemented using functionality of the INMOST
platform.

1 Introduction

The mathematical modelling of the blood flow in the heart and large vesicles
becoming a clinical standard to complement Doppler sonography as a decision
supporting tool for practicing cardiologists [14]. This work addresses several related
challenges, such as modelling of the blood flow in the moving domain using a stable
collocated finite-volume method, mesh reconstruction from time-series of computer
tomography images, and an instrument that supports dynamic adaptation of the
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moving mesh. We are concerned with a practical problem of the simulation of blood
flow in the right ventricle reconstructed from time-series of computer tomography
images of the heart of a patient with transposition of the great arteries.

The present work extends the collocated finite volume method, considered earlier
in [22, 23, 25], to handle moving meshes. It realizes a general concept of stable
flux discretization of saddle-point systems with vector of several unknowns [24].
The approach was first applied to mixed Darcy formulation in [27] and further
extended to mechanics and poroelasticity [18, 20, 24, 26, 29] problems. These works
demonstrated that inf-sup stability issue [10] does not affect the proposed collocated
finite volume methods.

The mathematical model is built on top of INMOST, an open source library [3,
31, 32]. It provides tools for complex parallel mesh modification and balancing [17,
28], as well as tools for linear system assembly using automatic differentiation and
linear system solution. There are other mesh libraries allowing for parallel mesh
modification, such as Dune [1], project DuMuX [6, 9] based on Dune, STK mesh
from Trilinos package [16], OpenFOAM [12], other packages for parallel mesh
management are MOAB [15] and MSTK [7]. In this work we are mostly concerned
with practical aspects of the solution of the Navier-Stokes problem on dynamic
adaptive moving meshes using the INMOST functionality. Recently we applied
INMOST to the solution of front-tracking problem using parallel adaptive meshes
in [30], but we haven’t studied the related performance impacts.

The article is organized as follows. In Sect. 2 we consider the INMOST func-
tionality. In Sect. 3 we outline the construction of the sequence of moving meshes
from a series of computer tomography scans. Further in Sect. 4 we are concerned
with the geometrical quantities in four dimensions. In Sect. 5 we briefly discuss the
finite volume method in four dimensions. At last in Sect. 7 we perform a numerical
experiment.

2 INMOST Functionality

The primary functionality of the concern for the present work is the ability to handle
the geometry of moving meshes, to dynamically refine and coarsen the meshes along
the computations, and to perform load balancing. All of these functions are provided
by the INMOST platform. The platform allows to adapt polyhedra of general shape
as illustrated in Fig. 1.

The information on refined elements is stored in the hierarchy of element sets.
These sets store the information necessary for cell coarsening, see Fig. 2. Distributed
element sets allow to pass the information and corresponding elements across the
processors to perform necessary operations.

The mesh can be modified either by low-level functions, such as removal,
generation, disconnection, and reconnection of mesh elements. There are also high-
level functions that allow for splitting of elements by sets of elements of lower



Dynamic Adaptive Moving Mesh Finite Volume Method for Navier-Stokes Equations 171

Fig. 1 General refinement of (a) hexagonal prisms, (b) triangular prisms, and (c) nonconvex
prisms

Fig. 2 Organization of sets of elements into a tree structure (left). Original unsplit mesh of three
cells (middle). After splitting of cell C3 a new set is attached to the parent (root) set (right). The
set remembers all the fine cells that form the original cell C3

Fig. 3 Separation of a face
F0 by a set of edges into faces
F1 . . . F5

dimension (see Fig. 3), union of sets of elements of the same dimension, edge
collapse.

The mesh refinement is organised using high-level functionality. Each element
is split by introducing a midpoint and necessary lower dimensional elements as
displayed in Fig. 4a. For triangles this leads to a deterioration of the element shape
as seen in Figs. 1b and 4b. To this end, we consider splitting of the triangle without
midpoint. In the case of tetrahedron, prism and pyramid we also do not introduce
the midpoint. The shortest inner diagonal is used to split the tetrahedron. As a
result each tetrahedron is split into eight new tetrahedra. Due to face refinement
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(a) (b)

Fig. 4 (a) General splitting sequence with introduction of midpoints, (b) a special case for a
triangle

adjacent coarse tetrahedra become polyhedra. In this paper only tetrahedral meshes
are considered.

For load balancing, it is possible to migrate mesh elements between processors
using the new partitioning. In this work we use ParMetis [8] for mesh balancing.
INMOST automatically computes statuses of modified elements, equilibrates the
domain boundary, and reconstructs the prescribed number of ghost layers upon mesh
modification and after load balancing.

3 Constructing a Moving Mesh

The imaging corresponds to the right ventricle of a patient with transposition of
the great arteries, a rare congenital defect. The motion of the ventricle is obtained
from time series of computer tomography scans. The data set includes 10 contrast-
enhanced CT scans with 512 × 512 × 304 voxels and 0.355 × 0.355 × 0.5mm
resolution. The images are resampled to 162×112×136 voxels with 1mm isotropic
resolution. The right ventricle is segmented with a level-set method from the ITK-
SNAP package [33].

Obtained frames are resampled to 90 frames per cardiac cycle using a cubic
interpolation of the level-set function in time with the periodic conditions at the
endpoints of the time interval. The boundary of the right ventricle is recovered
as a zero isosurface of this interpolant. Frame 44 shows the minimum volume of
the ventricle. We assume that the frames from 0 to 44 represent the systole of the
cardiac cycle, and the frames from 45 to 89 represent the diastole. We approximate
the average position of the valves with two static cutoff planes.

The mesh generation process was described in [4] and we refer to that paper for
details. The algorithm builds a mesh in a reference domain, implicitly defined by the
averaged distance function over all 90 frames. This domain is also bounded by static
valve planes. A quasi-uniform unstructured tetrahedral mesh is constructed using
Delaunay triangulation from the CGAL mesh library [13]. It is further improved
using the aniMBA library from the Ani3D package [11].

At the next stage, the mesh is adapted to all frames from 0 to 89, which is
followed by the second cycle of the mesh adaptation to ensure a smooth periodic
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Fig. 5 The right ventricle surface mesh: (a) beginning of systole (frame 0), (b) middle of systole
(frame 23), (c) end of systole (frame 44)

Fig. 6 The right ventricle volume mesh, the cutplane passes through the ventricle apex and the
centers of the valves: (a) beginning of systole (frame 0), (b) middle of systole (frame 23), (c) end
of systole (frame 44)

transition of the meshes from one cardiac cycle to the next one. To this end, each
boundary node is shifted in the direction of the surface normal vector with the
weight 1/2 and the vector pointing to the center of the surrounding nodes with
the weight 1/25. The vertices residing on the valve planes are projected to these
planes, thus ensuring that the vertices stay on valve planes (Fig. 5). At the second
step, the internal nodes are shifted by a simultaneous untangling and smoothing
algorithm [5].

The final result is a periodic series of 90 topologically invariant meshes with
13,222 nodes, 86,920 edges and 70,533 tetrahedra for the right ventricle; see Figs. 5
and 6. It is important to note that the reconstructed movement misses ventricle
rotation and twist, that is important for the correct capturing of the flow.
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4 Geometry in Four Dimensions

We assume that the geometry of �n and �n+1 in temporal layers n and (n + 1)
is known, moreover the temporal coordinate at n and (n + 1) is equal to tn and
tn+1, respectively, as in Fig. 7. Three-dimensional cells ωn+1 = ω(tn+1) posses
collocation points with three-dimensional coordinate xωn+1 and fourth coordinate
tn+1.

An evolution of four-dimensional cell ωi(tn, tn+1) from time moment tn
to time moment tn+1 is enframed by two three-dimensional cells ωn

i and
ωn+1

i , i.e., it is a prism with the volume computed by |ωi(tn, tn+1)| =(
|ωn

i | + |ωn+1
i |

)
(tn+1 − tn)/2. The volume is measured in SI by m3 s. By

analogy the four-dimensional face σi(tn, tn+1) between the moments tn and tn+1
is enframed with two three-dimensional faces σn

i and σn+1
i and has an area

|σi(tn, tn+1)| =
(
|σn

i | + |σn+1
i |

)
(tn+1 − tn)/2, measured by m2 s.

Let xσn
i
, x

σn+1
i

correspond to three-dimensional centers, and nσn
i
,n

σn+1
i

to

three-dimensional normals to faces σn
i , σ n+1

i , respectively. We define the three-
dimensional normal n = (nσn

i
+ n

σn+1
i

)/2 at the mid-point between n and (n + 1)

layers and introduce the fourth coordinate of the normal by

[
nT nt

]
[
xσn

i

tn

]
= [

nT nt

]
[
x

σn+1
i

tn+1

]
, (1)

that corresponds to positioning of four-dimensional coordinates of σn
i , σ n+1

i at
single plane. We obtain

nt = −nT
(
x

σn+1
i

− xσn
i

)
/(tn+1 − tn) ≈ −nT wσ(tn,tn+1), (2)

where wσ(tn,tn+1) is the velocity of the face movement. Note, that the units for
nt corresponds to the velocity m s−1. The four-dimensional normal is given by

Fig. 7 Computation of the
fluxes at the centers of the
faces for the boundary cell
ω(t) for a 1D problem. Green
square—flux at the internal
face, yellow square—flux at
the boundary face. Green
circle—collocation point at
time moment tn+1, red
circle—collocation point at
time moment tn
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nt = [
nT nt

]T
. Considering that the four-dimensional coordinate is measured in

[mmms]T , and the normal in [1 1 1 m s−1], their scalar product is measured in m,
yielding m3 s in the divergence formula for the volume |ω| = ∑

σ |σ |nT x.
The outward four-dimensional normal to the face at layer n + 1 is given by

[0 0 0 1], and the four-dimensional face area corresponds to the volume of the
cell |ωn+1

i |, measured in m3. By analogy, the normal to the face at layer n is given
by [0 0 0 − 1], and it’s area corresponds to the volume |ωn

i |, measured in m3.

5 Finite Volume Method

We consider the solution of Navier-Stokes equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρu

∂t
+ div

(
ρuuT − τ + pI

)
= f ,

div (ρu) = 0,
in �(t),

α (u − w) + β (τ − pI) n = r on ∂�(t).

(3)

In (3), the domain �(t) changes with time, u = [u, v,w]T is the velocity vector,
where u, v,w ∈ H 1(�), and p ∈ L2(�) is the pressure field. The spaces H 1 and
L2 are properly augmented at the boundary, ρ = const is the fluid density, τ is the
stress tensor with dynamic viscosity μ = const:

τ = 2μD(u), D(u) = 1

2

[
u∇T + ∇uT

]
. (4)

In boundary conditions n is a normal vector to σ(t), oriented outside of the domain,
α = α‖I+(α⊥−α‖)nnT fixes the velocity at the boundary, β = β‖I+(β⊥−β‖)nnT

fixes the traction at the boundary, w is the boundary movement velocity.
Equations for �(t) of the system (3) can be expressed with the four-gradient as

follows:

(
ρuuT − τ + pI ρu

ρuT

) (∇
∂t

)
=

(
f

0

)
. (5)

Applying the Ostrogradsky-Gauss theorem to the four dimensional integral of the
left-hand side of (5) at every cell ω(t) ∈ V(�(t)) we get:

∫

ω(t)

(
ρuuT − τ + pI ρu

ρuT

) (∇
∂t

)
dV (t)

≈
∑

σ(t)∈F(ω(t))

|σ(t)|
(

ρuuT − τ + pI ρu

ρuT

) (
n

nt

) ∣∣∣∣
xσ(t)

, (6)
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where F(ω(t)) is a set of faces of the cell ω(t), [n, nt ]T is a normal vector to the
four-dimensional face σ(t), oriented outside of the cell ω(t), and xσ(t) is a four-
dimensional center and |σ(t)| is area of the face σ(t).

5.1 Flux Approximation

For the finite volume method it is necessary to approximate the expression under
the sum in (6) at the face σ(t) center:

F
∣∣
xσ(t)

=
(

ρunt + ρuuT n − τn + pn

ρnT u

) ∣∣∣∣
xσ(t)

, (7)

we call this expression the coupled flux.
Let V(�(t)) represent the set of cells, covering the domain �(t). Each cell

ω(t) ∈ V(�(t)) represents a moving elementary volume. Let us introduce the
pressure pi , the velocity ui and the four-gradient Gi of pressure and velocity
at the four-dimensional center xωi(t) of each cell ωi(t) ∈ V(�(t)): Gi =([

uT p
]T ⊗ [∇T ∂t

]T ) ∣∣∣
xωi (t)

, here and further A ⊗ B is the Kronecker product.

Further we consider pressure and velocity to be piecewise-continuous and their
gradient piecewise-constant.

The semi-discrete approximation of the coupled flux is the following:

F|xσ(t)
≈ (T1 − Q1)

[
u1

p1

]
− (T1 − D1 − 2Q1)

[
uσ

pσ

]

+
(
T1 ⊗ (

xσ(t) − xω1(t)

)T − W1

)
G1, (8)

where the matrix coefficients are given by:

Q1 = ρ

2

[
nT u1I+ u1n

T

0

]
,

T1 =
[(

a1 + μ
r1

) (
I+ nnT

)

b1

]
,

D1 =
[
ρnt I n

ρnT 0

]
,

W1 = μ

([
I

0

]
⊗ [

nT 0
] + [

nT 0
] ⊗

[
I

0

])
,

(9)

where r = nt · v is the distance to the face.
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The coefficients a1 and b1 in T1 are used to stabilize the method. In the SI system,
a1 is measured in kgm−2 s−1 and b1 in m−1 s. Based on the eigenvalues analysis of
T1 − D1 − 2Q1 we use

a1 = max

(
ρ

(
max

(
2nT u1,n

T u1

)
+ nt

)
− μ

r1
, ε

)
+ θ,

b1 = ρ

(
μ

r1
+ a1

)−1

,

where ε = 10−3 is a small positive value and θ = ρ

√
u1

(
I− nnT

)
u1.

Solving the coupled flux continuity (8) for interface pressure and velocity with
a similar approximation at the neighboring cell we obtain the unique coupled flux
expression:

F|xσ(t)
≈ (T2 − D2 − 2Q2)(T1 + T2 − 2(Q1 + Q2))

−1

×
(

(T1 − Q1)

[
u1

p1

]
+

(
T1 ⊗ (

xσ(t) − xω1(t)

)T − W1

)
G1

)

− (T1 − D1 − 2Q1)(T1 + T2 − 2(Q1 + Q2))
−1

×
(

(T2 − Q2)

[
u2

p2

]
+

(
T2 ⊗ (

xσ(t) − xω2(t)

)T − W2

)
G2

)
,

(10)

where W2 = −W1, D2 = −D1, and

Q2 = −ρ

2

[
nT u2I+ u2n

T

0

]
, T2 =

[(
a2 + μ

r2

) (
I+ nnT

)

b2

]
. (11)

Consider coupled flux approximation at the boundary face σ(t) ∈ F(∂�(t))

adjacent to the cell ω1(t) ∈ V(�(tn+1)), σ(t) = ∂�(t) ∩ ω1(t). From the
momentum conservation equation we introduce an auxiliary condition for the
pressure:

n · ∇p|xσ(t)
=

(
n · f − n · ∂ρu

∂t
− n · div

(
ρuuT − τ

))∣∣∣∣
xσ(t)

. (12)

Considering the piecewise linearity of velocity and pressure we can omit the
contribution of the viscous term. The piecewise constant pressure gradient is
evaluated at the cell center xω1(t) instead of the face center xσ(t). Thus, we get

n · ∇p|xω1(t)
= n · f 1 − ρ

[
nT 0

] ⊗ [
uT
1 1

]
G1, (13)
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where f 1 = f |xω1(t)
. Combining (13) with boundary conditions from (3) into a

block system we get an expression for the unknowns at the face center:

[
uσ

pσ

]
= (D + NTb)

−1
(
R + NTb

[
u1

p1

]
+ N

(
Tb ⊗ (

xσ(t) − xω1(t)

)T − Wb

)
G1

)
,

(14)

where

D =
[
α −βn

0

]
, N =

[
β

1

]
, R =

[
r + αw

n · f 1

]
,

Tb =
⎡
⎣

(
ab + μ

r1

) (
I+ nnT

)

1
r1

ρ
(
nT u1 + nt

)
nT 1

r1

⎤
⎦ ,

Wb =
[
μI

1

]
⊗ [

nT 0
] + [

nT 0
] ⊗

[
μI

ρuT
1 ρ

]
,

(15)

where

ab = max

(
−1

2

(
α⊥
β⊥

+ ρ
(
nT u1 + ρnt

))
− μ

r1
, ε

)
+ θ

is a stabilizing coefficient. Using (14) in (8) we get the coupled flux at the boundary.
The coupled fluxes at the top temporal boundary σ̄ (t) = ω1(tn) ∩ ω1(tn+1) and

the bottom temporal boundary σ(t) = ω1(tn) ∩ ω1(tn−1) are:

F|σ̄ (t) =
[
ρun+1

1
0

]
, F|σ(t) = −

[
ρun

1
0

]
, (16)

with the four dimensional areas corresponding to the volumes ω1(tn) and ω1(tn−1),
respectively.

5.2 Gradient Reconstruction

We reconstruct the four-gradient G1 at the center of each time level ωi(t) ∈
�(tn+1). Consider a cell ω1(t), for every other cell sharing any element ω2(t) ∈
V(�(tn+1)∪�(tn)), ω1 ∩ω2 
= ∅, ω2 
= ω1, we consider the following condition
for the gradient:

I⊗ (
xω2(t) − xω1(t)

)T G1 =
[
u2

p2

]
−

[
u1

p1

]
. (17)
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At the boundary with prescribed conditions σ(t) ∈ F(∂�(t)), σ(t) = ∂�(t) ∩
ω1(t), ω1(t) ∈ V(�(tn+1)) we derive the condition from (14):

(
D ⊗ (

xσ(t) − xω1(t)

)T + NWb

)
G1 = R − D

[
u1

p1

]
. (18)

As a result in d dimensions every condition provides d + 1 conditions for the four-
gradient G1, consisting of (d + 1)2 unknowns. It is sufficient to consider (d + 1)
conditions. Gathering conditions (17) and (18) we obtain a system AG1 = b, solved

with the Cholesky method: G1 = (AT A)
−1

AT b.

5.3 Problem Solution

To avoid the solution of nonlinear problem we use the velocity from the previous
time-level un

1 in Q1, T1, Tb and stabilizing coefficients and un
2 in Q2, T2 and

stabilizing coefficients, respectively. As a result we have to assemble and solve a
linear system only once. The assembly of the problem residual is performed with
the following steps:

1. Reconstruct the four-gradient Gi with the derivatives in every cell ωi(t) ∈
V(�(tn+1)) following (5.2).

2. Compute the residual ωi(t) ∈ V(�(tn+1)):

Ri =
∑

σ(t)∈F(ωi (t))

|σ(t)| F|xσ(t)
, (19)

where the coupled flux is computed by (10) and (8)–(14).
3. For every cell ωi(t) ∈ V(�(tn+1)), add to the residual Ri the fluxes (16) and

subtract the body forces f i = f |xωi (t)
, multiplied by cell volume |ωi(t)|.

The matrix is assembled by the automatic differentiation of the INMOST plat-
form. The system is further solved iteratively with the multilevel preconditioner [19,
21]. The iterative convergence tolerances are absolute τabs = 10−12, relative
τrel = 10−18, dropping tolerances in the second-order incomplete factorization are
τ1 = 2 × 10−3 and τ2 = 5 × 10−4, pivoting by condition estimation is κ = 2. A
single overlapping layer is used for the additive Schwarz method.
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6 Data Transfer

For the refinement, we use computed gradients G1. During the refinement step, the
interpolation from a coarse cell ω1 to fine cells ωi is computed by

[
ui

pi

]
=

[
u1

p1

]
+ � ⊗ (

xωi
− xω0 0

)T
G1, (20)

where � = diag
(
θu, θv, θw, θp

)
is chosen to limit the interpolation for all new cells

ωi :

min
ωj ∈Vn(ω1)

([
uj

pj

])
≤

[
u1

p1

]
+ � ⊗ (

xωi
− xω0 0

)T
G1 ≤ max

ωj ∈Vn(ω1)

([
ui

pi

])
,

(21)

here Vn(ω1) is a set of cells sharing at least a node with the cell ω1. In (21) each
component can be considered separately. The interpolation is conservative under
condition

∑
i |ωi |xi = |ω1|x1 and is monotone due to (21). During coarsening of

fine cells ωi to a coarse cell ω1 we use the simple averaging:

[
u1

p1

]
= |ω1|−1

∑
i

|ωi |
[
ui

pi

]
, (22)

which is both monotone and conservative.
The refinement criterion is based on the vorticity, which is computed in each cell

based on Gi :

curl(ui ) =
⎡
⎣
0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

⎤
⎦Gi . (23)

The cells ωi are marked to be refined if the |curl(ui )| ≥ 5. A cell is coarsened if
neither of its faces indicates refinement and the coarsening level is not reached.

7 Numerical Experiment

The heart domain is measured in mm. The bounding box around the domain at
the initial position has approximate sizes of 122.8mm × 72.9mm × 116.8mm.
The corresponding blood density is ρ = 1 060 kgm−3 = 0.00106 gmm−3 and the
dynamic viscosity μ = 3.5 cP = 0.0035 gmm−1 s−1. We consider each mesh frame
to be separated by the period �t = 0.01 s, which is taken as the maximal step of
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the model. The initial time step is 0.0005 s, which is doubled every step until the
maximal step is reached. The total simulation time is T = 4.5 s, which corresponds
to 5 cycles.

We use two types of boundary conditions:

• Dirichlet conditions �D with

α⊥ = α‖ = 1, β⊥ = β‖ = 0, and r = 0;

• Directional-do-nothing conditions �DDN with

α⊥ = α‖ = −ρ
(∣∣∣nT u1 + nt

∣∣∣ − nT u1 − nt

)
, β⊥ = β‖ = 1, and r = 0.

At the boundary we distinguish the systole �s and the diastole �d . There is a
systolic phase at T ∈ [0, 0.45]+0.9·i and a diastolic phase at T ∈ [0.45, 0.9]+0.9·i,
where i ∈ N0. In the systolic phase the systole �s is closed (�D) and the diastole
�d is open (�DDN ). In the diastolic phase the systole �s is open (�DDN ) and the
diastole �d is closed (�D). At the rest of the boundary ∂� \ �s ∪ �d the Dirichlet
conditions �D are prescribed.

The initial velocity and pressure are zero.
We run the simulation in parallel on INM RAS cluster [2] using 6 nodes with 40

cores totalling 240 processes.
The solution at various times over the heart cycle is depicted in Fig. 8. The change

of velocity and pressure with time is illustrated in Fig. 9.
The corresponding mesh that emphasizes the refinement regions is found in

Fig. 10. The evolution of the number of cells is displayed in Fig. 11a. The dis-
tribution of the mesh among the processors is illustrated in Fig. 12. The mesh is
repartitioned by ParMetis after each refinement and coarsening step. The evolution
of the number of cells and the balance ratio (ratio of maximal local elements to
minimum elements) is given in Fig. 11b. It shows that at some of the steps the

Fig. 8 Cutaway of the mesh colored in |curl(u)| at (a) T = 3.6, (b) T = 4.05, (c) T = 4.5
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Fig. 9 Change over time of (a) the maximal absolute velocity (mm s−1) and (b) the minimal and
maximal pressure

Fig. 10 Cutaway of the mesh at (a) T = 3.6, (b) T = 4.05, (c) T = 4.5

Fig. 11 Change over time of (a) the number of cells and (b) the mesh balance ratio
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Fig. 12 Cutaway of the mesh colored by partition number at (a) T = 3.6, (b) T = 4.05, (c)
T = 4.5

Fig. 13 Percentage of time consumed by each step of the model

disbalance is significant, which may negatively impact linear solver efficiency and
convergence.

A single step of the model is split into steps:

• refinement and balancing;
• geometry and gradient computation, system assembly;
• system preconditioning and iterative solution;
• coarsening and balancing.

The cost of individual steps in percentage of the total step time is given in
Fig. 13. Although the time for mesh adaptation and balancing is considerable with
respect to the system assembly time, it is evident that the total solution time is
dominated by the linear system solution. The ratio between the time consumed by
the preconditioner and the iterative solution is given in Fig. 14a, which shows that
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Fig. 14 Percentage of time consumed by (a) system preconditioning and iterative system solution
and (b) mesh adaptation and balancing

Fig. 15 Change over time of (a) linear iterations required to solve the system and (b) time in
seconds consumed per time step

the costs are comparable. In the adaptation step, the coarsening step dominates the
overall time and the mesh balancing is negligible as seen in Fig. 14b. The number
of linear iterations is given in Fig. 15a. On average, the number of linear iterations
stays the same despite the growth in the number of cells. This is due to the adaptive
nature of the solver. However, the solution cost rises significantly with the number
of cells. The time needed to evaluate a single time step is given in Fig. 15b.

8 Conclusion

In this work we have considered the solution of Navier-Stokes equations on a
dynamic adaptive moving mesh. It shows the ability of the collocated finite-volume
method to handle complex general meshes with hanging elements as well as the
ability of the INMOST platform to manage such meshes in parallel. The presented
results indicate that the efficiency bottleneck is in the linear solver. This calls for a
more efficient multigrid approach. Here we focused on the technical aspects of the
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simulation. The detailed analysis of the convergence of the method will be presented
in forthcoming works.
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