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Abstract: This work presents a new approach to modelling of free surface non-Newtonian (viscoplastic or
viscoelastic) fluid flows on dynamically adapted octree grids. The numerical model is based on the implicit
formulation and the staggered location of governing variables.We verify ourmodel by comparing simulations
with experimental and numerical results known from the literature.
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Free surface flows of viscoplastic and viscoelastic fluids are common in nature and have a wide range of
applications in engineering. Viscoelasticity plays a big role in polymer processing such as extrudate swelling
[13, 22] and melt fracture [9, 14] phenomena seen in extrusion. Viscoplastic fluid flows span lava flows, snow
avalanches, debris flows, flows of molten metal, fresh concrete, pastes and other concentrated suspensions
in engineering applications. Although the rheology of such materials may be quite complicated, viscoplastic
models based on the strain rate-stress tensor relationship canpredict dynamics of suchfluidswith reasonable
accuracy [8, 11].

This work considers the Herschel–Bulkley viscoplastic and Oldroyd-B viscoelastic fluid models. Each
model is regarded as the popular option for simulations of plastic and elastic effects. In particular, Oldroyd-B
fluid model is extensively used for benchmarking of numerical models [1, 2, 15, 24].

Our first numerical model of free surface viscoplastic fluid flow verified on experimental data, was sug-
gested in [16]. The time discretizationwas based on the projection scheme for theNavier–Stokes equation and
the spatial discretization exploited a hybrid finite volume / finite difference method on adaptive octree hex-
ahedral grids [17, 20]. The discretization in space included high order interpolation with a limiting strategy
for semi-Lagrangian transport of the free surface (for details we refer to [18, 23]).

The novelty of the present work is the extension of the existing incompressible viscous fluid flow solver
to the viscoelastic case and handling its fluid dynamics step implicitly which provides robust simulations for
both viscoelastic and viscoplastic fluids flows.

The article is organized as follows. In Section 1 we consider the governing equations for free surface non-
Newtonian fluid flows in terms of Herschel–Bulkley and Oldroyd-B models. In Section 2 we introduce the
numerical method for the approximate solution of the presented equations including the time integration
and the spatial discretization details. We briefly sketch the discretization techniques of the existing method
and focus on the discretization of new elastic terms. In Section 3 we verify the method on numerical and
experimental data presented in the literature.
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1 Governing equations

1.1 General setting

We consider flow of free surface incompressible fluid in a bounded time-dependent domain Ω(t) ∈ ℝ3, t ∈
(0, T]. The boundary ∂Ω(t) is assumed to be split into a static part ΓD representing walls and a free surface
Γ(t).

The momentum and mass conservation equations for incompressible flows are:

ρ (∂u∂t
+ (u ⋅ ∇)u) = −∇p + ∇ ⋅ τ + ρg

∇ ⋅ u = 0
in Ω(t) (1.1)

where u = (u, v, w)T is the velocity vector, p is the scalar pressure, ρ is the constant fluid density, g is the
gravity acceleration vector, and τ is the deviatoric part of the stress tensor.

At the initial time t = 0 the domain and velocity field are known:

Ω(0) = Ω0, u|t=0 = u0. (1.2)

On the static boundary we assume that the velocity field satisfies the Dirichlet boundary condition

u = uD on ΓD (1.3)

where uD is given. On the free surface Γ(t) we impose the kinematic condition

vΓ = u|Γ ⋅ nΓ (1.4)

where nΓ is the outer normal vector for Γ(t) and vΓ is the normal velocity of the free surface Γ(t). The surface
tension and the normal fluid stresses are balanced on the free surface Γ(t):

− pnΓ + τnΓ = ζ𝜘nΓ − pextnΓ on Γ(t) (1.5)

where 𝜘 is the sum of the principal curvatures, ζ is the surface tension coefficient, pext is the exterior pressure
which we assume to be zero, pext = 0.

In order to track the free surface position,weuse the implicit definition of Γ(t) via the zero level isosurface
of a globally defined level set function φ(t, x) [21]:

φ(t, x)
{{{
{{{
{

< 0, x ∈ Ω(t)
> 0, x ∈ ℝ3 \ Ω(t)
= 0, x ∈ Γ(t)

∀t ∈ [0, T].

The initial condition (1.2) determines φ0 = φ(0, x). At any time t > 0, the level set function φ satisfies the
transport equation:

∂φ
∂t
+ ũ ⋅ ∇φ = 0 in ℝ3 × (0, T] (1.6)

where ũ is the fluid velocity field extended outside Ω(t). It is common to require the signed distance property
of φ in terms of the Eikonal equation:

|∇φ| = 1. (1.7)

Apart of the boundary position, the level set function φ provides the outer normal nΓ = ∇φ/|∇φ| and the
curvature of the free surface 𝜘 = ∇ ⋅ nΓ .

The fluid rheology is governed by the constitutive law for the deviatoric part of the stress tensor τ. We
describe viscoplastic and viscoelastic fluid models in terms of dependence of τ on the strain rate tensor D =
1
2 [∇u + (∇u)

T ].
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1.2 Viscoplastic fluid

We address viscoplastic fluids described by the Herschel–Bulkley constitutive law:

τ = (K|D|n−1 + τs|D|−1)D ↔ |τ| > τs (1.8)

D = 0 ↔ |τ| ⩽ τs (1.9)

where |D| = (2∑1⩽i,j⩽3 D2
ij)

1/2 is the shear rate, K is the consistency parameter, τs is the yield stress, n is
the flow index (for n < 1 the fluid exhibits shear-thinning property, for n > 1 it is shear-thickening; n = 1
corresponds to the Bingham plastic). The yield stress τs controls the transition between flow region (1.8) and
plug region (1.9).

Since the stress tensor is not determined in the plug region, we regularize the plasticity term by the
Bercovier–Engelman method [3] and replace |D|−1 by |D|−1ε = (|D|2 + ε2)

−1/2 with a small ε > 0 in (1.8),
(1.9).

The regularization allows us to pose equations in the entire fluid domain:

ρ (∂u∂t
+ (u ⋅ ∇)u) = −∇p + ∇ ⋅ (µεD) + ρg

∇ ⋅ u = 0
in Ω(t) (1.10)

with the shear-dependent effective viscosity

µε = K|D|n−1ε + τs|D|−1ε . (1.11)

1.3 Viscoelastic fluid

We consider viscoelastic fluids described by the Oldroyd-B model:

τ + λ1

τ = 2µ0(D + λ2


D) (1.12)

where λ1 is the relaxation time, λ2 ⩽ λ1 is the retardation time, µ0 is the total viscosity of the fluid. The

upper-convected derivative

C for a tensor C given by


C = ∂C

∂t
+ (u ⋅ ∇)C − (∇u)TC − C(∇u) (1.13)

represents transport, rotation, and dilation of the tensor.
We introduce the retardation parameter β = λ2/λ1, define the Newtonian viscosity µS = βµ0 and split the

stress tensor into elastic and viscous parts [24]:

τ = τP + 2µSD (1.14)

where τP is the elastic stress tensor. The coefficient β ⩽ 1measures the ratio between the Newtonian and the
total viscosity of the fluid. When β = 1, the model describes the Newtonian flow.

Substitution of (1.14) into (1.12) allows us to eliminate

D and derive the equation for the elastic stress

tensor τP:
τP + λ1


τP = 2(1 − β)µ0D. (1.15)

Next, we introduce the conformation tensor A represented by a symmetric positive-definite 3 × 3matrix.
The conformation tensor is the internal variable describing the macromolecular configuration of polymer
chains and defining the elastic stress tensor

τP =
µ0
λ1
(1 − β)(A − I). (1.16)
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Combination of (1.13), (1.15), (1.16) yields the following time evolution equation for the conformation ten-
sor:

A + λ1

A = I. (1.17)

Finally, the governing equations for the Oldroyd-B fluid in terms of unknown u, p, A are:

ρ (∂u∂t
+ (u ⋅ ∇)u) − βµ0∆u − µ0λ−11 (1 − β)∇ ⋅ A = −∇p + ρg

A + λ1

A = I
∇ ⋅ u = 0. (1.18)

For the initial conditions we assume that no elastic deformations are present in the fluid and thus

A|t=0 = I. (1.19)

The conformation tensor should satisfy the following boundary conditions. On the static boundary ΓD
we impose the homogeneous Neumann boundary condition ∂A/∂n = 0. On the free surface we impose the
zero traction boundary condition (1.5):

2µSDnΓ + µ0λ−11 (1 − β)(A − I)nΓ + pnΓ = ζ𝜘nΓ . (1.20)

2 Numerical method
The numerical method for the approximate solution of (1.6), (1.10) or (1.6), (1.18) is based on the approach
developed in our previous works for the Newtonian [17, 18, 20] and viscoplastic [16] flows.

We adopt the notation un , pn , φn ,An for approximations to the velocity field, the pressure, the level set
function and the conformation tensor at t = tn, respectively. The initial conditions (1.2) provide u0 and φ0.
The level set function φn implicitly defines an approximation to fluid domain at time t = tn through Ωn =
x ∈ ℝ3 : φn(x) < 0.

Givenun , pn , φn, and optionallyAn, the free surface flow solver performs twomajor substeps at time step
tn+1:
– Find the new level set function φn+1 and the fluid domain Ωn+1;
– Solve (1.1) in Ωn+1 fully implicitly to find un+1, pn+1, and optionally An+1.

These substeps are discussed in the following sections. The computational mesh is assumed to be an octree
grid in a bounding cube admitting refinement and derefinement.

2.1 Free surface update

Given un and φn such that ∇ ⋅ un = 0, |∇φn| = 1, we find φn+1 as follows:
(1) Mesh adaptation. Refine the computational mesh according to the predicted position of the zero level set

φ̃n+1.
(2) Surface advection. Solve (1.6) by a semi-Lagrangian BFECC method with tricubic limited interpolation

[18, 23] to get the new level set φn+1
d . Mesh refinement at the previous step is crucial for large time steps

since the advected fluid boundary may pass through coarse cells which will result in a severe loss of
accuracy.

(3) Volume correction. Update the level set functionφn+1 = φn+1
d +η, where η solves the volume conservation

equation |V(φn+1
d + η) − V(φ

n)| = 0. Set Ωn+1 by φn+1(x) < 0 and Γn+1 by φn+1(x) = 0. For details of an
advanced volume correction scheme we refer to [19].

(4) Remeshing. Locally update the octree mesh by adapting it to Γn+1 via refinement and derefinement of
mesh cells.
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(5) Re-interpolation. Map all discrete variables to the new grid using the simplest interpolation [20].
(6) Re-initialization. Update the level set function φn+1 to satisfy the Eikonal equation (1.7) and perform the

volume correction once again [19].

At the end of the free surface update we have φn+1, Ωn+1 as well as geometric features of Γn+1 such as the
outer normal nn+1Γ and the sum of the principal curvatures 𝜘n+1.

2.2 Implicit scheme for the fluid flow

The linearized semi-discrete system for (1.1) can be written in the general form:

ρ([∂u∂t ]
n+1
+ (ũn+1 ⋅ ∇)un+1) − ∇ ⋅ τ̂n+1 + ∇pn+1 = ρg (2.1)

∇ ⋅ un+1 = 0 (2.2)

with the extrapolated velocity ũn+1 = un + ξ(un − un−1), where ξ = ∆tn/∆tn−1.
In the case of viscoplastic fluid the deviatoric stress is linearized:

τ̂n+1 = 2µε(D̃n+1)Dn+1.

where µε(⋅) is the shear-dependent effective viscosity (1.11), and D̃n+1 is the strain rate tensor for ũn+1.
In the case of viscoelastic fluid the deviatoric stress τ̂n+1 = βµ0Dn+1 + µ0

λ1 (1 − β)(A
n+1 − I) depends on

An+1 satisfying the evolution equation

An+1 + λ1 ([
∂A
∂t ]

n+1
+ (ũn+1 ⋅ ∇)An+1 − (∇un)TAn+1 − An+1(∇un)) = I. (2.3)

The time derivative is discretized by the BDF2 formula at time tn+1:

[
∂u
∂t ]

n+1
=
α1un+1 + α2un + α3un−1

∆tn
, α1 =

2ξ + 1
ξ + 1

, α2 = −
ξ2 + 2ξ + 1

ξ + 1
, α3 =

ξ2

ξ + 1
. (2.4)

The equations (2.1)–(2.2) are discretized in space on staggered octree grids by the hybrid finite vol-
ume/finite difference method [20]. The pressure degrees of freedom are assigned to centers of cells, the
velocity components are collocated at cell faces in such a way that every face stores the normal velocity
component, and the conformation tensor components are collocated at cell vertices. Since the conformation
tensor is a symmetric 3 × 3matrix, we store its six components per each node.

The finite volume discretization of the inertia and diffusion terms is based on a control volume V  as-
sociated to each cell face F (see [20] for more details). The linearized conservative form of the inertia terms
(ũn+1 ⋅ ∇)un+1 = ∇ ⋅ (un+1ũn+1) is used in the finite volume discretization. For instance, the x-component of
the velocity inertia term is:

∇ ⋅ (un+1ũn+1)(xF) ≈ |V

|−1 ∑

F∈F(V )

|F
|(ũn+1 ⋅ n)(xF )un+1(xF )

where F(V 
) is the set of the control volume faces, xF denotes the barycenter of face F , n denotes the unit

outer normal to the face. The advection fluxes (ũn+1 ⋅ n) un+1 are discretized by the third order upwind dis-
cretization which uses the fan triangulation interpolation for missing values [20].

In the finite volume discretization of the viscous terms we use the face control volume V  as well:

∇ ⋅ (µ∇un+1) (xF) ≈ |V

|−1 ∑

F∈F(V )

|F
|(µ∇hu ⋅ n)(xF )

where µ = µε(D̃n+1) is the precomputed effective viscosity of the viscoplastic fluid, or µ = βµ0 = const is the
Newtonian viscosity of the viscoelastic fluid. The viscous flux µ∇hu ⋅ n is computed by the third order finite
difference discretization [20].
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Fig. 1: Discretization stencil (green) for the first partial derivatives at an octree node xV (red). The missing value at x1,− is inter-
polated from available nodal values (blue).

The finite volume discretization of the incompressibility equation (2.2) on each octree cell V with faces
F(V) is evident:

|V|−1 ∑
F∈F(V)
|F|(n ⋅ un+1)(xF) = 0. (2.5)

Thanks to the staggered location of the velocity components, the fluxes (un+1 ⋅ n)(xF) are easily computed.
Thepressure gradient term in (2.1) is discretizedby thefinite differencemethodbasedon the formal Taylor

expansion (see [18]).
Thediscretizationof the elastic termaswell as the conformation tensor evolution equation are considered

in the next section.

2.3 Handling the conformation tensor

The conformation tensor A contributes to (2.1), (2.3) via the advection term (ũn+1 ⋅ ∇)A, the rotation/dilation
term (∇un)TA − A(∇un), and the vector divergence term

∇ ⋅ A =

[[[[[[[

[

∂Axx
∂x
+
∂Axy

∂y
+
∂Axz
∂z

∂Axy

∂x
+
∂Ayy

∂y
+
∂Ayz

∂z
∂Axz
∂x
+
∂Ayz

∂y
+
∂Azz
∂z

]]]]]]]

]

. (2.6)

The x-, y-, and z-components of the latter should be discretized at centers of x-, y-, and z-orthogonal faces of
each octree cell, respectively. To this end, we first discretize the partial derivatives at the nodes of the octree
mesh, and then average the discretizations to the face centers. The partial derivatives at the octree nodes
are approximated by the second order finite difference. If the stencil misses a collocated value, the latter is
interpolated from neighboring nodal values. For example, in notations of Fig. 1, we have

∂Axy

∂x
(xV ) ≈

r
(h + r)h

Axy(x1,+) +
h − r
hr

Axy(xV ) −
h
(h + r)r

Axy(x1,−) (2.7)

where h = |x1,+ − xV |, r = |x1,− − xV |.
The advection term (ũn+1 ⋅ ∇)A is discretized at centers of x-, y-, z-orthogonal faces of each octree cell in

the similar way.
The rotation/dilation termM may be rewritten via the strain rate tensor D and the vorticity tensorW =

1
2 (∇u − ∇u

T):
M = (∇u)TA + A(∇u) =WA − AW + (AD + DA)
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which motivates its name. The six independent components of the symmetric rotation/dilation tensorM are

[[[[[[[[[

[

Mxx
Myy
Mzz
Mxy
Mxz
Myz

]]]]]]]]]

]

=

[[[[[[[[[

[

2uxAxx + (uy + vx)Axy + (uz + wx)Axz
(uy + vx)Axy + 2vyAyy + (vz + wy)Ayz
(wx + uz)Axz + (wy + vz)Ayz + 2wzAzz
(ux + vy)Axy + vx(Axx + Ayy) + vzAxz + wxAyz
(ux + wz)Axz + wx(Axx + Azz) + vxAyz + wyAxy
(vy + wz)Ayz + wy(Ayy + Azz) + uyAxz + wxAxy

]]]]]]]]]

]

. (2.8)

The partial derivatives ux , vy , wz are approximated at an octree node xV by the least-squares fitting of
respective central finite differences at neighboring octree cells centers uhx (xci ), vhy (xci ), wh

z (xci ). Any other ve-
locity component partial derivative (e.g. uy) is discretized at an octree node xV as the directional derivative of
a linear 2D function defined in the plane orthogonal to the considered component (e.g. yz-plane). The func-
tion is fitted by the least squares to values at the closest points (cell centers or cell faces centers) surrounding
xV . The latter values for the velocity component are either known (at cell faces centers) or are interpolated
from two known values (at cell centers).

3 Verification and validation of the numerical models
In this section we validate the presented framework for free surface viscoplastic and viscoelastic fluid flow
modelling. The first benchmark addresses impact of a viscoelastic Oldroyd-B drop on a solid floor [24, 25]. The
next benchmark is focused on oscillating droplets of Bingham [6, 16] and Oldroyd-B fluids. The last bench-
mark concerns break of a dam on an inclined surface and filled with viscoplastic Herschel–Bulkley fluid [7].

3.1 Drop impacting

To verify our viscoelastic model, we simulate falling of a spherical drop of Oldroyd-B fluid on a floor [24, 25].
The test setup is shown in Fig. 2: an initially spherical drop of diameter d0 falls from height H to a rigid

surface. At the beginning of the simulation, the drop starts to fall in the gravity field with the initial velocity
w = −U directed towards the floor. We neglect the surface tension forces and the stress tensor τ is initially set
to zero. After the droplet hits the surface, it is supposed to flow radially increasing its diameter d(t) until the
elastic forces come into play, reversing the velocities and causing the droplet to contract back.

First, we compare the behaviour of the Newtonian fluid in our simulation with numerical simulations
obtained by other researchers. The viscosity, density as well as other parameters of the problem are listed
in Table 1. Simulations terminate at the dimensionless time t(U/d0) = 5. Two dynamically adapted octree
meshes are used in the simulations:M1meshhas hmin = d0/32, hmax = d0/16, andM2meshhas hmin = d0/64
and hmax = d0/32. The computed dimensionless droplet diameter d(t)/d0 is presented in Fig. 3(left). Our
numerical solutions demonstrate mesh convergence and are in good agreement with the results presented
in [10, 26].

Second, we compare the computed behaviour of the Oldroyd-B fluid with published results. The retar-
dation parameter β = 0.1, the total viscosity is equal to the Newtonian one µ0 = 4Pa ⋅ s. Therefore, the
solvent and polymer viscosities are µS = βµ0 = 0.4Pa ⋅ s and µP = (1 − β)µ0 = 3.6Pa ⋅ s, respectively.
The dimensionless diameter d(t)/d0 (see right plot in Fig. 3) is in a good agreement with the reference results
[10, 25, 26].

Tab. 1: Parameters used in the impacting drop problem.

d0 [m] H [m] U [m s−1] λ1 [s] µ0 [Pa⋅s] ρ [kgm−3] g [m s−2]

0.02 0.04 1.0 0.02 4.0 1000.0 9.81
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Fig. 2: Setup for the drop impacting problem.
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Fig. 3: Drop diameter over time for viscous fluid (left); viscoelastic fluid with β = 0.1 (right).

3.2 Oscillating droplet

Oscillations of a free (g = 0) droplet of the viscoplastic or viscoelastic fluid are driven by the surface tension
forces and inertia as well as elastic forces for the viscoelastic case.

At the beginning of the simulation the fluid is at rest and the shape of the droplet is a perturbation of a
sphere. In spherical coordinates (r, ϑ, φ) the initial shape is given by

r = r0 (1 + ε̃S2 (
π
2
− ϑ))

where S2 is the second spherical harmonic. The mean surface curvature is not constant, and unbalanced
surface tension forces cause droplet oscillations. The presence of fluid viscosity results in the exponential
decay of the oscillations due to dissipation.

The computational domain is the cube (0, l)3, l = 10/3. The perturbed sphere is placed in the center of
the cube. In all experiments we set r0 = 1, the density ρ = 1, the surface tension coefficient ζ = 1. The octree
grid is dynamically refined from themaximummesh size hmax = l/16 to amesh size hmin in the vicinity of the
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Fig. 4: The viscoplastic droplet top tip z-coordinate (left) and the droplet kinetic energy (right) for the Bingham fluid with yield
stress values τs = {0, 0.02, 0.03, 0.05}.

droplet free surface. The time step is ∆t = C√ ρ
2πζ h

3/2
min, although our implicit method does not impose severe

restrictions on the time step.
First, we study the oscillations of the viscoplastic droplet [6, 16]. In the Newtonian regime the oscilla-

tion period and the damping factor are of common interest, whereas in the viscoplastic regime one may be
interested in the cessation time Tf when the system reaches the arrested state.

We restrict our attention to the yield-stress (Bingham) fluid, which corresponds to the Herschel–Bulkley
fluid with the flow index n = 1, and study the impact of the yield stress values τs to the cessation time Tf .

We set the perturbation amplitude ε̃ = 0.3, the consistency parameter K = 0.01 and the minimummesh
size hmin = l/64.

The computed droplet top tip z-coordinate for different τs is shown in Fig. 4(left). The kinetic energy of
the droplet is presented in Fig. 4(right). The increase of the yield stress values τs causes the decrease of the
cessation time Tf .

Second, we study the small-amplitude axisymmetric shape oscillations of the viscoelastic drops [4, 5, 12].
For the Newtonian fluid, the normal-mode analysis predicts the monotonic decrease of the oscillation fre-
quencywith the increase of the fluid viscosity. For theOldroyd-B viscoelastic fluidwith the total viscosity µ0 =
µS +µP (µP and µS denote polymer and solvent viscosities) this is not always the case: for some combinations
of dimensionless parameters, Ohnesorge number Oh = µ0/√ζρr0 and Deborah number De = √8ζ/(ρr30) λ1,
the dependence of the oscillation frequency on the total viscosity may become non-monotonic [12]. In par-
ticular, according to [5], for Oh = 0.037 the frequency increases in the range from De = 0 to De = 1, and
decreases from De = 1 till a critical total viscosity value, for which the damping factor causes the initially
perturbed surface to return to the spherical form smoothly.

To reproduce this phenomenon, we introduce the dimensionless frequency Freqless = √ρr30/ζ ω and

the dimensionless damping rate Dampingless = √ρr30/ζ d, where d is obtained by fitting an exponential
function e−dt to maximum values of the droplet top tip z-coordinate over periods, and ω is derived from the
first oscillation period ω = 2π/T1.

Figure 5 shows the droplet top tip z-coordinate for different De numbers and fixed total viscosity µ0 =
0.01 andOhnesorge numberOh = 0.037, whereas Figure 6 compares the computed dimensionless frequency
and damping rate with published analogues (see [5]). The perturbation amplitude for this experiment is ε̃ =
0.1. Our numerical model is able to catch the non-monotonic frequency behaviour of the Oldroyd-B fluid, the
computed Freqless and Dampingless are close to the estimates of the linear asymptotic analysis and the
reference values from [5].
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model (green) from [5] versus numerical results in this work (blue).

3.3 Viscoplastic fluid dam break

The last benchmark is based on a physical experiment [7]. A rectangular reservoir is filled with Carbopol
Ultrez 10 gel of 0.40% concentration and placed on an inclined plane. The reservoir is equipped with a gate
which is perpendicular to the inclined plane. Gate opening releases the fluid which starts to move driven by
the gravity force.

Parameters of our simulation correspond to the experimental setting [7]: the reservoir has lengthX = 0.51
m, width Y = 0.3 m, and mean height Z0 = 0.3 m. Herschel–Bulkley model parameters K=75.84Pa ⋅ s−n,
n = 0.579, τs = 109Pa are shown to approximate [7] the rheology of Carbopol Ultrez 10 gel used in the
experiment. The fluid density ρ = 936.8 kg/m3 is chosen to match the known weight 43 kg of fluid filling the
reservoir.

In the physical experiment the gate was raised within 0.8 s. We model the fluid motion assuming that
the gate is raised gradually within this time. Figure 7 (top) presents the comparison of the simulation and the
experimental data for the inclination angle 12∘, and Figure 7 (bottom) shows the computed flow depth for
different time moments.

The simulation demonstrates that initially the fluid attains fast motion and then decelerates around
t = 2.0 s. Further, the fluid front evolves gradually and slowly. Such two-stage behaviour of the numerical
solution corresponds to the experimental observations, however, the numerical front propagation speed at
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Fig. 7: Top: contact line for simulation (upper half) and experiment [7] (lower half), bottom: flow depth of the viscoplastic fluid.

the first stage is smaller, and the numerical front approaches the experimental one only at t = 10 s. The
mismatch may be explained by inappropriate regime of the gate opening within the simulation and rough
approximation of the ground truth rheology by the viscoplastic rheology. Yet the two-stage regime of the flow
is recovered correctly.

4 Conclusion
We presented the implicit scheme for simulation of free surface non-Newtonian fluid flows on dynamically
adapted octree grids. We addressed two popular fluid models, the viscoplastic Herschel–Bulkley and vis-
coelastic Oldroyd-B models. The numerical models were verified by comparing the simulations with experi-
mental and numerical results known from the literature.
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