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Abstract The paper studies an iterative method for algebraic problems arising in
numerical simulation of blood flows. Here we focus on a numerical solver for the
fluid part of otherwise coupled fluid-structure system of equations which models the
hemodynamics in vessels. Application of the finite elementmethod and semi-implicit
time discretization leads to the discrete Oseen problem at every time step of the sim-
ulation. The problem challenges numerical methods by anisotropic geometry, open
boundary conditions, small time steps and transient flow regimes. We review known
theoretical results and study the performance of recently proposed preconditioners
based on two-parameter threshold ILU factorization of non-symmetric saddle point
problems. The preconditioner is applied to the linearized Navier–Stokes equations
discretized by the stabilized Petrov–Galerkin finite element (FE) method. Careful
consideration is given to the dependence of the solver on the stabilization parameters
of the FE method. We model the blood flow in the digitally reconstructed right coro-
nary artery under realistic physiological regimes. The paper discusses what is special
in such flows for the iterative algebraic solvers, and shows how the two-parameter
ILU preconditioner is able to meet these specifics.
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1 Introduction

Numerical simulations play an increasing role in visualization, understanding and
predictive modelling of many biological flows, including blood flow in arteries and
the heart. The efficiency of a numerical approach depends on the right choice of
mathematical model, its discretization and the algebraic solvers used to compute
the solution to a discrete model. For the blood flow simulations, state-of-the-art
methods are built on afluid-structure interaction (FSI)modelwhich typically includes
equations describing the motion of Newtonian viscous fluid, equations for an elastic
structure and coupling conditions [5]. In the process of numerical integration of the
FSI system, however, one often decouples the fluid equations from the elasticity
equations on every time step and hence applies segregated algebraic solvers for
each of the decoupled problem, see, e.g., [12]. Furthermore, for the reason of time-
sensitivity of simulations or the ambiguity of the information regarding the properties
of the structure, hemodynamic simulations are often performed in a fixed geometries,
i.e. the vessels wall is assumed to be rigid rather than elastic. In both cases, one is
interested in an efficient numerical solve for the Navier–Stokes equations describing
the motion of incompressible Newtonian fluids in a bounded domain Ω ⊂ R

3 and
time interval [0, T ]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− νΔu + (u · ∇)u + ∇ p = f in Ω × (0, T ],
divu = 0 in Ω × [0, T ],

u = g on Γ0 × [0, T ],
−ν(∇u) · n + pn = h on ΓN × [0, T ],

u(x, 0) = u0(x) in Ω.

(1)

The unknowns are the velocity vector field u = u(x, t) and the pressure field p =
p(x, t). The volume forces f , boundary and initial values g, h and u0 are given.
Parameter ν is the kinematic viscosity; the boundary of the domain is decomposed
as ∂Ω = Γ 0 ∪ Γ N with Dirichlet part Γ0 �= ∅ and Neumann part ΓN. An important
parameter of the flow is the dimensionless Reynolds number Re = UL/ν, where U
and L are characteristic velocity and linear dimension.

The Navier–Stokes equations (1) are fundamental equations of fluid mechanics
and are central for modelling of many physical phenomena. In hemodynamic appli-
cations, one may point to several special features of otherwise general fluid flow
problem in (1):

(i) Anisotropic geometry. The domainΩ typically represents a blood vessel, which
is a stretched branching object;

(ii) Open boundaries of mixed type. The computational domain has artificial (open)
boundaries, where the vessel is cut. Depending on the stage of cardiac cycle, for-
ward and reverse flows may happen through the same part of the open boundary,
leading to the boundary changing type outflow/inflow;
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(iii) Different flow regimes. Variable blood flux generated over one heartbeat may
produce flows with varying Reynolds numbers from laminar to transitional;

(iv) Finite element method prevails. Due to complex geometry and coupling to elas-
ticity equations, finite element method is the very common choice for discretiza-
tion of (1) in hemodynamic applications. A regularization (in the form of least-
square terms or a sub-grid model) is often added to stabilize the FE method for
higher Reynolds numbers;

(v) Small time steps. The physics of the problem dictates small time steps of order
10−3 × cardiac cycle time for the numerical integration of (1).

Semi-implicit time discretization or an implicit one combined with the lineariza-
tion of the Navier–Stokes system (1) by Picard fixed-point iteration result in a
sequence of Oseen problems of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αu − νΔu + (w · ∇)u + ∇ p = f̂ in Ω,

divu = ĝ in Ω,

u = 0 on Γ0,

−ν(∇u) · n + pn = 0 on ΓN,

(2)

wherew is a known velocity field from a previous iteration or time step and α is pro-
portional to the reciprocal of the time step. Non-homogeneous boundary conditions
in the nonlinear problem are accounted in the right-hand side of (2). A finite element
spatial discretization of (2) produces large sparse systems of the form

(
A B̃T

B −C

) (
u
p

)

=
(
f
g

)

, (3)

where u and p represent the discrete velocity and pressure, respectively; A ∈ R
n×n

is the discretization of the diffusion, convection, and time-dependent terms. The
matrix A accounts also for certain stabilization terms. Matrices B and B̃T ∈ R

n×m

are (negative) discrete divergence and gradient. Thesematricesmay also be perturbed
due to stabilization. It is typical for the stabilized methods that B �= B̃, while for a
plain Galerkin method these two matrices are the same. Matrix C ∈ R

m×m results
from possible pressure stabilization terms, and f and g contain forcing and boundary
terms. For the LBB stable finite elements, no pressure stabilization is required and
so C = 0 holds. If the LBB condition is not satisfied, the stabilization matrix C �= 0
is typically symmetric and positive semidefinite. For B = B̃ of the full rank and
positive definite A = AT the solution to (3) is a saddle point.

Considerable work has been done in developing efficient preconditioners for
Krylov subspace methods applied to system (3) with B̃ = B; see the comprehen-
sive studies in [4, 8, 19] of the preconditioning exploiting the block structure of the
system. Several algebraic solvers were specifically designed or numerically tested
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for solving (3) resulting from hemodynamic applications. This includes incomplete
block LU factorizationsmimicking pressure correction splittingmethods on the alge-
braic level [20], block-triangular preconditioners based on approximation of pressure
advection–diffusion operator [18], additive Schwartz preconditioner [7], relaxed
dimensional factorization block preconditioner [3], see also [7] for the numerical
comparison of several preconditioners for the hemodynamic simulations.

The special features of blood flow problems discussed above impact the algebraic
properties of the discrete system (3), and ideally, an efficient solver accounts for
them. Thus, the inf-sup stability constants of velocity–pressure elements strongly
depend on the anisotropy of domain Ω , see [6]. This may lead to poor performance
of preconditioners based on pressure Schur complement approximations. Reversed
flows through the open boundary is an energy increasing and de-stabilizing phe-
nomenon, potentially resulting in the lost of ellipticity by the A block of (3). Next,
different flow regimes require a robust preconditioner with respect to the variation
of the Reynolds numbers. Finite element method leads, in general, to matrices with
higher fill-in comparing to finite volumes or finite differences schemes. We note that
hierarchical tetrahedral grids are rarely used to reconstruct blood vessels. This reduce
the applicability of geometricmultigridmethods. Furthermore,we shall see that addi-
tional terms added to stabilize finite element method for convection dominated flows
often make algebraic problem harder to solve. Finally, small time steps suggest that
reusable preconditioners and those benefiting from the diagonal dominance in the
A-block should be preferred.

In the paperwe study the properties of an algebraic solver for (3) based on aKrylov
subspace iterative method and a two-parameter ILU preconditioner. The precondi-
tioner results from a special incomplete elementwise LU factorization suggested and
studied in [14] for symmetric positive definite matrices and further extended to non-
symmetric saddle-point systems in [16, 17]. Here we review the available analysis
and discuss how this algebraic solver addresses the challenges posed by hemody-
namics applications. Further we simulate the blood flow in the digitally reconstructed
part of the right coronary artery. Here we experiment with various grids, Reynolds
numbers and finite element method stabilization parameters to assess the numerical
properties for the iterative method.

The remainder of the paper is organized as follows. In Sect. 2 we give necessary
details of the finite element method. Section3 reviews known stability of the exact
LU factorizations for (3). These results are formulated in terms of the properties
of the (1,1)-block A, auxiliary Schur complement matrix BA−1BT + C , and the
perturbation matrix B − B̃. In Sect. 4, we formulate the properties of these matrices
in terms of problem coefficients and parameters of the FE method. In Sect. 5, we
briefly discuss the implication of these results on the stability of a two-parameter
variant of the threshold ILU factorization for non-symmetric non-definite problems.
In Sect. 6 we study the numerical performance of the method on the sequence of
linear systems appearing in simulation of a blood flow in a right coronary artery.
Conclusions are collected in the final Sect. 7.
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2 Finite Element Method

We assume Th to be a collection of tetrahedra forming a consistent subdivision of
Ω . We also assume for Th the shape-regularity condition,

max
τ∈Th

diam(τ )/ρ(τ) ≤ CT , (4)

where ρ(τ) is the diameter of the inscribed ball in the tetrahedron τ . A con-
stant CT measures the maximum anisotropy ratio for Th . Further we denote hτ =
diam(τ ), hmin = minτ∈Th hτ . Given conforming FE spaces Vh ⊂ (H 1

Γ0
(Ω))3 and

Qh ⊂ L2(Ω), the Galerkin FE discretization of (2) is based on the weak formu-
lation: Find {uh, ph} ∈ Vh × Qh such that

L (uh , ph; vh , qh) = (f̂, vh) + (ĝ, qh) ∀ vh ∈ Vh , qh ∈ Qh, (5)

L (u, p; v, q) : = α(u, v) + ν(∇u, ∇v) + ((w · ∇) u, v) − (p, divv) + (q, div u),

where (·, ·) denotes the L2(Ω) inner product.
In experiments we use P2-P1 Taylor–Hood FE pair, which satisfies the LBB

compatibility condition for Vh and Qh [9] and hence ensures well-posedness and
full approximation order for the FE linear problem.

The finite element method (5) needs stabilization or additional subgrid scale mod-
elling if convection terms dominate over the diffusion. We consider one commonly
used SUPG stabilization, while more details on the family of SUPG methods can be
found in, e.g., [21]. Using (5) as the starting point, a weighted residual for the FE
solution multiplied by an ‘advection’-depending test function is added:

L (uh, ph; vh, qh) +
∑

τ∈Th
στ (αuh − νΔuh + w · ∇uh + ∇ ph − f ,w · ∇vh)τ

= ( f , vh) + (ĝ, qh) ∀vh ∈ Vh, qh ∈ Qh, (6)

with ( f, g)τ := ∫

τ
f g dx . The second term in (6) is evaluated element-wise for each

element τ ∈ Th . Parameters στ are element- and problem-dependent. To define the
parameters, we introduce mesh Reynolds numbers Reτ := ‖w‖L∞(τ )hw/ν for all τ ∈
Th , where hw is the diameter of τ in direction w. Several recipes for the particular
choice of the stabilization parameters can be found in the literature, see, e.g., [21].

We set

στ =
{

σ̄ hw
2‖w‖L∞(τ )

(
1 − 1

Reτ

)
, if Reτ > 1,

0, if Reτ ≤ 1,
with 0 ≤ σ̄ < 1. (7)

Obviously, σ̄ = 0means that no stabilization is added. The choice of στ in (7) implies
the following estimate which we need later in Sect. 6:
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στ = σ̄
hw

2‖w‖L∞(τ )

(

1 − 1

Reτ

)

≤ σ̄
hw

2‖w‖L∞(τ )

Reτ = σ̄
h2w
2ν

≤ σ̄
h2τ
2ν

. (8)

If one enumerates velocity unknowns first and pressure unknowns next, then the
resulting discrete system has the 2 × 2-block form (3) with C = 0. The stabilization
alters the (1,2)-block of the matrix making the latter not equal to the transpose of the
(2,1)-block B. From the available analysis and results of numerical experiments we
shall see that the perturbation of A caused by (6) affects the algebraic properties of (3).

3 Some Properties of LU Factorization for (3)

One can think about ILU factorization as a perturbation of exact LU factorization.
Hence, it is instructive to have a first look at stability properties of the latter for
non-symmetric saddle-point matrices as in (3). The results in this section summarize
the analysis in [16, 17], where the reader can find full proofs and further details. The
2 × 2-block matrix from (3) is in general indefinite and if C = 0, its diagonal has
zero entries. An LU factorization of suchmatrices often requires pivoting for stability
reasons. However, exploiting the block structure and the properties of blocks A and
C , one readily verifies that the LU factorization

A =
(
A B̃T

B −C

)

=
(
L11 0
L21 L22

)(
U11 U12

0 −U22

)

(9)

with lower (upper) triangle matrices L11, L22 (U11,U22) exists without pivoting, once
det(A) �= 0 and there exist LU factorizations for the (1,1)-block

A = L11U11

and the Schur complement matrix S̃ := BA−1 B̃T + C is factorized as

S̃ = L22U22.

Decomposition (9) then holds with U12 = L−1
11 B̃

T and L21 = BU−1
11 .

Assume A is positive definite. Then the LU factorization of A exists without
pivoting. Its numerical stability (the relative size of entries in factors L11 andU11)may
depend on how large is the skew-symmetric part of A comparing to the symmetric
part. More precisely, the following bound on the size of elements of L11 and U11

holds (see, e.g., (3.2) in [16]):

‖|L11||U11|‖F

‖A‖ ≤ n
(
1 + C2

A

)
, (10)

where CA := ‖A− 1
2

S ANA
− 1

2
S ‖, AS = 1

2 (A + AT ), AN = A − AS. Here and further,
‖ · ‖ and ‖ · ‖F denote thematrix spectral norm and the Frobenius norm, respectively,
and |M | denotes the matrix of absolute values of M-entries.
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If C is positive semi-definite, B̃ = B, and matrix BT has the full column rank,
then the positive definiteness of A implies that the Schur complement matrix S :=
BA−1BT + C is also positive definite. However, this is not the case for a general
block B̃ �= B. The stabilization terms in the finite element method (6) produce the
(1,2)-block B̃T which is a perturbation of BT . The positive definiteness of S̃ :=
BA−1 B̃T + C and the stability of its LU factorization is guaranteed if the perturbation
E = B̃ − B is not too large [17]. In particular, S̃ is positive definite if the perturbation
matrix E is sufficiently small such that it holds

κ := (1 + CA)εEc
− 1

2
S < 1, (11)

where εE := ‖A− 1
2

S ET ‖, cS := 1
2λmin(S + ST ). Moreover, if S̃ is positive definite,

the factorization S̃ = L22U22 satisfies the stability bound similar to (10).
The following result about stability of LU factorization of (3) holds.

Theorem 1 Assume matrix A is positive definite, C is positive semidefinite, and the

inequality (11) holds with εE = ‖A− 1
2

S (B̃ − B)T ‖, CA = ‖A− 1
2

S ANA
− 1

2
S ‖, and cS =

1
2λmin(S + ST ), then the LU factorization (9) exists without pivoting. The entries of
the block factors satisfy (10) and the following bounds

‖|L22||U22|‖F

‖S̃‖ ≤ m

⎛

⎝1 + (1 + εEc
− 1

2
S )CA

1 − κ

⎞

⎠ ,

‖U12‖F + ‖L21‖F

‖U11‖‖B̃‖F + ‖L11‖‖B‖F
≤ m(1 + CA)

cA

with cA := λmin(AS) and κ from (11).

The above analysis indicates that the LU factorization for (3) exists if the (1,1)
block A is positive definite and the perturbation of the (1,2)-block is sufficiently
small. The stability bounds depend on the constant CA which measures the ratio of
skew-symmetry for A, the ellipticity constant cA, the perturbation measure εE and
the minimal eigenvalue of the symmetric part of the unperturbed Schur complement
matrix S. In Sect. 4, we show estimates of all these values for the finite element Oseen
problem.

4 Properties of Matrices A and ˜S

The dependence of the critical constants cA, CA, εE and cS from Theorem 1 on the
problem and discretization parameters can be given explicitly. The analysis exploits
the SUPG-FE origin of matrix A (matrix C is zero in the inf-sup FE method). Let
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{ϕi }1≤i≤n and {ψ j }1≤ j≤m be bases of Vh and Qh , respectively. From the definition of
matrix A and for arbitrary v ∈ R

n and corresponding vh = ∑n
i=1 viϕi , one gets the

following identity:

〈Av, v〉 = α‖vh‖2 + ν‖∇vh‖2 +
∑

τ∈Th
στ‖w · ∇vh‖2τ + 1

2

∫

ΓN

(w · n)|vh |2 ds

− 1

2

∑

τ∈Th
((divw)vh, vh)τ +

∑

τ∈Th
στ (αvh − νΔvh,w · ∇vh)τ ,

(12)

where n is the outward normal on ΓN. For a detailed discussion of the role each term
from (12) plays in determining properties of matrix A, we refer to [16, 17]. Here
we dwell on the last term in (12) due to the SUPG stabilization. The ν-dependent
part of it vanishes for P1 finite element velocities, but not for most of inf-sup stable
pressure–velocity pairs. Both analysis and numerical experiments below show that
this term may significantly affect the properties of the matrix A, leading to unsta-
ble behavior of incomplete LU factorization unless the stabilization parameters are
chosen sufficiently small.

The estimates for ellipticity and stability constants for A and S̃ are summarized
in Theorem 2. In order to formulate the theorem, we recall several well-known
estimates. First, recall the Sobolev trace inequality

∫

ΓN

|v|2 ds ≤ C0‖∇v‖2 ∀ v ∈ H 1(Ω), v = 0 on ∂Ω \ ΓN. (13)

For any tetrahedron τ ∈ Th and arbitrary vh ∈ Vh , the following FE trace and inverse
inequalities hold

∫

∂τ

v2h ds ≤ Ctrh
−1
τ ‖vh‖2τ , ‖∇vh‖τ ≤ Cinh

−1
τ ‖vh‖τ , ‖Δvh‖τ ≤ C̄inh

−1
τ ‖∇vh‖τ ,

(14)
where the constants Ctr , Cin, C̄in depend only on the polynomial degree k and the
shape regularity constant CT from (4). In addition, denote by Cf the constant from
the Friedrichs inequality:

‖vh‖ ≤ Cf‖∇vh‖ ∀vh ∈ Vh, (15)

and let Cw := ‖(w · n)−‖L∞(ΓN). We introduce the velocity mass and stiffness matri-
ces M and K : Mi j = (ϕi , ϕ j ), Ki j = (∇ϕi ,∇ϕ j ) and the pressure mass matrix Mp:
(Mp)i j = (ψi , ψ j ).

Theorem 2 Assume that w ∈ L∞(Ω), problem and discretization parameters sat-
isfy
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CwCtrh
−1
min ≤ α

4
or CwC0 ≤ ν

4
,

‖divw‖L∞(Ω) ≤ 1

4
max{α, νC−1

f },

στ ≤ h2τ
2νC̄2

in

(

1 + αh2τ
νC2

in

)

and στ ≤ hτ

4‖w‖L∞(τ )Cin
∀τ ∈ Th,

(16)

with constants defined in (13)–(15). Then the matrix A is positive definite and the
constants cA, CA, cS and εE can be estimated as follows:

cA ≥ 1

4
λmin(αM + νK ),

CA ≤ c

(

1 + ‖w‖L∞(Ω)√
να + ν + hminα

)

,

cS ≥ c λmin(Mp)

(ν + α + ‖w‖L∞(Ω) + ‖divw‖L∞(Ω))(1 + C2
A)

,

εE ≤
(

σ̄

2ν
λmax(Mp)

) 1
2

,

(17)

where c is a generic constant independent of problem and discretization parameters.

Theorem 2 shows that matrices A and S̃ are positive definite if conditions (16) on
the parameters of the finite element method are satisfied. In this case, the matrix in
(3) admits LU factorization without pivoting. The first condition in (16) is trivially
satisfied with Cw = 0 if ΓN = ∅ or the entire ΓN is outflow boundary. However, we
know that this is often not the case for the hemodynamics problems (see item (ii)
in the introduction). On the other hand, small time step results in a large value of α

which eases the first condition. The second condition is specific for finite element
approximations. The given w approximates velocity field of an incompressible fluid
and hence one intuitively expects ‖divw‖L∞(Ω) decreases for a refined grid (a rigorous
proof may not be straightforward for lower order finite elements). However, the
w-divergence norm depends on fluid velocity field and may be large for ν small
enough. Fortunately, for small Δt the second condition holds due to α ∼ (Δt)−1.
The third condition in (16) appears due to the stabilization included in the finite
element formulation (6). The same or a similar condition on stabilization parameters
appears in the literature on the analysis of SUPG stabilizedmethods for the linearized
Navier–Stokes equations, see, e.g., [21]. The reason is that the positive definiteness
of A is equivalent to the coercivity of the velocity part of the bilinear form from
(6), which is crucial for deriving finite element method error estimates. Therefore,
stabilizationparameter design suggested in the literature typically satisfiesστ � h2τ /ν
and στ � hτ /‖w‖L∞(τ ) asymptotically, i.e. up to a scaling factor independent of
discretization parameters. As follows from (8), the conditions (16) on the SUPG
stabilization parameters (7) are valid if σ̄ ≤ min{C̄−2

in , 1
2C

−1
in }. Moreover, the value

of the σ̄ parameter from the SUPG term is crucial for the bound on εE whichmeasures
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the discrepancy between B and B̃. Thanks to (11) and Theorem 1 we see that εE has
to be small enough to guarantee the stability of the factorization. Numerical results
will support this observation. This puts additional implicit restrictions on σ̄ .

The domain anisotropy, see item (i) in the introduction, affects the lower bound for
cS in Theorem 2. The generic constant c in this bound depends on the inf-sup constant
for Vh − Qh pair. Nevertheless, we shall see from experiments that the incomplete
LU preconditioning in practice remains stable and efficient for stretched domains.
Numerical experiments also show that the preconditioner has remarkable adaptivity
properties with respect to different flow regimes, see item (iii) in the introduction.
The bounds in Theorem 2 depend on w and ν, and hence on the Reynolds number.
We observed in practice that the preconditioning remains stable over the range of
Reynolds number and the fill-in adaptively increases or decreases in such a way that
the number of iterations remains nearly the same.

5 Two-Parameter Threshold ILU Factorization

Incomplete LU factorizations of (3) can be written in the form A = LU − E with an
error matrix E . How small is the matrix E can be ruled by the choice of a threshold
parameter τ > 0. The errormatrix E is responsible for the quality of preconditioning,
see, for example, [15] for estimates on GMRESmethod convergence written in terms
of ‖E‖ and subject to a proper pre-scaling of A and the diagonalizability assumption.
In general, the analysis of ILU factorization is based on the following arguments. For
positive definite matrices A one can choose such a small τ that the product LU of its
incomplete triangular factors L andU is also positive definite and so estimates from
[11] can be applied to assess the numerical stability of the incomplete factorization:
for cA = λmin(AS), the sufficient condition is τ < cAn−1. In practice, however, larger
τ are used.

Theorem 2 shows that for certain flow regimes and for the choice of stabilization
parameters the ellipticity constants cA and cS for A and S, respectively, approach
zero. This may imply that the ILU factorization of (3) becomes unstable if possi-
ble at all. To ameliorate the performance of the preconditioning, we consider the
two-parameter Tismenetsky–Kaporin variant of the threshold ILU factorization. The
factorization was introduced and first studied in [14, 23, 24] for symmetric positive
definite matrices and recently for non-symmetric matrices in [16, 17].

Given a matrix A ∈ R
n×n , the two-parameter factorization can be written as

A = LU + LRu + R�U − E, (18)

where Ru and R� are strictly upper and lower triangular matrices, while U and L
are upper and lower triangular matrices, respectively. Given two small parameters
0 < τ2 ≤ τ1 the off-diagonal elements of U and L are either zero or have absolute
values greater than τ1, the absolute values of R� and Ru entries are either zero or
belong to (τ2, τ1]; entries of the error matrix are of order O(τ2). We refer to (18)
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as the ILU(τ1, τ2) factorization of A. In the particular case of τ1 = τ2, factorization
ILU(τ1,τ2) is equivalent to the well-known ILUT(p, τ ) dual parameter incomplete
factorization [22] with p = n (all elements passing the threshold criterion are kept
in the factors). If no small pivots modification is done, the only differences between
the algorithms (for τ1 = τ2 and p = n) are different scaling of pivots and row depen-
dent scaling of threshold values. The two-parameter ILU factorization goes over a
ILUT(n, τ ) factorization: the fill-in of L andU is ruled by the first threshold param-
eter τ1, while the quality of the resulting preconditioner is mainly defined by τ2,
once τ 2

1 � τ2 holds. In other words, the choice τ2 = τ 2
1 := τ 2 may provide the fill-in

of ILU(τ1, τ2) to be similar to that of ILUT(n, τ ), while the convergence of pre-
conditioned Krylov subspace method is better and asymptotically (for τ → 0) can
be comparable to the one with ILUT(n, τ 2) preconditioner. For symmetric positive
definite matrices this empirical advantages of ILU(τ1, τ2) are rigorously explained
in [14], where estimates on the eigenvalues and K-condition number of L−1AU−1

were derived with LT = U and RT
� = Ru . The price one pays is that computing L ,

U factors for ILU(τ1, τ2) is computationally more costly than for ILUT(n, τ1), since
intermediate calculations involve the entries of Ru . However, this factorization phase
of ILU(τ1, τ2) is still less expensive than that of ILUT(n, τ2). A pseudo-code of the
row-wise ILU(τ1, τ2) factorization can be found in [16].

Analysis of the decomposition (18) of a general non-symmetric matrix is limited
to simple estimate (2.5) from [10] applied to the matrix (L + R�)(U + Ru) = A +
R�Ru + E . The lower bound for the pivots of the (18) factorization is the following:

|LiiUii | ≥ min
v∈Rn

〈(A + R�Ru + E)v, v〉
‖v‖2 ≥ cA − ‖R�Ru‖ − ‖E‖, (19)

with the ellipticity constant cA and the norms ‖R�Ru‖ and ‖E‖ proportional to
τ 2
1 and τ2, respectively. Hence, we may conclude that the numerical stability of
computing for L−1x and U−1x is ruled by the second parameter and the square of
the first parameter, while the fill-in in both factors is defined by τ1 rather than τ 2

1 . The
Oseen problem setup may be such that the estimates from Theorem 2 predict that
the coercivity constant cA and the ellipticity constant cS are small. This increases the
probability of the breakdown of ILUT(n, τ ) factorization of the saddle-point matrix
A , and demonstrates the benefits of ILU(τ1, τ2) factorization.

The final important remark in this section is that in all computations we use the
simple preprocessing of matrix A by the two-side scaling as described in [16].

6 Numerical Results

The model hemodynamic problem of interest is a blood flow in a right coronary
artery. To set up the problem, we use the geometry recovered from a real patient
coronary CT angiography. The 3D vessel is branching and is cut to embed in the box
6.5 cm × 6.8 cm × 5 cm, see Fig. 1. The diameter of the inlet cross-section is about
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Fig. 1 The coarse (63k, left) and fine (120k, right) grids in the right coronary artery. The bottom
figures zoom a part of the domain

0.27cm.We generate two tetrahedral meshes using ANI3D package [2]. The meshes
shown in Fig. 1 consist of 63k and 120k tetrahedra. The Navier–Stokes system (1)
is integrated in time using a semi-implicit second order method with Δt = 0.005.
This and the discretization with Taylor–Hood (P2-P1) finite elements result in a
sequence of discrete Oseen problems (3). The algebraic systems have nearly 300k
and 600k unknowns for the coarse and the fine meshes, respectively. Other model
parameters are ν = 0.04 cm2/s, ρ = 1 g/cm. We integrate the system over one car-
diac cycle, which is 0.735 s. The inlet velocity waveform [13] shown in Fig. 2 defines
the Poiseuille flow rate through the inflow cross-section. The figure shows the inte-
gral average of the normal velocity component over the inflow boundary. The vessel
walls were treated as rigid and homogeneous Dirichlet boundary conditions for the
velocity are imposed on the vessel walls. On all outflow boundaries we set the normal
component of the stress tensor equal to zero. For the suitable choice of stabilization
parameters, cf. below, the computed FE solutions are physically meaningful, see
Fig. 3.

We study the performance of the ILU(τ ) factorization for different values of
discretization, stabilization, and threshold parameters. For numerical test we use the
implementation of ILU(τ1, τ2) available in the open source software [1, 2]. The values
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Fig. 2 The averaged velocity waveform on the inflow as a function of time in the right coronary
artery

Fig. 3 The pressure distribution in the right coronary artery at time 0.15 s

of ILU thresholds τ1 = 0.03, τ2 = 7τ 2
1 are taken from [16]. In that paper this design

of threshold parameters was found to be close to optimal for a range of problems
and fluid parameters. In all experiments we use BiCGstab method with the right
preconditioner defined by the ILU(τ1,τ2) factorization.

Table1 shows the total number of the preconditioned BiCGstab iterations #it,
the total number of modifications of nearly zero pivots #pmod, the fill-in ratio and
the CPU times (factorization time Tbuild, iteration time Tit , total solution CPU time
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Table 1 The performance of ILU (τ1 = 0.03, τ2 = 7τ 21 ) for right coronary artery. The number of
iterations and pivot modifications and the solution stages times accumulated for 147 time steps

Mesh σ̄ fillLU pmod #it Tbuild Tit TCPU

63k 0 Min 0.711 0 131 2.64 13.59 16.55

Average 0.854 0 142.2 3.82 15.42 19.24

Max 1.009 0 164 5.16 17.47 22.11

Total – 0 20908 562 2267 2829

63k 1/12 Min 0.711 0 125 2.63 13.03 16.10

Average 0.838 0 138.0 3.65 14.84 18.49

Max 0.980 0 156 4.85 22.62 26.42

Total – 0 20292 537 2182 2719

120k 0 Min 0.738 0 163 6.32 36.96 43.93

Average 0.846 0 178.2 8.46 42.09 50.56

Max 0.985 0 220 11.17 61.61 71.34

Total – 0 26209 1244 6188 7432

120k 1/12 Min 0.738 0 158 6.27 35.88 42.35

Average 0.832 1 179.9 8.11 41.71 49.83

Max 0.959 18 357 10.51 87.58 97.94

Total – 21 26446 1192 6132 7325

TCPU = Tbuild + Tit) needed to perform 147 time steps. The fill-in ratio is defined
by fillLU = (nz(L) + nz(U ))/nz(A), where nz(A) = ∑

i j sign|Ai j |. On every time
step, the Krylov subspace iterations are done until the initial residual is reduced by
10 orders of magnitude. The initial guess in the solver is the extrapolated solution
from the previous time step. We generate sequences of the discrete Oseen problems
(2) with (σ̄ = 1/12) and without (σ̄ = 0) SUPG-stabilization. In both cases, the
‘quasi-optimal’ choice of parameters τ1, τ2 leads to stable computations over the
whole cardiac cycle. The total number of iterations depends on the mesh and appears
to be very similar for both examples with and without stabilization. The total num-
ber of iterations is 20% larger for the fine grid, which should be expected for the
preconditioner based on an incomplete factorization.

The time history of the statistics from Table1 is shown in Figs. 4 and 5. It is inter-
esting to note that the graph of the fill-in ratio for the LU-factors and the graph of the
ILU factorization time repeat surprisingly well the waveform of the inflow velocity,
see the two top plots in Figs. 4 and 5. This explains the rather modest variation of
the iteration counts and CPU times per linear solve over the cardiac cycle, see the
two bottom plots in Figs. 4 and 5. Note that the fill-in ratio fillLU < 1 means that the
number of non-zero elements in factors is less then in ILU(0), the commonly used
ILU factorization by position. The fact that fill-in of the L and U blocks decreases
or increases depending on the Reynolds number is the remarkable adaptive property
of the two-parameter ILU preconditioner which makes it very competitive to other
state-of-the-art preconditioners. The difference in otherwise similar performance of
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Fig. 4 Right coronary artery, computations on grid 63k (left) and grid 120k (right) without SUPG-
stabilization and τ1 = 0.03: The plots (from top to bottom) show the density of the preconditioner
(fill-in ratio), the time of ILU factorization, the number of BiCGStab iterations, the total CPU time
of the linear system solution at each time step

linear solvers for the cases σ̄ = 1/12 and σ̄ = 0 is the following: For σ̄ = 1/12,
when the maximum flow rate on the inlet is achieved, the number of iterations and
times needed to build preconditioner increase essentially (approximately twice as
much as average). This happens over a few time steps. In these cases when factor-
ization is performed several small pivots occur and their modification is performed
during the incomplete factorization.

In the second series of experiments, we demonstrate practical importance of
restrictions (16) on στ . The Theorems 1 and 2 state that the existence of exact
stable LU factorization of A (almost) without pivoting is guaranteed for στ small
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Fig. 5 Right coronary artery, computations on grid 63k (left) and grid 120k (right), SUPG-
stabilization with σ̄ = 1/12 and τ1 = 0.03: The plots (from top to bottom) show the density of
the preconditioner (fill-in ratio), the time of ILU factorization, the number of BiCGStab iterations,
the total CPU time of the linear system solution at each time step

enough. The estimate (8) explains why στ from (7) with σ̄ ≤ min{C̄−2
in , 1

2C
−1
in } satis-

fies (16). The previous series of experiments show that for the stabilization parameter
σ̄ = 1/12 the factorization is done on both meshes without pivot modifications even
for the relatively large value of the threshold, τ1 = 0.03. Now we increase the value
of the stabilization parameter and take σ̄ = 1/6. Table2 reports on the performance
of ILU(τ1, τ2 = 7τ 2

1 ) preconditioner for the sequence of the SUPG-stabilized Oseen
systems generated on the coarse grid with σ̄ = 1/6. The choice of the threshold
as small as τ1 = 10−4 produces the factorization close to the exact one. Hence, the
average number of BiCGstab iterations is only 8. Although no pivot modifications
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Table 2 The performance of ILU (τ1, τ2 = 7τ 21 ) for right coronary artery, σ̄ = 1/6, coarse mesh
63k

τ1 fillLU pmod #it

0.0003 Min 5.978 0 7

Average 8.466 1 12.2

Max 11.206 12 135

Total – 16 1806

0.0001 Min 8.716 0 5

Average 12.557 0 8.1

Max 16.742 0 100

Total – 0 1198

Table 3 The performance of ILU (τ1, τ2 = 7τ 21 ) for right coronary artery with different viscosities
ν. The table shows values of τ1 which allow to run the simulation for the complete cardiac cycle for
different parameters σ̄ . ‘�’ means finite element solution blow-up, ‘–’ means intractable systems
for any possible τ1

ν, \σ̄
(cm2/s)

0 1/96 1/48 1/24 1/12 1/6 1/3

0.040 0.03 0.03 0.03 0.03 0.03 0.03 0.003

0.025 � 0.03 0.03 0.03 0.03 0.003 –

occurred, the fill-in ratio is unacceptably large and on some time steps the number
of iterations may be large either. The observation that two-parameter ILU needs no
pivoting with τ1 = 10−4 suggests that the exact factorization is stable. For larger val-
ues of the threshold parameter, τ1 = 3 × 10−4, the fill-in ratio naturally decreases
and the average number of BiCGstab iterations increases. Now, on two time steps
the algorithm has to make 12 and 4 modifications of nearly zero pivots in order to
avoid the breakdown. The pivot modifications causes the convergence slowdown,
the maximum number of iterations in the Krylov subspace solver grows up to 135
iterations. Furthermore, on the finer grid certain Oseen systems with σ̄ = 1/6 can
not be solved by the ILU-preconditioned BiCGstab iterations with any values of the
threshold parameter which we tried.

We repeat the same simulations on the coarse grid, but for a smaller value of
the viscosity coefficient, ν = 0.025 cm2/s. For this viscosity, the simulation without
SUPG stabilization fails (solution blows up at t = 0.23 s). Stabilization is necessary
and adding it allows to obtain physiologically meaningful solution. At the same time,
for larger parameter σ̄ the linear systems are harder to solve. Indeed, σ̄ = 1/6 requires
smaller threshold parameter τ1, whereas σ̄ = 1/3 generates unsolvable systems, see
Table3. This experiment confirms that restrictions on σ̄ come both from stability
of the FE method and algebraic stability of the LU factorization. Both restrictions
have to be taken into account when one decides about the choice of stabilization
parameters.
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Table 4 The performance of plain ILU (τ1, τ2) preconditioning versus reusing the same precondi-
tioner over two time steps

#it Tbuild Tit TCPU

Building preconditioner each time step 138 4.2 14.8 18.9

Building preconditioner every second time step 139 2.1 15.1 17.2

We also experiment with reusing ILU preconditioner over several time steps. This
looks like a reasonable thing to try, since the time step is small and the system may
not change too much from one time step to another one. Numerical results, however,
show that the time cost of the setup phase of the preconditioner is small compared
to the time needed by the Krylov subspace method to converge. Hence this strategy
gives some time saving, but a moderate one. To illustrate this, we show in Table4
the averaged data for the number of iterations per time step, the setup time needed to
compute L and U factors, the time required by the Krylov subspace solver, and the
total time, which is the sum of those two. The data is shown for the flow in the artery
with the 63K grid, ν = 0.04, σ̄ = 1/12, τ1 = 0.03, τ2 = 7τ 2

1 .We see that reusing the
same preconditioner over two time steps saves about 10% of the total computational
time.

7 Conclusions

In this paper we studied the preconditioner based on elementwise incomplete two-
parameter threshold ILU factorization of non-symmetric saddle-point matrices. The
Krylov subspace solver with the preconditioner was used to simulate a blood flow in a
right coronary artery reconstructed from a real patient coronary CT angiography. We
tested the method for a range of physiological and discretization parameters. Several
conclusions can be made: The solver efficiently handles typical features of hemody-
namic applications such as geometrically stretched domains, variable flow regimes,
and open boundary conditions with possible reversed flows. The preconditioner ben-
efits from smaller time increments. One can reuse the preconditioner over several
time steps, although for this particular application the benefit of doing this is modest,
since the setup phase of the preconditioning is cheap compared to the time cost of
iterations. A sequential version of the preconditioner is straightforward to implement
for any type of finite elements and other discretizations once the matrix entries are
available. For parallel computations it is natural to combine the ILU preconditioner
with the additive Schwarz method. This is a subject of our further research.
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5. Bodnár T, Galdi GP, Nečasová Š (eds) (2014) Fluid-structure interaction and biomedical appli-
cations. Birkhäuser, Basel

6. Chizhonkov EV, Olshanskii MA (2000) On the domain geometry dependence of the LBB
condition. M2AN Math Model Numer Anal 34(5):935–951

7. Deparis S, Grandperrin G, Quarteroni A (2014) Parallel preconditioners for the unsteady
Navier-Stokes equations and applications to hemodynamics simulations. Comput Fluids
92:253–273

8. Elman HC, Silvester DJ, Wathen AJ (2014) Finite elements and fast iterative solvers: with
applications in incompressible fluid dynamics, 2nd edn. Oxford University Press, Oxford

9. Girault V, Raviart P-A (1979) Finite element approximation of the Navier-Stokes equations,
vol 749. Lecture Notes in Mathematics. Springer, Berlin

10. Golub GH, Van Loan C (1979) Unsymmetric positive definite linear systems. Linear Algebra
Appl 28:85–97

11. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University
Press, Baltimore

12. Hou G,Wang J, Layton A (2012) Numerical methods for fluid-structure interaction—a review.
Commun Comput Phys 12(2):337–377

13. Jung J, Hassanein A, Lyczkowski RW (2006) Hemodynamic computation using multiphase
flow dynamics in a right coronary artery. Ann Biomed Engrg 34(3):393–407

14. Kaporin IE (1998) High quality preconditioning of a general symmetric positive definite matrix
based on itsUTU +UT R + RTU -decomposition. Numer Linear Algebra Appl 5(6):483–509

15. Kaporin IE (2007) Scaling, reordering, and diagonal pivoting in ILU preconditionings. Russ J
Numer Anal Math Model 22(4):341–376

16. Konshin IN, Olshanskii MA, Vassilevski YV (2015) ILU preconditioners for nonsymmetric
saddle-point matrices with application to the incompressible Navier-Stokes equations. SIAM
J Sci Comput 37(5):A2171–A2197

17. Konshin IN,OlshanskiiMA,VassilevskiYV (2016) LU factorizations and ILUpreconditioning
for stabilized discretizations of incompressible Navier-Stokes equations. Numerical Analysis
and Scientific Computing Preprint Seria 49, University of Houston

18. Nordsletten D, Smith N, Kay D (2010) A preconditioner for the finite element approximation
to the arbitrary Lagrangian-Eulerian Navier-Stokes equations. SIAM J Sci Comput 32(2):521–
543

19. Olshanskii MA, Tyrtyshnikov EE (2014) Iterative methods for linear systems: theory and
applications. SIAM, Philadelphia

20. Passerini T, Quaini A, Villa U, Veneziani A, Canic S (2013) Validation of an open source
framework for the simulation of blood flow in rigid and deformable vessels. Int J Numer
Methods Biomed Engrg 29(11):1192–1213

21. RoosH-G, StynesM, Tobiska L (1996)Numericalmethods for singularly perturbed differential
equations: convection-diffusion and flow problems. Springer, Berlin

22. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia
23. Suarjana M, Law KH (1995) A robust incomplete factorization based on value and space

constraints. Int J Numer Methods Engrg 38(10):1703–1719
24. TismenetskyM (1991)Anewpreconditioning technique for solving large sparse linear systems.

Linear Algebra Appl 154(156):331–353

http://sourceforge.net/projects/ani2d
http://sourceforge.net/projects/ani3d

