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Abstract: A finite element method for a monolithic quasi-Lagrangian formulation of a fluid–porous structure
interaction problemwith a corrected balance of stresses on the fluid–structure interface is considered. Defor-
mations of the elasticmediumare not necessarily small and aremodelled using Saint Venant–Kirchhoff (SVK)
constitutive relation. The stability of the method is proved in a form of energy bound for the finite element
solution.
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Blood flow in a vessel with permeable walls or penetration of oil through a crack in a porous matrix can be
seen as the interaction of a freely flowing fluid with a fluid-saturated poroelastic structure. A continuumme-
chanics description of such fluid-poroelastic phenomena often leads to coupled systems of (Navier–)Stokes
and Biot equations [25, 35]. Recently, there has been a growing interest in the numerical solution of the
Stokes–Biot and Navier–Stokes–Biot problems. Several authors suggested solution strategies based on de-
composition of the system into fluid and poroelastic loosely coupled problems to allow for computation-
ally efficient time-stepping schemes [5, 8]. For the reason of better stability, monolithic methods for the
(Navier–)Stokes–Biot equations have become popular in the literature. They differ in the form of equations
and the numerical treatment of the coupling conditions on the interface between a free flowdomain and a do-
main occupied by the porous structure. In [2] the continuity of fluid fluxes on the interface is imposed weakly
with the help of a Lagrange multiplier and in [36] an interior penalty discontinuous Galerkin method is ap-
plied to obtain a discrete coupled formulation. The Nitsche approach is used for coupling fluid and poroelas-
tic finite element formulations in [1, 9]. Combination of the Nitsche approach and unfitted finite elements [1]
adds extra flexibility to the numerical solution.

Many publications on numerical methods for the fluid–poroelastic problem ignore inertia effect in the
fluid and formulate the free fluid problem as a Stokes system. One reason for such simplification is the lack of
the energy dissipation principle for the Navier–Stokes–Biot problem with the common interface conditions,
which hinders the analysis in this case. This issue is well known already for the Navier–Stokes–Darcy (the
Navier–Stokes–Biot problem with a rigid structure), where a local well-posedness of the system is currently
known only under a smallness assumption (even in 2D) and the proof uses involved arguments that work in
the absence of a priori energy bound [4, 20]. In the context of the Navier–Stokes/Darcy coupling the issue
was addressed in [10, 11], where interface conditions were modified to ensure the thermodynamic consis-
tency of the complete system. In the present report, we follow [10, 11] and employ the suggested correction
to the stress balance in the Navier–Stokes–Biot to end up with a dissipative system and a stable numerical
method. A common simplification we avoid is the assumption that deformations of poroelastic structure are
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Fig. 1: Reference and physical domains and boundaries.

small enough not to affect the free fluid flow. This assumption is plausible in certain cases and allows to ex-
tend numerical analysis well-known for fluid equations in a fixed given domain to the (Navier–)Stokes/Biot
coupled system (see, e.g., [34]). However, in other situations, e.g., in poroelastic models of living cells [32]
or blood clots [33], the deformations can be large enough and dynamic. Therefore, in this work we account
for time dependent deformations in the definition of flow domain and accommodate finite elastic strains by
using the SVK elasticity model.

We consider an arbitrary Lagrangian–Eulerian (ALE) formulation of the Navier–Stokes–Biot system and
further introduce a monolithic finite element method. Our finite element method features the formulation
of all equations in the reference coordinates encoding all information on geometry deformation in solution-
dependent coefficients. This formulation allows a simple application of the method of lines for the time dis-
cretization. Such monolithic approach was proved to be efficient for fluid–structure interaction (FSI) prob-
lems with an impermeable elastic structure [23, 29, 30], and we extend it here to the case of poroelasticity.
In the spirit of monolithic formulations, we apply here the same finite elements to approximate fluid veloc-
ity and pressure in both domains. We choose the Taylor–Hood element (P2-P1) for this purpose, which is a
valid Darcy element for applications where the local mass conservation is not critical [24]. We use the same
P2 element for the structure velocity. To enforce the continuity of fluid flux through the interface, we use the
penalty approach (the Nitsche approach as in [1] would be an alternative).

The remainder of the paper is organized in four sections. We formulate the governing equations, inter-
face and boundary conditions in Section 1. The same section presents the integral formulation, the energy
balance of the system, and an ALE formulation that we use for the discretization. The finite element method
is introduced in Section 2 and its numerical stability is proved in Section 3. Section 4 presents the results of
several numerical experiments.

1 FPSI model
Let us consider a time-dependent domain Ω(t) ⊂ ℝ3 containing fluid and an elastic porous structure. A
subdomain Ωf (t) is entirely occupied by fluid and a subdomain Ωs(t) is occupied by porous elastic solid
fully saturated with fluid. These subdomains are non-overlapping and Ω(t) = Ωf (t) ∪ Ωs(t). Two regions are
separated by the interface Γ fs(t) := ∂Ωf (t) ∩ ∂Ωs(t).

In the present paper, the equations governing the fluid and solid motion will be written in the reference
domains

Ωf = Ωf (0), Ωs = Ωs(0), Γfs = Γ fs(0).

The deformation of the poroelastic part is given by the mapping

ξ s : Ωs × [0, T]→ ⋃
t∈[0,T]

Ωs(t)

with the corresponding displacement us, us(x, t) := ξ s(x, t) − x and the velocity of the elastic structure vs =
∂tus = ∂tξ s(x, t).
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The fluid dynamics is described by the velocity vector field vf (x, t) and the pressure function p(x, t) de-
fined in the whole volume Ω(t) for all t ∈ [0, T]. Following [5, 25] we represent vf in the poroelastic domain
through the velocity of structure and the filtration flux q = φ(vf − vs), where φ is the known porosity coef-
ficient. We denote the fluid pressure in the poroelastic domain by pd, to emphasize its impact on the Darcy
filtration, and in the fluid domain by pf .

Denote by ρs and ρf thedensities of solid andfluid. Then ρp = ρs(1−φ)+ρfφ is thedensity of the saturated
porous medium. Denote by σs, σf the Cauchy stress tensors in porous medium and fluid, respectively. The
poroelastic stress tensor is given by σp = σs − αpI, where α > 0 is Biot’s coefficient (typically α ≃ 1, so further
we set α = 1). The porous medium is also characterized by its permeability tensor K. The Biot system in the
porous domain and the Navier–Stokes equations in the fluid domain follow from the momenta balance and
mass conservation principles:

{{{{{
{{{{{
{

ρp
.vs + ρf

.q = div σp

ρf
.vs +

ρf
φ
.q = −(K−1q + ∇pd)

−s0
.pd = div (vs + q)

in Ωs(t)

{
ρf
.vf = div σf

div vf = 0
in Ωf (t)

(1.1)

where 1/s0 is Biot modulus ormixture compressibility modulus, and
.
f is thematerial derivative of quantity f .

We divide the boundary of Ω(t) into the external boundary of the poroelastic structure Γs0(t) := ∂Ω(t) ∩
∂Ωs(t), fluid Dirichlet and outflow boundaries: ∂Ω(t) ∩ ∂Ωf (t) = Γ f0(t) ∪ Γout(t) (see Fig. 1). The governing
equations are complemented with boundary conditions

vf = g on Γ f0(t), σfn = 0 on Γout(t), σpn = 0 on Γs0(t), pd = 0 on Γs0(t) (1.2)

and suitable initial conditions. Instead of pd = 0we may consider condition on the Darcy flux q ⋅ n on entire
Γs0(t) or its part.

We now discuss coupling conditions on the interface between the fluid and poroelastic domains. Denote
by n the normal vector on Γ fs(t) pointing from the fluid to the poroelastic structure. The balance of normal
stresses on Γ fs(t) is commonly written in terms of the interface conditions: σfn = σpn and nTσfn = −pd. This
coupling, however, is not known to provide an energy consistent (dissipative) system. For the pure Navier–
Stokes/Darcy coupling a remedywas suggested in [10, 12] where the second conditionwas changed to include
a contribution of the fluid kinetic energy. In this paper, we use the same modification in the poroelasticity
context and two interface conditions read:

σfn = σpn, nTσfn = −pd +
ρf
2
|vf |2 on Γ fs(t). (1.3)

Suchmodification of the stress balance is similar tomodifications of outflow boundary conditions and 1D–3D
models coupling conditions in computational fluid dynamics (see, e.g., [6, 7]). The continuity of the normal
flux on the fluid-structure interface gives

vf ⋅ n = (vs + q) ⋅ n on Γ fs(t). (1.4)

Finally, the Beavers–Joseph–Saffman condition sets the tangential component of the normal stress propor-
tional to the fluid ‘slip’ rate along the interface:

Pσfn = −γPK−1/2(vf − vs) on Γ fs(t) (1.5)

where P is the orthogonal projector on the tangential plane to Γ fs(t).

1.1 Integral formulation

In the preparation for the finite element method, we write out an integral formulation of the FPSI problem
(1.1)–(1.5). We take the inner product of the elasticity equation in (1.1) with a sufficiently smoothψs, integrate
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it over Ωs(t) and integrate the stress term by parts. This adds up with the first Darcy equation multiplied by a
sufficiently smooth ψd and integrated over Ωs(t) to give

∫
Ωs(t)

(ρp
.vs+ ρf

.q) ⋅ ψs + (ρf
.vs +

ρf
φ
.q + K−1q) ⋅ ψd dx + ∫

Ωs(t)

σp : ∇ψs dx

− ∫
Ωs(t)

pddivψd dx + ∫
Γ fs(t)

(σpn) ⋅ ψs ds − ∫
Γ fs(t)

pd(ψd ⋅ n)ds = 0. (1.6)

Further, the fluid momentum equation in (1.1) is multiplied by a smooth vector function ψf . Integrating over
Ωf (t) and integrating the stress term by parts we obtain

∫
Ωf (t)

ρf
.vf ⋅ ψf dx + ∫

Ωf (t)

σf : ∇ψf dx − ∫
Γ fs(t)

ψT
f σfnds = 0. (1.7)

We add up boundary terms in (1.6) and (1.7) and use interface conditions (1.3)–(1.5) to reorganize them

∫
Γ fs(t)

(σpn)⋅ψs ds − ∫
Γ fs(t)

pd(ψd ⋅ n)ds − ∫
Γ fs(t)

ψT
f σfnds

use (1.3)
= ∫

Γ fs(t)

(σfn) ⋅ (ψs − ψf )ds − ∫
Γ fs(t)

pd(ψd ⋅ n)ds

split σn
= ∫

Γ fs(t)

(nTσfn)(ψs − ψf ) ⋅ nds + ∫
Γ fs(t)

(Pσfn) ⋅ P(ψs − ψf )ds − ∫
Γ fs(t)

pd(ψd ⋅ n)ds

use (1.3),(1.5)
= ∫

Γ fs(t)

pd(ψf − ψs − ψd) ⋅ nds + γ ∫
Γ fs(t)

K−1/2P(vf − vs) ⋅ (ψf − ψs)ds + ∫
Γ fs(t)

ρf
2
|vf |2(ψs − ψf ) ⋅ nds.

Summing up (1.6) and (1.7) and using the calculations above we arrive at the integral equality satisfied by
sufficiently smooth FPSI solution vs, q, vf , pd, pf :

∫
Ωs(t)

[(ρp
.vs + ρf

.q) ⋅ ψs + (ρf
.vs +

ρf
φ
.q + K−1q) ⋅ ψd] dx + ∫

Ωs(t)

σp : ∇ψs dx

− ∫
Ωs(t)

pddivψd dx + ∫
Ωf (t)

ρf
.vf ⋅ ψf dx + ∫

Ωf (t)

σf : ∇ψf dx + ∫
Γ fs(t)

ρf
2
|vf |2(ψs − ψf ) ⋅ nds

+ ∫
Γ fs(t)

pd(ψf − ψs − ψd) ⋅ nds + γ ∫
Γ fs(t)

K−1/2P(vf − vs) ⋅ (ψf − ψs)ds = 0 (1.8)

for all sufficiently smooth ψs, ψd, and ψf such that ψf = 0 on Γ f0. Equality (1.8) is supplemented by the
integral identities that follow from the two continuity equations in (1.1):

∫
Ωs(t)

(s0
.pd + div (vs + q))qd dx = 0, ∫

Ωf (t)

qfdiv vf = 0 (1.9)

for all qd ∈ L2(Ωs(t)), qf ∈ L2(Ωf (t)).
To obtain the energy balance identity, we assume that Γ f0 and Γout are steady and g = 0 on Γ f0.We further

let ψs = vs, ψd = q, ψf = vf and use σp = σs − pI, continuity conditions and (1.4) to arrive at the equality:

∫
Ωs(t)

[(ρp
.vs + ρf

.q) ⋅ vs + (ρf
.vs +

ρf
φ
.q) ⋅ q + K−1|q|2] dx + ∫

Ωs(t)

σs : ∇ψs dx + ∫
Ωs(t)

s0
.pdpd dx

+ ∫
Ωf (t)

ρf
.vf ⋅ vf dx + ∫

Ωf (t)

σf : ∇vf dx − ∫
Γ fs(t)

ρf
2
|vf |2q ⋅ nds + γ ∫

Γ fs(t)

K−1/2|P(vf − vs)|2 ds = 0. (1.10)
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Using σf = µfDvf −pf I,Dvf := (∇vf +(∇vf )T)/2, div vf = 0, and rearranging the first two terms by substituting
ρp = ρs(1 − φ) + ρfφ, we can rewrite the above equality as

∫
Ωs(t)

[(1 − φ)ρs
.vs ⋅ vs + φρf (

.vs +
.q
φ) ⋅ (vs +

q
φ)] dx + ∫

Ωs(t)

K−1|q|2 dx + ∫
Ωs(t)

σs : ∇ψs dx + ∫
Ωs(t)

s0
.pdpd dx

+ ∫
Ωf (t)

ρf
.vf ⋅ vf dx + µf ∫

Ωf (t)

|Dvf |2 dx − ∫
Γ fs(t)

ρf
2
|vf |2q ⋅ nds + γ ∫

Γ fs(t)

K−1/2|P(vf − vs)|2 ds = 0. (1.11)

The integrals with material derivatives can be readily converted to the variations of kinetic energy by appli-
cation of the Reynolds transport theorem and recalling that all parts of ∂Ωf (t) are steady except Γ fs(t), which
normal velocity is vs ⋅ n:

d
dt

1
2 ∫
Ωf (t)

ρf |vf |2 dx = ∫
Ωf (t)

ρf
∂vf
∂t ⋅ vf ds +

1
2 ∫
Γ fs(t)

ρf |vf |2vs ⋅ nds

= ∫
Ωf (t)

ρf
∂vf
∂t ⋅ vf ds +

1
2 ∫
Γ fs(t)

ρf |vf |2vf ⋅ nds −
1
2 ∫
Γ fs(t)

ρf |vf |2q ⋅ nds

= ∫
Ωf (t)

ρf
∂vf
∂t ⋅ vf ds +

1
2 ∫
Ωf (t)

ρfdiv (|vf |2vf )ds −
1
2 ∫
Γ fs(t)

ρf |vf |2q ⋅ nds

use div vf=0= ∫
Ωf (t)

ρf
∂vf
∂t ⋅ vf ds + ∫

Ωf (t)

ρf ((vf ⋅ ∇)vf ) ⋅ vf ds −
1
2 ∫
Γ fs(t)

ρf |vf |2q ⋅ nds

= ∫
Ωf (t)

ρf
.vf ⋅ vf ds −

1
2 ∫
Γ fs(t)

ρf |vf |2q ⋅ nds.

We handle the Ωs(t)-integrals containing material derivatives in (1.11) by the same argument assuming that
the elastic structure is incompressible, i.e., div vs = 0, and recalling that the material derivative in the struc-
ture is written in the Eulerian terms as ∂/∂t + vs ⋅ ∇. Therefore, (1.11) yields
d
dt

1
2 ∫
Ωs(t)

[(1 − φ)ρs|vs|2 + φρf |vf |2]dx + ∫
Ωs(t)

K−1|q|2 dx + ∫
Ωs(t)

σs : ∇vs dx

+
d
dt

1
2 ∫
Ωs(t)

s0|pd|2 dx +
d
dt

1
2 ∫
Ωf (t)

ρf |vf |2 dx + µf ∫
Ωf (t)

|Dvf |2 dx + γ ∫
Γ fs(t)

K−1/2|P(vf − vs)|2 ds = 0 (1.12)

where we used vf = vs + q/φ in Ωs(t) for the brevity. For hyperelastic materials, the work of the elastic
stresses representedby∫Ωs(t) σs : ∇vs dx, equals the timevariationof the strain energy. Therefore, (1.12) shows
that the system dissipates the total energy composed of kinetic (the first and the fifth integrals in (1.12)) and
free (the third and the fourth integrals in (1.12)) energies. Without the correction in the stress balance on the
interface, the sign indefinite term −12ρf ∫Γ fs(t) |vf |

2(q ⋅ n)ds appears in the energy equality, and the system is
not necessarily dissipative.

1.2 ALE formulation

In this paper, we adopt the Arbitrary Lagrangian–Eulerian formulation by extending ξ s to an auxiliary map-
ping in the fluid domain

ξ f : Ωf × [0, T]→ ⋃
t∈[0,T]

Ωf (t)

such that ξ s = ξ f on Γfs, i.e., ξ is globally continuous. In general, ξ f does not follow material trajectories.
Instead, it is defined by a continuous extension of the displacement field to the flow reference domain

uf := Ext(us) = ξ f (x, t) − x in Ωf × [0, T]; u = {
us in Ωs

uf in Ωf .
(1.13)
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The corresponding globally defined deformation gradient is F = I + ∇u, and J := det(F) is its determinant.
From now on, for notation simplicity, we will use the same notation for variables defined in the reference
configuration as vf (x, t) := vf (ξ f (x, t), t) and pf (x, t) := pf (ξ f (x, t), t). We use the notation σs ∘ ξ s(x) :=
σs(ξ s(x)).

The governing equations driving the motion of fluid and structure written in the reference domains read
as

{{{{{{{
{{{{{{{
{

ρp
∂vs
∂t + ρf

∂q
∂t = J

−1div (J(σp ∘ ξ s)F−T) in Ωs

ρf
∂vs
∂t +

ρf
φ
∂q
∂t = −K

−1q − F−T∇p in Ωs

ρf
∂vf
∂t = J

−1div (J(σf ∘ ξ f )F−T) − ρf∇vf (F−1 (vf −
∂u
∂t )) in Ωf

(1.14)

and the mass conservation reads as

{
{
{

−s0
∂pd
∂t = F

−1 : ∇(vs + q) in Ωs

F−1 : ∇vf = 0 in Ωf

(1.15)

where for (1.15) we used div (JF−1v) = J∇v : F−T thanks to the Piola identity. The deformation of the structure
can be found by integrating the kinematic equation

∂us
∂t = vs in Ωs . (1.16)

The boundary and interface conditions are the same in the ALE formulation. The normal n (and projector
P = I−nnT) to the interface and outflowboundary in the physical domain can be computed from the reference
normal n̂, i.e., n = F−T n̂/|F−T n̂|. Further, we will use the identities J dx̂ = dx, J|F−T n̂|dŝ = ds, where ds and
dŝ are elementary areas orthogonal to n and n̂ in the physical and reference coordinates, respectively. We
collect all conditions in one place here:

vf = g on Γf0, σfn = 0 on Γout, σpn = 0 on Γs0, pd = 0 on Γs0 (1.17)

for the outer boundaries and

σfn = σpn, nTσfn = −pd +
ρf
2
|vf |2 on Γfs (1.18)

vf ⋅ n = (vs + q) ⋅ n on Γfs (1.19)

Pσfn = −γPK−1/2(vf − vs) on Γfs (1.20)

for the interface.
The constitutive relation for the Newtonian fluid in the reference domain reads

σf = −pf I + µf (∇vF−1 + F−T(∇v)T) in Ωf . (1.21)

For the structure we consider the compressible geometrically nonlinear SVK material with

σs = J−1FSFT , S = λstr(E)I + 2µsE (1.22)

where E = 1
2 (F

TF − I) is the Lagrange–Green strain tensor and λs , µs are the Lame constants.
Thus, the FPSI problem in the reference coordinates consists in findingpressure distributions pd, pf , fluid

and structure velocity fields vf , vs, fluid flux in the porous medium q and the displacement field u satisfying
the set of equations, interface and boundary conditions (1.14)–(1.20), together with (1.21), (1.22), and subject
to a given extension rule (1.13).
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2 Discretization
We now proceed with discretization of the FPSI problem formulated in the reference domain. Treating the
problem in the reference domain allows us to avoid time-dependent triangulations and finite element func-
tion spaces and apply the standard method of lines to decouple space and time discretizations. We adopt a
finite element method in space and define a consistent triangulation of the reference domain Ω(0) as a col-
lection Th of shape-regular tetrahedra such that the triangulation respects the interface Γfs. This implies that
Ta
h := {T ∈ Th : T ⊂ Ωa}, a ∈ {f, s}, are consistent triangulations of the fluid and poroelastic reference

domains Ωa, a ∈ {f, s}. We consider the finite element Taylor–Hood spaces which are popular for simulation
of incompressible fluid flow:

𝕍ah = {v ∈ C(Ωa) : v|T ∈ P2(T)3 ∀ T ∈ Ta
h }, a ∈ {f, s}

ℚah = {q ∈ C(Ωa) : q|T ∈ P1(T) ∀ T ∈ Ta
h }, a ∈ {f, s}.

For trial functions we need also the following subspaces:

𝕍f,0h = {v ∈ 𝕍
f
h : v|Γf,0 = 0}

ℚs,0h = {q ∈ ℚ
s
h : q|Γs,0 = 0}.

Note that the Taylor–Hood element is not a standard Darcy element for H(div)- formulations of the problem.
In particular, it fails to provide elementwise mass conservation. However, for applications where the local
mass conservation is not a major concern, it is a legitimate choice leading to the first order convergence in
the Darcy region in product L2-velocity–H1-pressure norm [24], which is optimal for this pair of norms.

For the time discretization, we assume a constant time step ∆t and use the notation f k(x) ≈ f(k∆t, x) for
all time-dependent quantities.

To make the discretization energy-consistent, we note that the mass conservation law yields Jt +
div (JF−1(vf − ut)) = 0 in Ωf . With the help of this identity and √J(√J)t = 1

2 Jt, the last equation in (1.14)
can be re-written as follows:

√Jρf
∂(√Jvf )

∂t = div (J(σf ∘ ξ f )F
−T) − ρf J∇vf (F−1 (vf −

∂u
∂t )) −

ρf
2
div (JF−1 (vf −

∂u
∂t )) vf . (2.1)

The reformulation is similar to the one suggested in [21] to build an energy conserving scheme for the Eulerian
form of the incompressible Navier–Stokes equations with variable density. In physical domain (i.e., u = 0,
F = I) the last two terms reduce to ρf ((vf ⋅ ∇)vf + 1

2 (div vf )vf ), which is well known to ensure energy conser-
vation on the discrete level for weakly divergence free solutions (see, e.g., [13]). We will use (2.1) to formulate
a finite element method below.

We proceed tomulti-linear forms needed for our finite element formulation. For time derivatives, we need
the form:

mk(ws ,wd ,wf , r; ψs ,ψd ,ψf , q) := ∫
Ωs

Jk−1(ρpws + ρfwd)ψs dx + ∫
Ωs

(ρfws +
ρf
φ wd)ψd dx

+ ∫
Ωs

s0r q dx + ∫
Ωf

ρf√Jk−1wfψf dx.

In the porous structure we define
akd(wd ,ψs) = ∫

Ωs

K−1wd ⋅ ψd dx.

To handle SVK material, we define

aks (ws ,ψs) = ∫
Ωs

Fk−1S(ws , uk−1) : ∇ψs dx
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where Fk−1 := F(uk−1), S(u1, u2) := λstr(E(u1, u2))I + 2µsE(u1, u2), E(u1, u2) := 1
2 {F(u1)

TF(u2) − I}s. Here
and further {A}s = 1

2 (A + A
T) denotes the symmetric part of tensor A ∈ ℝ3×3.

For the fluid domain we need the form for the viscous terms:

akf (wf ,ψf ) = ∫
Ωf

2µf Jk−1Duk−1 (wf ) : Duk−1 (ψf )dx

where Du(v) := {(∇v)F−1(u)}s, and the form for the inertia terms as they appear in (2.1):

ckf (wf ;φf ,ψf ) = ∫
Ωf

ρf Jk−1 (∇wfF−1k−1φf ) ⋅ ψf dx + ∫
Ωf

ρf
2
div (Jk−1F−1k−1φf )wf ⋅ ψf dx.

For handling the mass conservation constraints, we introduce

bkf (q,ψ) = ∫
Ωf

qF−Tk−1 : ∇ψ dx, bks (q,ψ) = ∫
Ωs

qF−Tk−1 : ∇ψ dx.

Next, we collect interface terms as they appear in the integral formulation (1.8):

dk(ws ,wd ,wf , pd; ψs ,ψd ,ψf ) = γ ∫
Γfs

Jk−1s K−1/2 (P(wf −ws)) ⋅ (P(ψf − ψs)) ds

+ ∫
Γfs

Jk−1s pd(ψf − ψs − ψd) ⋅ nds + ∫
Γfs

Jk−1s
ρf
2
|wf |2(ψs − ψf ) ⋅ nds

with n = F−Tk−1n̂/|F
−T
k−1n̂|, P = I − nn

T , and Jk−1s := Jk−1|F−Tk−1n̂|. We introduce the penalty term to enforce the
continuity of normal flux condition (1.19):

sk(ws ,wd ,wf ; ψs ,ψd ,ψf , qd) = τ ∫
Γfs

Jk−1s ((wf −ws −wd)Tn) ((ψf − ψs − ψd)
Tn) ds

− 𝜘 ∫
Γfs

Jk−1s qd(wf −ws −wd) ⋅ nds, 𝜘 ∈ {0, 1}.

Parameter τ is a penalty parameter. Letting τ ≫ 1 forces the finite element solution to satisfy (approximately)
the normal velocity continuity condition. Since Γfs is fitted by the mesh, taking τ arbitrary large does not
cause locking. For 𝜘 = 1 the last term is consistent (since it vanishes if ws represents velocities of the true
solution) and it skew-symmetrizes the pressure-dependent interface term. One can see that the scheme is
energy consistent for both 𝜘 = 0 and 𝜘 = 1. We note that for unfitted interfaces the Nitsche method for the
weak enforcement of the essential interface conditions may bemore attractive [22]. The Nitsche method adds
extra interface terms but in general allows relatively small τ, e.g., τ = O(h−1).

Denote by [∂f /∂t]k := (f k−f k−1)/∆t the backward difference time. The finite elementmethod reads: Given
uk−1, vk−1f , vk−1s , qk−1, pk−1d find vkf ∈ 𝕍

f
h, v

k
s ∈ 𝕍

s
h, q

k ∈ 𝕍sh, p
k
f ∈ ℚ

f
h, p

k
d ∈ ℚ

s,0
h such that vkf = gh(⋅, (k)∆t) on

Γf0, and it holds:

mk([
∂vs
∂t ]

k
,[
∂q
∂t ]

k
, [
∂(√Jk−1vf )

∂t ]
k
, [

∂pd
∂t ]

k
;ψs ,ψd ,ψf , qd)

+ aks (uks ,ψs) + ad(q
k ,ψs) + a

k
f (v

k
f ,ψf ) + c

k
f (v

k
f , v

k
f − [

∂u
∂t ]

k
,ψf)

+ dk(vks , qk , vkf ;ψs ,ψd ,ψf ) + s
k(vks , qk , vkf ;ψs ,ψd ,ψf , qd)

− bks (pd ,ψs + ψd) − b
k
f (pf ,ψf ) + b

k
s (qd , vks + qk) + bkf (qf , v

k
f ) = 0 (2.2)

for allψf ∈ 𝕍
f,0
h ,ψs ∈ 𝕍

s
h,ψd ∈ 𝕍

s
h, qf ∈ ℚ

f
h, qd ∈ ℚ

s,0
h . In addition,we relate the finite element displacement

and the velocity field in the porous structure through the kinematic equation

[
∂u
∂t ]

k
= vks in Ωs . (2.3)
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Equations (2.2)–(2.3) subject to the initial conditions and an equation for continuous extension of uk from
Ωs onto Ωf define the discrete problem. In our implementation, the continuous extension of u in (1.13) is
provided by the elasticity equation written for the velocity of the displacement [27]:

− div [
[
J(λmtr(∇ [

∂u
∂t ]

k
F−1) I + µm (∇ [

∂u
∂t ]

k
F−1 + (∇ [

∂u
∂t ]

k
F−1)

T

))F−T]
]
= 0 in Ωf (2.4)

satisfying the boundary condition [∂u/∂t]k = vk on the interface Γfs. The space dependent elasticity param-
eters are µm = µs|∆e|−1.2, λm = 16µm, where |∆e| denotes the physical volume of a mesh tetrahedron ∆e
subjected to displacement from the previous time step [27].

3 Numerical stability
In this section, we are interested in a stability estimate for the solution to (2.2)–(2.3). Similarly to the analysis
of the dissipation property of the continuous problem, for the stability analysis we have to assume that the
elastic porous material is incompressible. The Lagrangian mapping of Ωs and the mass conservation yield
(ρsJ)t = 0 and thus the assumption ρs = const implies Jk = 1 in Ωs for all k. We consider the homogeneous
boundary conditions on Γf0, i.e., g = 0 in (1.17). Another important assumption is that the extension of defor-
mation field from Ωs to Ωf defined in (2.4) does not degenerate or change the space orientation and so Jk > 0
in Ωf for all k = 1, 2, . . . . For the sake of notation let ‖f‖2Ωk

f
:= ∫Ωf

Jk−1f 2 dx and ‖f‖2Ωa
:= ∫Ωa

f 2 dx, a ∈ {f, s}.
We further prove numerical stability of the method, which is explicit in all terms resulting from the ge-

ometry evolution. We allow 𝜘 ∈ {0, 1}.
We setψf = vkf ,ψs = vks ,ψd = qk, qd = pkd in (2.2). For the first bilinear form we use ρp = ρs(1−φ)+ ρfφ

to re-organize

mk ([
∂vs
∂t ]

k
, [∂q∂t ]

k
, [

∂(√Jk−1vf )
∂t ]

k

, [∂pd∂t ]
k
; vks , qk , vkf , pd)

= ∫
Ωs

((1 − φ)ρs [
∂vs
∂t ]

k
⋅ vks + φρf [

∂(vs + φ−1q)
∂t ]

k
⋅ (vks + φ−1qk) + s0 [

∂pd
∂t ]

k
pkd) dx

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=I1

+ ∫
Ωf

ρf [
∂(√Jk−1vf )

∂t ]
k
√Jk−1vkf dx. (3.1)

The polarization identity, (b − a)b = 1
2 (b

2 − a2 + (b − a)2) gives for I1-term:

I1 =
(1 − φ)ρs

2∆t (‖v
k
s‖

2
Ωs
− ‖vk−1s ‖

2
Ωs
) +

s0
2∆t (‖p

k
d‖

2
Ωs
− ‖pk−1d ‖

2
Ωs
)

+
φρf
2∆t (‖v

k
s + φ−1qk‖2Ωs

− ‖vk−1s + φ−1qk−1‖2Ωs
)

+
|∆t|
2 (
(1 − φ)ρs


[
∂vs
∂t ]

k

2

Ωs

+ φρf

[
∂(vs + φ−1q)

∂t ]
k

2

Ωs

+ s0

[
∂pd
∂t ]

k

2

Ωs

) .

For the last term in (3.1) we get

∫
Ωf

ρf [
∂(√Jk−1vf )

∂t ]
k
√Jk−1vkf dx =

ρf
2∆t (

√Jk−1vkf



2

Ωf

−

√Jk−2vk−1f



2

Ωf

) +
|∆t| ρf
2


[
∂(√Jk−1vf )

∂t ]
k

2

Ωf

. (3.2)
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The cf -form term vanishes due to the skew-symmetry of the form. For the treatment of elastic term we note
the identities:

2 (E(uk−1, uk) − E(uk−2, uk−1)) = {FTk−1Fk}s − {F
T
k−2Fk−1}s = {F

T
k−1Fk}s − {F

T
k−1Fk−2}s

= {FTk−1(Fk − Fk−2)}s = {F
T
k−1(∇u

k − ∇uk−2)}s . (3.3)

Hence due to the symmetry of S it holds

Fk−1S(uk , uk−1) : (∇uk − ∇uk−2) = S(uk , uk−1) : {FTk−1(∇u
k − ∇uk−2)}s

= 2S(uk , uk−1) : (E(uk−1, uk) − E(uk−2, uk−1)). (3.4)

The discrete elastic energy is defined by

Ek := ∫
Ωs

λs
2 [

tr(E(uk−1, uk))]2 + µs
E(u

k−1, uk)
2
F dx.

Thanks to (3.3) and (3.4) we obtain for the elasticity term in (2.2):

aks (uks , vks ) = ∫
Ωs

Fk−1S(uk , uk−1) : ∇vks dx = ∫
Ωs

Fk−1S(uk , uk−1) : ∇ [
∂u
∂t ]

k
dx

=
1
∆t ∫

Ωs

S(uk , uk−1) : (E(uk−1, uk) − E(uk−2, uk−1))dx

=
1
∆t (Ek − Ek−1) + ∆t ∫

Ωs

λs
2


[
∂tr(E(ũ, u))

∂t ]
k

2

+ µs

[
∂E(ũ, u)

∂t ]
k

2

F
dx (3.5)

where ũk = uk−1.
Kinetic energy of elastic structure, Darcy fluid, and free stream fluid are defined as

Ks
k =
(1 − φ)ρs

2
‖vks‖2Ωs

, Kd
k =

φρf
2
‖vks + φ−1qk‖2Ωs

, K
f
k =

ρf
2
‖vkf ‖

2
Ωk
f
.

With this notation, the energy balance of the discrete method reads:

1
∆t ([K

s
k +K

d
k +K

f
k + Ek] − [K

s
k−1 +K

d
k−1 +K

f
k−1 + Ek−1]) +

s0
2∆t (‖p

k
d‖

2
Ωs
− ‖pk−1d ‖

2
Ωs
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
variation of kinetic and free energy

+ 2µf ‖Duk−1 (vkf )‖2Ωk
f
+ ‖K−1/2qk‖2Ωs

+ γ ∫
Γfs

K−1/2 P(v
k
f − v

k
s )

2 ds

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
model dissipation

+ τ ∫
Γfs

(v
k
f − q

k − vks ) ⋅ n

2 ds

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
penalty for violating (1.19)

+(1 − 𝜘) ∫
Γfs

pkd(v
k
f − q

k − vks ) ⋅ nds
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

sign indefinite term

+Dk = 0 (3.6)

where O(∆t) numerical dissipation terms are

Dk :=
∆t
2 (
(1 − φ)ρs


[
∂vs
∂t ]

k

2

Ωs

+ φρf

[
∂(vs + φ−1q)

∂t ]
k

2

Ωs

+ s0

[
∂pd
∂t ]

k

2

Ωs

+ρf


[
∂(√Jk−1vf )

∂t ]
k

2

Ωf

+ λs

[
∂tr(E(ũ, u))

∂t ]
k

2

Ωs

+ 2µs

[
∂E(ũ, u)

∂t ]
k

2

Ωs

) .

For 𝜘 = 1 the discrete energy balance again mimics a continuous problem balance up to the penalty andDk
terms. These terms are positive, so the numerical scheme is dissipative.



A. Lozovskiy, M. A. Olshanskii, and Yu. V. Vassilevski, Navier–Stokes/Biot coupled problem | 169

One can show that for sufficiently large penalty parameter τ, this first order in time scheme is dissipative
also for 𝜘 = 0 (no skew-symmetrization is added to the penalty in the definition of the sk form). For this
purpose, we also assume that the mesh near Γfs is quasi-uniform with characteristic mesh size h. To handle
the extra interface term, we apply the Cauchy–Schwarz inequality:

τ ∫
Γfs

(v
k
f − q

k − vks ) ⋅ n

2 ds + ∫

Γfs

pkd(v
k
f − q

k − vks ) ⋅ nds ⩾
τ
2 ∫
Γfs

(v
k
f − q

k − vks ) ⋅ n

2 ds − 1

2τ ∫
Γfs

|pkd|
2 ds (3.7)

and further estimate it using the FE trace inequality:

1
2τ ∫

Γfs

|pkd|
2 ds ⩽ 1

2τ ∫
Γfs

|pkd|
2 ds ⩽ C

hτ ‖p
k
d‖

2
Ωs
⩽

C
hτ (‖p

0
d‖

2
Ωs
+ T

k
∑
j=1

∆t

[
∂pd
∂t ]

j

2

Ωs

)

⩽
C
hτ (‖p

0
d‖

2
Ωs
+ 2T

k
∑
j=1

s−10 Dj) .

Summing up for k = 1, . . . , K, with K∆t ⩽ T we have

K
∑
k=1

1
2τ ∫

Γfs

|pkd|
2 ds ⩽ CT

h∆t τ (‖p
0
d‖

2
Ωs
+ 2T

K
∑
j=1

s−10 Dj) . (3.8)

We now scale (3.6) with ∆t and sum up for k = 1, . . . , K. Omitting some positive terms on the left-hand side,
and applying (3.7)–(3.8) to estimate the sign-indefinite term for 𝜘 = 0, we get the energy stability estimate for
the finite element solution:

Ks
K +K

d
K +K

f
K + EK +

s0
2
‖pKd ‖

2
Ωs
+

K
∑
k=1

∆t{2µf ‖Duk−1 (vkf )‖2Ωk
f
+ ‖K−1/2qk‖2Ωs

+ γ ∫
Γfs

K−1/2 P(v
k
f − v

k
s )

2 ds}

⩽ Ks
0 +K

d
0 +K

f
0 + E0 +

s0
2
‖p0d‖

2
Ωs
+ (1 − 𝜘)C ‖p0d‖

2
Ωs

(3.9)

where for 𝜘 = 0 we choose the penalty parameter τ sufficiently large to satisfy

τ ⩾ CT2

h∆ts0
.

Here C is a positive constant thatmaydependon the shape regularity of themesh, but not on thediscretization
parameters.

4 Numerical experiments
In this sectionwe assess the performance of the proposedmonolithic FPSI FEmethod. As the test problemwe
consider the propagation of a pressure impulse in a compliant tube with a porous wall filled with fluid. The
problem setting follows the benchmark suggested in [17] for flow in a tube with an impermeable hyperelastic
wall. The original problem is related to the blood flow through an artery. It has been extensively considered in
the literature for validating theperformanceof FSI solvers [15, 16, 18, 19, 26, 31]. Since the test is an idealization
of a practical setup, no experimental data is available and the test serves to validate mesh convergence and
study physical plausibility of the computed solution.

The problem configuration consists of incompressible viscous flow through a poroelastic tubewith circu-
lar cross-section. The tube is 50mm long, it has inner radius 5mm and the wall thickness is 1mm. The fluid
density is 10−3g/mm3 and kinematic viscosity is 3mm2/s. The wall density ρs is 1.2 ⋅ 10−3g/mm3. In (1.22),
the SVK hyperelastic model is used with elastic modulus E = 3 ⋅ 105g/(mm ⋅ s2) and Poisson’s ratio ν = 0.3.
Initially, the fluid is at rest and the tube is non-deformed. The tube is fixed at both ends.
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(a) t = 0.004 s (b) t = 0.006 s

(c) t = 0.008 s (d) t = 0.01 s

Fig. 2: Pressure wave: middle cross-section velocity field, pressure distribution, velocity vectors and 10 times enlarged struc-
ture displacement for several time instances.

For the porous media parameters, we used porosity φ = 0.3 [14], mass storativity s0 = 5 ⋅ 10−5mm ⋅ s2/g
and two cases of the scalar permeability coefficient: K = 10−12mm2 = 10−18m2 and K = 10−5mm2 =
10−11m2. The smaller value mimics permeability estimated in rat’s cardiovascular system [14], while the
larger value is taken artificially large.

On the left open boundary of the tube, the external pressure pext is set to1.333⋅103Pa for t ∈ (0, 3⋅10−3) s
and zero afterwards, while on the right open boundary the external pressure pext is zero throughout the ex-
periment. This generates a pressure impulse that travels along the tube. The external pressure is incorporated
into (2.2)–(2.3) through the open boundary condition σfF−Tn = pextn.

We use the Taylor–Hood P2-P1 elements for velocity and pressure variables and P2 elements for displace-
ments, with the first order semi-implicit Euler discretization. The scheme (2.2)–(2.3) is implemented on the
basis of the open source package Ani3D [28]. The important feature of equation (2.2) is linearization on each
time step due to extrapolation of all geometric factors and the advection velocity from the previous time steps.
The resulting linear system is solved by the multifrontal sparse direct solver MUMPS [3].

The consistent mesh used for the numerical experiment has 13200 and 7200 tetrahedra for the fluid and
solid subdomains, respectively, yielding 355976 degrees of freedom. We set ∆t = 10−4s, γ = µf , τ = 103 ⋅ h−1,
where h is the local mesh size.

Figure 2 depicts the computed fluid velocity field in the middle cross-section for large permeability case.
No visible difference was spotted for small permeability case so we do not show it here. The wall displace-
ment is exaggerated by a factor of 10 in the figure for clarity. The redder the color of the arrow is, the larger
magnitude the velocity vector has.

Figure 3 shows the time variations of the radial and axial components of the displacement of the inner
tube wall at half the length of the pipe, while Figure 4 shows the wall profile due to deformation at time
instances 0.0018, 0.0036, 0.0054s. Both figures suggest that the smaller permeability case in this FPSI sim-
ulation scenario resembles the pure FSI case, which is an intuitively feasible result.

Figures 5 and 6 demonstrate the porous pressure and filtration velocity distributions for the same time
instances as used in Fig. 2. According to the filtration velocity in Fig. 5, the fluid for the large permeability
case tries to escape the tube wall in the exterior direction before the traveling inflection region while entering
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(a) axial component (b) radial component

Fig. 3: The axial and radial components of displacement of the inner tube wall at half the length of the pipe. Solutions are
shown for two cases of permeability and the pure FSI case (see the text).

(a) t = 0.0018 s (b) t = 0.0036 s

(c) t = 0.0054 s

Fig. 4:Wall profile on the inner side along the tube length for several time instances.
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(a) t = 0.004 s (b) t = 0.006 s

(c) t = 0.008 s (d) t = 0.01 s

Fig. 5: Porous pressure pd and filtration velocity q distribution in the solid for K = 10−5mm2: middle cross-section view, with 10
times enlarged structure displacement for several time instances.

(a) t = 0.004s (b) t = 0.006s

(c) t = 0.008s (d) t = 0.01s

Fig. 6: Porous pressure pd and filtration velocity q distribution in the solid for K = 10−12mm2: middle cross-section view, with
10 times enlarged structure displacement for several time instances.

back into the wall past that region. For the small permeability, as seen on the legend of Fig. 6, the filtration
velocity is predictably small.

Funding: The research of the first authorwas supported by theRussian Science Foundation grant 19-71-10094.
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