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Abstract:We show theoretically and numerically that the lowest non-trivial eigenvector function for a specific
eigenproblem has almost constant values in high conductivity channels, which are different in separate chan-
nels. Therefore, based on these distinct values, all separate connected clusters of open pores can be identified
in digital cores.
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Modelling rock properties based on digital core images plays an increasingly important role in the characteri-
zation of source rocks in oil and gas exploration. The accuracy of three-dimensional digital core reconstruction
is extremely important for determining those properties. Usual resolutions of 3D X-Ray Micro-CT (XMCT) core
images may amount to thousands of voxels in each direction resulting in billions of voxels in a single image.
Direct numerical simulations of fluid flow through digitized core image using such voxsets represent real com-
putational challenge even on advanced HPC systems.

Analysis of many digital core images reveals that not all open pores are connected. Extracting connected
parts and modelling flows in each part separately may dramatically decrease the complexity of numerical sim-
ulation. Moreover, modelling separate connected parts simultaneously in parallel environment may further
decrease the computational time.

A similar problem arises inmultiscale finite elementmethod [1] where there is a need to extract local highly
permeable subvolumes.

Extraction of the connected subsets of voxels may seem analogous to the computation of connectivity paths
in seismic volumes (see [8] and the references therein), but it has one obvious distinction. While the extraction
of connectivity paths in seismic volumes is aimed to find the curves or surfaces along which the magnitude of
some property (e.g., the amplitude of the impedance relative changes) is maximal, a search for the connected
subsets of open pores in the core imagemay lead to sizeable 3D volumes. Thus, the algorithms for searching the
subsets of lower dimension are not very useful for extraction volumetric subsets of voxels.

Another way to find the connected subsets of voxels can be based on the algorithms for solving connected
component problem for undirected graph [4]. Computational cost for solving such problem for a graph with n
nodes and m edges is proportional to O(m · α(m, n)), where α(m, n) is the functional inverse of Ackermann’s
function, which grows very rapidly with increasing m and n. Even though there is a parallel analogue of that
algorithm [9] it has scaling limitations due to relatively high communication overhead.

A very different way to extract connected parts of voxels from very large voxsets is based on the idea ex-
pressed in [2] for construction ofmultiscale basis functions in the domainswith high contrast regions. Following
this approach, we considered the eigenvalue problem −div (K∇u) = λKu with very high value of the coefficient
K in the open voxels and very low value in the voxels filled with rock. Our expectation based on [3] was that
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solving that eigenvalue problem with uniform Neumann boundary conditions for the eigenspace correspond-
ing to the lowest non-trivial eigenvalue should give us the conductivity channels. The multiplicity of the lowest
eigenvalue should be equal to the number of separate conductive channels.

In this short note, we provide our observation revealing a different result. In our experiments the multi-
plicity of theminimal non-trivial eigenvalue is one, the corresponding eigenvector function has almost constant
values in high conductivity channels, which are different in separate channels. In other words, separate con-
nected parts can be identified by separate values of eigenvector function corresponding to theminimal nonzero
eigenvalue.

1 Numerical framework

We consider the eigenvalue problem in a parallelepiped Ω ⊂ R3 [3]:

− div (K∇u) = λKu (1.1)

with homogeneous Neumann boundary conditions. It is well known [7] that problem (1.1) has semipositive
discrete spectrum with minimal eigenvalue equal to 0 with the constant eigenfunction.

We will seek for the eigenspace corresponding to the minimal non-trivial eigenvalue by minimizing the
corresponding Rayleigh quotient ∫︀

Ω K |∇φ|2∫︀
Ω K |φ|2

−→ min
(φ,1)=0

. (1.2)

Let Th be a conformal rectangular partition of the domain Ω, with nx , ny , nz elements in each direction,
Th =

⋃︀
ci,j,k , i = 1, . . . , nx , j = 1, . . . , ny , k = 1, . . . , nz . Without loss of generality we can assume that mesh

sizes in all three directions are constant and equal to h, and coefficient K is piecewise constant in Ω and Kijk is
constant in each cell of the mesh.

Using the finite volume approximation for (1.1) on the rectangular grid results in the following eigenvalue
problem of size N = nx × ny × nz:

Ax = λBx (1.3)

with a symmetric semi-positive definite seven-diagonal matrix A and a diagonal matrix B.
The diagonal entries of matrix B have values

Bijk = h3Kijk .

The entries of matrix A have the following values

Aijk;ijk = h
(︀
Tijk,i−1jk + Tijk,i+1jk + Tijk,ij−1k + Tijk,ij+1k + Tijk,ijk−1 + Tijk,ijk+1

)︀
Aijk;i−1jk = −hTijk,i−1jk , Aijk;i+1jk = −hTijk,i+1jk , Aijk;ij−1k = −hTijk,ij−1k
Aijk;ij+1k = −hTijk,ij+1k , Aijk;ijk−1 = −hTijk,ijk−1 , Aijk;ijk+1 = −hTijk,ijk+1

where
Tijk,αβγ =

2 Kijk Kαβγ
Kijk + Kαβγ

for internal elements ci,j,k , i = 2, . . . , nx − 1, j = 2, . . . , ny − 1, k = 2, . . . , nz − 1, with obvious modification for
boundary elements. For example, for cells with indices i = 1, j = 2, . . . , ny − 1, k = 2, . . . , nz − 1, we have

Aijk;ijk = h
(︀
Tijk,i+1jk + Tijk,ij−1k + Tijk,ij+1k + Tijk,ijk−1 + Tijk,ijk+1

)︀
.

2 Analysis of the lowest non-trivial eigenvector

In what follows, we assume that the domain has several, say nc , separate (non-connected) subsets of mesh cells
corresponding to open voxels, where we set very high value of constant coefficient Kx . In all other mesh cells,
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i.e., voxels filled with rock, we set very small value of constant coefficient, Kn , such that

r = Kn /Kx ≪ 1. (2.1)

For simplicity of presentation we consider the case with nz = 1 although all derivations and conclusions are
valid for full 3D formulation.

Obviously, since we consider the Neumann problem (1.1), the lowest eigenvalue is 0, has multiplicity 1, and
the corresponding eigenvector is constant. All the other eigenvalues will have corresponding eigenvectors or-
thogonal to the constant vector. For this reason we are to investigate the eigenvalue system (1.3) in the subspace
orthogonal to a constant.

Let us introduce several notations. We denote the separate sets of cells corresponding to open voxels as Cs ,
s = 1, . . . , nc , and the rest of the cells as a set C0. Also, we denote the sets of faces between the cells corresponding
to open voxels as Bs , s = 1, . . . , nc , the sets of faces between the cells corresponding to open voxels and rock
voxels as Bgs , s = 1, . . . , nc , and the rest of internal faces as B0. By a face f belonging to any of B* we understand
a pair of duplets (ij, αβ) denoting two adjacent cells sharing that face.

Now, let us consider the minimization of discretized Rayleigh quotient in the subspace orthogonal to the
constant

(Au, u)
(Bu, u)

→ min
(u,1)=0

. (2.2)

Using introduced notation for cell sets we can rewrite the denominator in (2.2) as

(Bu, u) = h3
nc∑︁
s=1

∑︁
(i,j)∈Cs

Kxu2i,j + h
3 ∑︁
(i,j)∈C0

Knu2i,j . (2.3)

The nominator in turn can be rewritten as

(Au, u) = h
nc∑︁
s=1

∑︁
(ij,αβ)∈Bs

Tij,αβ(uij − uαβ)2 + h
nc∑︁
s=1

∑︁
(ij,αβ)∈Bgs

Tij,αβ(uij − uαβ)2 + h
∑︁

(ij,αβ)∈B0

Tij,αβ(uij − uαβ)2 . (2.4)

Since for all faces from Bs , s = 1, . . . , nc , we have

Tij,αβ =
2 Kij Kαβ
Kij + Kαβ

= Kx

for all faces from Bgs

Tij,αβ =
2 Kij Kαβ
Kij + Kαβ

= 2KnKx
Kn + Kx

and for all faces from B0
Tij,αβ =

2 Kij Kαβ
Kij + Kαβ

= Kn

we can rewrite (2.4) as follows

(Au, u) = h
nc∑︁
s=1

∑︁
(ij,αβ)∈Bs

Kx(uij − uαβ)2 + h
nc∑︁
s=1

∑︁
(ij,αβ)∈Bgs

2KnKx
Kn + Kx

(uij − uαβ)2 + h
∑︁

(ij,αβ)∈B0

Kn(uij − uαβ)2 . (2.5)

Using (2.1), (2.3), and (2.5) we can rewrite (2.2) as

hKx

(︃
nc∑︀
s=1

(︃ ∑︀
(ij,αβ)∈Bs

(uij−uαβ)2 +
2r
1 + r

∑︀
(ij,αβ)∈Bgs

(uij−uαβ)2
)︃
+ r

∑︀
(ij,αβ)∈B0

(uij−uαβ)2
)︃

h3Kx

(︃
nc∑︀
s=1

∑︀
(ij)∈Cs

u2ij + r
∑︀

(ij)∈C0
u2ij

)︃ → min
(u,1)=0

.
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Simplifying further we get

nc∑︀
s=1

(︃ ∑︀
(ij,αβ)∈Bs

(uij−uαβ)2 +
2r
1 + r

∑︀
(ij,αβ)∈Bgs

(uij−uαβ)2
)︃
+ r

∑︀
(ij,αβ)∈B0

(uij−uαβ)2

h2
(︃

nc∑︀
s=1

∑︀
(ij)∈Cs

u2ij + r
∑︀

(ij)∈C0
u2ij

)︃ → min
(u,1)=0

. (2.6)

If in the ratio (2.6) we take a limit as r → 0 we get
nc∑︀
s=1

∑︀
(ij,αβ)∈Bs

(uij−uαβ)2

h2
nc∑︀
s=1

∑︀
(ij)∈Cs

u2ij

→ min
(u,1)=0

. (2.7)

The minimum in (2.7) is achieved when in each set Bs the values of uij are the same, i.e., the vector is constant
in each set. Since the global vector u should be orthogonal to 1, those constants can not be the same in each set.
Thus, there is at least one set, say B1, in which the values of the eigenvector uij are constant and different from
the values in the other sets Bs , s = 2, . . . , nc . Our goal is to show that these constants should be different in each
set.

For the case nc = 2 it is obvious. Let us consider the case nc > 2.
Assume for a moment that there are two sets, say B1 and B2, in which these constants coincide and in the

rest of sets Bi , i = 3, . . . , nc , those constant values are different.
Using the inequality

a1 + a2
b1 + b2

6 max
{︂
a1
b1
, a2b2

}︂
where a1 > 0, a2 > 0, b1 > 0, b2 > 0, we estimate from above the left part of (2.6) by

nc∑︀
s=1

(︃ ∑︀
(ij,αβ)∈Bs

(uij−uαβ)2 +
2r
1 + r

∑︀
(ij,αβ)∈Bgs

(uij−uαβ)2
)︃
+ r

∑︀
(ij,αβ)∈B0

(uij−uαβ)2

h2
(︃

nc∑︀
s=1

∑︀
(ij)∈Cs

u2ij + r
∑︀

(ij)∈C0
u2ij

)︃

6 max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nc∑︀
s=1

∑︀
(ij,αβ)∈Bs

(uij−uαβ)2 +
2r
1 + r

nc∑︀
s=3

∑︀
(ij,αβ)∈Bgs

(uij−uαβ)2

h2
nc∑︀
s=1

∑︀
(ij)∈Cs

u2ij

,

∑︀
(ij,αβ)∈B0

(uij−uαβ)2 +
2

1 + r

(︃ ∑︀
(ij,αβ)∈Bg1

(uij−uαβ)2 +
∑︀

(ij,αβ)∈Bg2
(uij−uαβ)2

)︃
h2

∑︀
(ij)∈C0

u2ij

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (2.8)

The first term in the right hand side of (2.8) when we take r → 0 turns into
nc∑︀
s=1

∑︀
(ij,αβ)∈Bs

(uij−uαβ)2

h2
nc∑︀
s=1

∑︀
(ij)∈Cs

u2ij

which vanishes as in all sets Cs , s = 1, . . . , nc , the values uij coincide with uαβ .
The second term in the right hand side of (2.8) is bounded from above by

2

∑︀
(ij,αβ)∈B0

(uij−uαβ)2 +
(︃ ∑︀
(ij,αβ)∈Bg1

(uij−uαβ)2 +
∑︀

(ij,αβ)∈Bg2
(uij−uαβ)2

)︃
h2

∑︀
(ij)∈C0

u2ij
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Fig. 1: The domain with 4 highly conductive beams.

(a) The values of the eigenvector (b) The histogram of the values

Fig. 2: The values of the lowest non-trivial eigenvector in 4 highly conductive beams.

Fig. 3: The domain with 3 highly conductive regions.
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(a) The values of the eigenvector (b) The histogram of the values

Fig. 4: The values of the lowest non-trivial eigenvector in 3 highly conductive regions of different shapes.

Fig. 5: The domain with multiple highly conductive
spherical shapes connected by channels.

for any 0 6 r 6 1. The latter ratio can be considered as the Rayleigh quotient for the problem

−div (2∇v) = λv

on a domain consisting of all cells from the set C0 with Neumann boundary conditions on all the boundary faces
except boundary faces adjacent to the sets of cells B1 and B2. In the latter boundary faces, the Dirichlet boundary
conditions are imposed with the constant values corresponding to the constant values of the eigenvector uij in
B1 and B2, respectively. Note that these constants coincide by the assumption. Now, if we connect any point on
the boundary B1 with any point on the boundary B2 by a smooth curve belonging to the domain C0, then by the
Hopf’s lemma (the maximum principle) the values of function v along that curve should be between the values
on the boundaries B1 and B2 that is the value should be constant. That means that function v should be constant
in all C0 and the second term in (2.8) also should be zero.
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(a) The values of the eigenvector (b) The histogram of the values

Fig. 6: The values of the lowest non-trivial eigenvector in multiple highly conductive spherical shapes.

Thus, we obtained the following. We got the vector u, which is constant in the subdomains C0, B1, and B2,
also in the other subdomains Bi , i = 3, . . . , nc , the values of this vector are constants different than the value in
the former subsets, this vector is orthogonal to 1, and the Rayleigh quotient on it is equal to 0. In other words,
there exists a vector u orthogonal to 1 for which Rayleigh quotient (2.6) becomes zero due to inequality (2.8) as
we tend the ratio Kn /Kx to zero. That means the zero eigenvalue has multiplicity more than 1, and we have to
admit the contradiction. Thus, there may not be any two sets Bi and Bj , which have the same value of constant
for the lowest non-trivial eigenvector.

We have to note that the values of the lowest non-trivial eigenvector become constant in high conductivity
regions as the ratio (2.1) tends to zero, r → 0. For any small nonzero r we may expect that the values of the
lowest non-trivial eigenvector in each separate highly conductive region will be close to a unique constant. This
constant should be separated from the constants characterizing the other highly conductive regions.

This observation gives us a practical way to extract the separate regions of high conductivity in digital core
images analyzing the first non-trivial eigenvector.

3 Numerical experiments

The goal of our experiments is to investigate numerically the behaviour of the lowest non-trivial eigenvector. To
this end, we employ the block preconditioned conjugate gradient method [5] implemented in the framework of
Hypre software [6]. We address the cubic mesh in the unit cube, nx = ny = nz = 100, and different geometries of
conductive regions with K = 1, the rest of the 3D domain is formed by regions with low conductivity K = 10−9.

In the first experiment we consider four highly conductive beams along x-direction as shown in Fig. 1.
The values of the eigenvector corresponding to the first non-trivial eigenvalue in the highly conductive

beams are shown in Fig. 2. The left picture shows the color coded values in the beams of high conductivity
while the right picture shows the histogram for distribution of those values in the beams. The values of the
eigenvector shown in Fig. 2 have distinct values in different beams, which fall into separate bins in histogram.

In the second experiment we consider three highly conductive regions of different shapes, namely a plane
parallel to xy-plane, a 3D cross, and a slanted line shown in Fig. 3.
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The values of the lowest non-trivial eigenvector in the zones of high conductivity are shown in the left pic-
ture of Fig. 4. The right picture of Fig. 4 represents distribution of those values, which proves their clusterization
around three distinct values.

In the third experiment we generate multiple highly conductive spherical shapes connected by sinusoidal
channels, see Fig. 5.

The values of the lowest non-trivial eigenvector in the zones of high conductivity are shown in the left pic-
ture of Fig. 6. The right picture of Fig. 6 represents distribution of those values, which proves their clusterization
around distinct values.

4 Conclusions

The discovered property of the eigenvector corresponding to the lowest non-zero eigenvalue of problem (1.3)
can be used to extract connected parts of open pores in the micro-CT image of a core in the following way. For a
given voxset image one assigns high permeability coefficient to openpores and very lowpermeability coefficient
to pores filled with rock. Then one computes the lowest non-trivial eigenvector of (1.3) and clusterizes values
of that eigenvector corresponding to all open pores. The number of distinct clusters of these values will give
the number of distinct channels of open pores. Each cluster extracts a separated channel from the whole set of
open pores.
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