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Abstract
Purpose The diseases and injuries of the knee joint are themost common orthopedic disorders. Personalized kneemodels can
be helpful in the process of early intervention and lasting treatment techniques development. Fully automatic reconstruction
of knee joint anatomical structures from medical images (CT, MRI, ultrasound) remains a challenge. For this reason, most of
state-of-the-art knee joint models contain simplifications such as representation of muscles and ligaments as line segments
connecting two points which replace attachment areas. The paper presents algorithms for automatic detection of such points
on knee CT images.
Methods This paper presents three approaches to automatic detection of ligaments and tendons attachment sites on the
patients CT images: qualitative anatomical descriptions, analysis of bones curvature, and quantitative anatomical descrip-
tions. Combinations of these approaches result in new automatic detection algorithms. Each algorithm exploits anatomical
peculiarities of each attachment site, e.g., bone curvature and number of other attachments in a neighborhood of the site.
Results The experimental dataset consisted of 26 anonymized CT sequences containing right and left knee joints in different
resolutions. The proposed algorithms take into account bone surface curvatures and spatial differences in locations of medial
and lateral parts of both knees. The algorithms for detection of quadriceps femoris, popliteus, biceps femoris tendons, and
lateral collateral and medial collateral ligaments attachment sites are provided, as well as examples of their application. Two
algorithms are validated by comparison with known statistics of ligaments lengths and also using ground truth annotations
for anatomical landmarks approved by clinical experts.
Conclusions The algorithms simplify generation of patient-specific knee joint models demanded in personalized biome-
chanical models. The algorithms in the current implementation have two important limitations. First, the correctness of the
produced results depends on the bones segmentation quality. Second, the presented algorithms detect a point of the attach-
ment site, which is not necessarily its center. Therefore, manual correction of the attachment site location may be required
for attachments with relatively large area.
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Introduction

Human knee is a joint most commonly affected by activity-
related injuries and joint disorders, e.g., osteoarthritis, knee
bursitis, which cause pain and movement restrictions. Cur-
rently a large number of early intervention and lasting
treatment techniques are developed. The development pro-
cess includes testing stagewhich cannot always be conducted
directly in vivo or can be risky for patient’s health. Some
experiments are carried out on cadaveric knee specimens,
but their scenarios have certain restrictions. Moreover, in
most of the cases prediction of treatment effects should be
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patient-specific, i.e., take into account individual anatomical
peculiarities.

The present paper aims to describe some approaches to
automatic detection of ligaments and tendons attachments
sites and to present examples of the algorithms. Section 2
gives an overview of the methods developed for segmen-
tation of anatomical structures of the knee joint. Section 3
describes input data. Three general approaches to identifica-
tion of tendons and ligaments attachments are presented in
section “Three general approaches to detection of tendons
and ligaments attachment sites”. Main algorithms for attach-
ment sites detection are introduced in section “Algorithms
for automatic detection of attachment sites”, and applica-
tions of these algorithms are presented in section “Results”.
Discussion and conclusion constitute the final section.

Previous work

In order to evaluate parameters of interest of the knee joint,
such as joint loads or contact forces, one can use biome-
chanical models of the human knee. Different types of knee
models are known [22], and all of them require information
about knee geometry.

One of the protocols for building patient-specificmodel of
the knee joint from CT and MRI scans is presented in [21].
The model includes 21 anatomical structures and was cre-
ated by semi-automatic slice-wise processing of CT andMRI
datasets. The generation process is very time-consuming and
can be performed only by a specialist in anatomy and radi-
ology.

The key point in reconstruction of knee geometry is fast
and accurate segmentation of multiple anatomical structures
of the knee: bones and soft tissues (muscles, tendons, liga-
ments, cartilages).

Some algorithms for automatic segmentation of bones
from CT and MRI images were introduced in [5,6,11]. In
the study [1], we presented an algorithm for bones segmen-
tation which does not require reference images (atlases) or
training datasets segmented by experts. This algorithm was
used for assessment of knee ligament tensions [2] by Open-
Sim software [4].

Automatic segmentation of soft tissues remains a chal-
lenging task because of different reasons. For instance,
automatic muscles segmentation is complicated, because
boundaries between them cannot be easily defined neither on
CT, nor on MRI scans. In certain types of MRI sequences,
intermuscular fat tissue is highlighted; however, this is not
always helpful: some regions contain little amount of inter-
muscular fat. Moreover, muscles change shape during joints
movement, which makes the reconstruction of their geome-
try from medical images too sophisticated. In some studies,

the complexmuscle geometry is represented, but themuscles
were segmented manually [14].

Cartilage segmentation is used for osteoarthritis detection
and also for the representation of the cartilage geometry in
knee joint models. The thickness of cartilage can be less
than one millimeter, and its MRI image is inhomogeneous
[7]. Despite of low contrast between cartilage and adjacent
structures, several approaches to its semi-automatic and auto-
matic segmentation have been suggested in [8–10].

Representation of ligaments and tendons in biomechanical
models is important, since they are involved in force trans-
mission from muscles to bones. Tendons and ligaments can
be often clearly visualized onMRI scans; however, their auto-
matic segmentation is cumbersome due to inhomogeneity
of these structures on MRI images and similarity of adja-
cent structures intensities. They are also hard to distinguish
from surrounding soft tissues on CT scans. Algorithms for
automatic or semi-automatic segmentation of anterior and
posterior cruciate ligaments have been proposed in [16–18].
To the best of our knowledge, the algorithms for automatic
segmentation of other ligaments and tendons are still not
developed.

Thus, segmentation of knee joint medical images is not
automated yet. Traditional models contain some simplifica-
tions:muscles are presented as line segments, and the patches
of their attachment to bones are reduced to points [15].
Algorithms for detection of ligaments and tendons attach-
ments sites on medical images are in great demand. A few
studies address this problem. The study [12] uses statistical
shape models to reconstruct ligament and tendon attachment
sites in terms of contours on a 3D bone surface recovered
from patient’s CT scans. The method was evaluated for four
ligaments (ACL, PCL, MCL and LCL): the algorithm still
requires further improvements in gray value analysis and
image modalities with better contrast. In [13], bone geomet-
ric models with manually detected muscles attachment sites
are transformed to fit bones models of the patient. Correla-
tion between the shape of the muscles attachment sites and
the shape of the geometric models of the bones was detected,
but this hypothesis was validated on the shoulder bones only.

Input data

A representation of the knee geometry is necessary to
produce a plausible knee model. The crucial problem in gen-
eration of patient-specific computationalmodels is extraction
of anatomical information from medical images. For knee
joint examination, both magnetic resonance imaging (MRI)
and computed tomography (CT) are used [19,20,23]. MRI
provides excellent soft tissue contrast and is therefore pre-
ferred for soft tissue visualization, e.g., muscles, ligaments,
tendons, cartilages. CT is more suitable for imaging of cor-
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Fig. 1 Segmentation of knee CT: coronal slice (a), 3D view (b); labels: background 0, right femur 1, right tibia 2, right patella 3, right fibula 4, left
femur 5, left tibia 6, left patella 7, left fibula 8

tical bones and soft tissue calcifications. Commonly several
imagemodalities are needed to create a geometrical model of
high complexity [21]. A geometric model presented in [1,2]
contains attachment sites of several ligaments and tendons
recovered from CT images. The present study follows this
CT-based strategy and provides algorithms for detection of
other ligaments and tendons attachment sites.

The experimental dataset consists of 26 anonymized CT
sequences provided by Sechenov University. Each sequence
contains right and left knee joints. The algorithms take into
account spatial differences in locations of medial and lateral
parts of both knees. The spatial dimensions are 512×512×z,
where z ≈ 300. The dataset can be subdivided in two subsets:
13 images have a higher resolution (voxel spacing over each
axis is 0.7–0.9 mm) and 13 images have a lower resolution
(voxel spacing over each axis is 1.0–1.4 mm). Application of
the algorithm described in [1] results in the following labels
of anatomical structures: background 0, right femur 1, right
tibia 2, right patella 3, right fibula 4, left femur 5, left tibia
6, left patella 7, left fibula 8, see Fig. 1. Segmentation results
serve as input data for detection of tendons and ligaments
attachment sites.

All algorithms described in the paper were tested on 52
CT images of the knee joint.

Three general approaches to detection of
tendons and ligaments attachment sites

Distinguishing of ligaments and tendons from adjacent soft
tissues in the CT scans is complicated due to lack of soft
tissue contrast. One of the goals of this study is to find charac-
teristic anatomical features for automatic selection of points
corresponding to ligaments and tendons attachment sites on

the patient’s bone surface. Our algorithms exploit several
approaches to the solution of this problem.

Qualitative anatomical descriptions

Qualitative description of knee joint anatomy [25,26] may be
used in algorithms for automatic detection of certain attach-
ment sites, since such description implies the unique choice
of their position. Section “Quadriceps femoris” presents an
algorithm for detection of quadriceps femoris insertion based
on qualitative anatomical description.

This and other similar algorithms possess two potential
drawbacks. First, the description may be not specific enough
and imply a region instead of a point. In this case, one can
observe differences in illustrative materials from different
sources. Second, the description is specific enough, but auto-
matic selection of a point on the bone surface is not easy, since
no particular features of the attachment location are given,
e.g., “bone apex.”Additional information has to be taken into
account to specify peculiarities of attachment location.

Analysis of bone surface curvature

Grooves (fossae) and tubercles on bone surfaces often serve
as attachment sites for ligaments and tendons and therefore
can be used as landmarks in automatic detection algorithms.
We consider at each point of a bone surface the Gaussian
curvature which is the product of the principal curvatures
K = κ1 · κ2 and can be used as a surface characteristic. In
particular, the Gaussian curvature of tubercles and grooves
is positive. The main steps of the algorithm are as follows:

1. Generation of a bone surface mesh;
2. Computation of the surface curvature;
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Fig. 2 r -neighborhoods of red
point: r = 1 (a), r = 2 (b),
r = 3 (c)

3. Selection of local maxima of the Gaussian curvature.

The first step is not performed fully automatically. A sur-
face mesh is generated in the interface of ITK SNAP on the
basis of voxel models of the bones. The obtained surface
mesh is improved with Paraview Triangle filter. The C++
library Trimesh2 [33] is used to compute the principal curva-
tures κ1, κ2 of the surface patch at each point of the triangular
surface mesh. A smoothing parameter is required on input. It
defines the size of the mesh neighborhood where the values
of the principal curvatures will be averaged after their com-
putation. In order to distinguish grooves and tubercles, the
mean curvature H = 1

2 (κ1 + κ2) is considered: if H < 0,
then the point is located in a groove, if H > 0, it is located
in a tubercle. The following algorithm is used for detection
of grooves or tubercles of a bone:

1. The principal curvatures are computed at each point of
the mesh;

2. For each point Pi of the mesh, its r -neighborhood is
searched: the set of points with graph distance less or
equal r (Fig. 2);

3. If the Gaussian curvature K at point Pi achieves its max-
imal value in the r -neighborhood, Pi is considered to
belong to a tubercle (H > 0) or to a groove (H < 0).

The choice of the algorithm parameters has been done
empirically for every attachment. The parameters (the tuber-
cle/groove size, its location and the number of other tuber-
cles/grooves in its neighborhood) have to be taken into
account in the algorithm for their automatic detection. The
neighborhood size r was determined as the number of edges
(graph distance), i.e., it is defined only approximately, to con-
sider the Gaussian curvature locally. The present parameter
values for r have been chosen for meshes with the edge size
up to 1.5 mm. Examples of attachment sites detection based
on the curvature analysis are presented in sections “Popli-
teus”, “Biceps femoris”, “Lateral collateral ligament (LCL),
insertion”.

Quantitative anatomical descriptions

The approaches proposed in sections “Qualitative anatomical
descriptions”, “Analysis of bone surface curvature” require
a detailed knowledge about locations of attachment sites.
Descriptions and illustrations of complex attachments are
often simplified in the literature and may be different in dif-
ferent sources, e.g., refer to structures of medial part of the
knee [30]. The assessment of such attachments is compli-
cated.

A number of studies have performed quantitative eval-
uation of various anatomical structures and determined
morphological landmarks in the knee joint [27–31] based on
cadaveric human knees or knee radiographs. The quantitative
knowledge on anatomy is useful for automatic detection of
ligaments attachments sites. The examples are presented in
section “Medial collateral ligament (MCL), origin”.

Algorithms for automatic detection of
attachment sites

Quadriceps femoris

Quadriceps femoris consists of four separate muscles attach-
ing to the upper part of patella (Figure 3a). We exploit the
fact that the intensity of quadriceps femoris tendon on CT
images is higher than the intensity of other structures adjoint
to the upper part of patella (Figure 3b). This fact results in
the following

Algorithm 1

1. Cut the CT image into cubes composed of 3×3×3 voxels
and assign to each voxel the mean intensity value in the
cube centered at the voxel.

2. Select patella voxels according to its label in the seg-
mented image.

3. Dilate patella and find voxels with maximum zmax and
minimum zmin z-coordinates.

4. Find a voxel v with maximum intensity value among vox-
els with z ∈ [zmax − 1

6d; zmax], where d = zmax − zmin.
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Fig. 3 Anterior view of the knee joint. Figure from [25] (a). The attach-
ment of quadriceps femoris tendon to patella ismarkedwith a pink point
(b). Patella (blue); voxels, appeared after dilation of patella, search area

for quadriceps femoris insertion (yellow); quadriceps femoris insertion
(red) (c). The attachment of biceps femoris to patella (3D view) (d)

Fig. 4 Results of femur surface curvature computation (a). Selection of points with maximum x + y value (or xmax − x + y), depending on the
bone (2D view) (b). Results of popliteus detection (c)

Popliteus

Popliteus muscle originates from the anterior part of the
popliteal groove on the lateral surface of the femoral condyle.
This fact is used in the algorithm for popliteus origin detec-
tion.

Algorithm 2

1. Compute curvature of the femurs surface with smoothing
parameter equal to 4 (Fig. 4a).

2. Select voxels with minimum mean curvatures values in
their neighborhood of radius 15.

3. Choose from the selected voxels the one with maximum
x + y or xmax − x + y value, depending on the left/right
bone, see Fig. 4b–c.

Biceps femoris

The site of biceps femoris attachment is shown in Fig. 5a.
The algorithm finds local maxima of the fibula surface cur-

vature and selects the maximum having the second largest
z-coordinate.

Algorithm 3

1. Compute curvatures of the fibula surface with smoothing
parameter equal to 4.

2. Find all voxels which have maximum curvature value in
their neighborhood of radius 15.

3. Select the voxel with the second largest z-coordinate
value.

Lateral collateral ligament (LCL), insertion

LCL inserts into a depression (fossa) on the lateral surface of
the fibular head (Fig. 5). The algorithm for detection of the
LCL insertion is similar to Algorithm 3:
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Fig. 5 Insertion of biceps femoris tendon (Image source [25]) (a). Results of curvature computation for fibula (b). Detected insertion of biceps
femoris tendon (c)

Algorithm 4

1. Compute curvatures of the fibula surface with smoothing
parameter equal to 4.

2. Find all voxels which have minimum mean curvature
value in their neighborhood of radius 20.

3. Select the voxel with the largest z-coordinate value.

Medial collateral ligament (MCL), origin

MCL is attached to the femoral epicondyle, just below the
adductor tubercle. Since the femoral epicondyle is a rounded
eminence on the bone, one can detect it computing the
bone curvature with appropriate parameters and searching
its local maxima. The main difficulty is to distinguish the
point located on the femoral epicondyle from the set of all
local maxima (Fig. 6a). To solve this problem, we use the
ratio of the femoral width and the distance from the adductor
tubercle to the joint line [31]. The main knee features used
for computation are shown in Fig. 6b: the joint line (JL) is
the line passing through the most distal points of the medial
and lateral femoral condyles in the coronal plane, ATJL is the
distance between the adductor tubercle and the joint line, FW
is the femoral width. According to [31], there exists simple
correlation between FW and ATJL: average ATJL/FW ratio
equals to 0.543. Themain steps of the algorithm for detection
of MCL origin are as follows.

Algorithm 5

1. Find JL and its upwards unit normal n.
2. Compute FW and vector v = n · FW · 0.543.
3. Add v to the most distal point of the medial epicondyle to

obtain an approximate position of the adductor tubercle
ã.

4. Compute curvature of the femurs surface with smoothing
parameter equal to 8.

5. Select points with maximum mean curvature values in
their neighborhood of radius 5.

6. Select the closest point to ã.

Results

The test dataset consists of 26 CT anonymous datasets (52
knee joints) in different resolutions provided by Sechenov
University. Each joint is labeled by N l or N r where N is the
patient number and l/r denotes left/right knee. Algorithms
1-5 are applied to each joint in order to detect the attachment
sites reduced to individual voxels of theCT images. InFigs. 7,
8, 9, 10 and 11, we show the detected attachment sites for
joints 3l, 5l, 6r, and 9r on the dataset with higher resolution.
These joints represent (approximately) the largest or smallest
lengths of ACL, PCL, LCL, and PL, rf. Table 1. Inspection
of the origins or insertions presented in the figures shows
correct performance of the algorithms.
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Fig. 6 Local maxima of femurs surface curvature: yellow point cor-
responds to adductor tubercle; red point indicates origin of MCL (a).
An antero-posterior plain radiograph of the knee showing technique of
joint measurements: ATJL (adductor tubercle to joint line), FW (femur

width), FJL (fibula to joint line), JL (joint line), MEJL (medial epi-
condyle to joint line), Figure from [31] (b). Green point is the adductor
tubercle according to the ratio ATJL/FW [31]; red point is the computed
position of MCL origin (c)

Fig. 7 Detected insertion of quadriceps femoris for joint 3l (a), 5l (b),
6r (c), and 9r (d)

Fig. 8 Detected origins of popliteus for joint 3l (a), 5l (b), 6r (c), and
9r (d)

Fig. 9 Detected insertions of biceps femoris tendon for joint 3l (a), 5l
(b), 6r (c), and 9r (d)

Fig. 10 Detected insertions of LCL for joint 3l (a), 5l (b), 6r (c), and
9r (d)

Fig. 11 Detected origins of MCL for joint 3l (a), 5l (b), 6r (c), and 9r
(d)

In order to validate our algorithms, we compare statistical
characteristics of certain ligaments derived in our study with
those found in the literature. The statistical results for mea-
surements of ACL, PCL, LCL, and PL lengths for 30 patients
[34] are used for the validation. The attachment points for
each knee were defined as mean of two–four extreme loca-
tions on the periphery of the attachment site (the most ante-
rior, posterior, medial, lateral, distal and proximal). Table 1
contains lengths of ACL, PCL, LCL and PL (in terms of the
distance between ligament origin and insertion) computed
from the higher resolution CT images of 26 joints provided
by Sechenov University. The length of each structure was
computed as L = √

(xo − xi )2 + (yo − yi )2 + (zo − zi )2,
where (xo, yo, zo) and (xi , yi , zi ) are Cartesian coordinates
of the origin and the insertion. If the coordinates of attach-
ment sites are calculated in voxels, e.g., as in Algorithm 1,
they are converted into Cartesian coordinates: (x, y, z) =
(vx sx+ox , vysy+oy, vzsz+oz), where (vx , vy, vz) are voxel
coordinates, (sx , sy, sz) is voxel spacing, and (ox , oy, oz) are
the image origin coordinates.

The statistics for the lengths is compared to the statistics
[34] for lower and higher resolution datasets in Tables 2, 4,
respectively.

The mean length for ACL, PCL, PL derived from land-
marks due to Algorithms 4–5 from data with higher resolu-
tion well correlates with that presented in [34]. The standard
deviations are comparable for ACL, PCL, and LCL, whereas
for PL the standard deviation is two-fold in our case. The
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Table 1 Measured lengths of ACL, PCL, PL, and LCL for higher res-
olution datasets

Knee ACL, mm PCL, mm PL, mm LCL, mm

1r 32.288 33.247 63.985 49.555

1l 30.798 27.928 65.417 46.511

2r 31.669 37.154 65.042 43.557

2l 30.998 37.013 65.807 41.846

3r 32.288 33.138 63.983 49.118

3l 30.797 27.928 65.416 46.945

4r 32.346 33.128 63.985 49.555

4l 30.798 27.928 65.417 46.783

5r 30.211 34.477 60.436 43.665

5l 29.548 35.356 67.644 46.102

6r 33.487 28.101 54.897 49.849

6l 28.956 26.158 53.662 52.519

7r 32.424 32.489 79.91 51.788

7l 34.475 25.244 79.297 52.133

8r 31.203 38.831 79.356 50.875

8l 31.497 42.049 84.033 50.644

9r 32.424 32.489 79.91 51.788

9l 33.345 28.76 54.994 52.133

10r 46.839 52.155 83.579 51.98

10l 34.827 30.968 86.772 52.06

11r 21.886 28.074 65.568 38.679

11l 23.006 21.256 63.215 45.851

12r 32.389 33.373 53.889 36.016

12l 30.14 26.629 52.065 41.746

13r 31.577 25.518 48.734 37.816

13l 26.893 32.575 48.209 49.055

Table 2 Comparison of ACL, PCL, PL, LCL statistical characteristics
(mean value, standard deviation SD, minimum and maximum values)
derived from landmarks due to Algorithms 4–5 and statistics from [34]
for higher-resolution dataset

Data Mean, mm SD, mm Min, mm Max, mm

ACL [34] 30.837 4.355 23.6 42.6

ACL measured 31.427 4.328 21.886 46.839

PCL [34] 31.247 4.865 21.7 40.4

PCL measured 31.999 6.286 21.256 52.155

PL [34] 63.907 5.973 54.5 76.7

PL measured 68.585 14.403 48.209 86.772

LCL [34] 58.757 5.081 46.3 67.4

LCL measured 47.253 4.857 36.016 52.519

mean length of LCL reported in [34] is 11 mm larger than
the mean length of LCL based on the landmarks due to Algo-
rithms 4–5, although the standard deviations are comparable.
This indicates to a systematic discrepancy of the measure-
ments due to different definitions of LCL length.Wemeasure

Table 3 Measured lengths of ACL, PCL, PL, and LCL for lower reso-
lution datasets; “—” denotes incorrect result

Knee ACL, mm PCL, mm PL, mm LCL, mm

1r 31.154 37.788 62.398 41.864

1l 29.459 35.756 68.836 48.472

2r 28.802 37.363 64.385 40.096

2l 26.556 33.543 — 40.043

3r 37.892 44.727 66.836 53.868

3l 37.554 41.903 86.105 56.112

4r 27.033 35.422 — 42.9

4l 29.373 35.779 68.847 38.743

5r 27.823 39.159 63.117 40.509

5l 28.333 34.723 66.372 38.033

6r 37.616 35.147 73.956 59.376

6l 43.009 41.155 69.309 110.355

7r 31.139 31.768 — 63.149

7l 43.648 37.308 — —

8r 39.994 55.396 — 57.415

8l 32.704 44.944 — 83.525

9r 39.346 43.461 — 61.961

9l 43.189 38.62 69.763 —

10r 36.998 36.759 — 87.088

10l 63.074 45.264 81.191 65.421

11r 28.855 32.284 — 49.413

11l 33.973 28.291 — 99.101

12r 33.572 40.326 68.881 97.56

12l 38.676 37.402 65.6 94.361

13r 37.196 33.279 65.678 49.948

13l 55.249 49.791 41.911 48.453

Table 4 Comparison of ACL,PCL,PL,LCL statistical characteristics
(mean value, standard deviation SD, minimum and maximum values)
derived from landmarks due to Algorithms 4-5 and statistics from [34]
for lower-resolution dataset

Data Mean, mm SD, mm Min, mm Max, mm

ACL [34] 30.837 4.355 23.6 42.6

ACL measured 36.239 8.624 26.556 63.074

PCL [34] 31.247 4.865 21.7 40.4

PCL measured 38.745 5.939 28.291 55.396

PL [34] 63.907 5.973 54.5 76.7

PL measured 67.699 9.334 41.911 86.105

LCL [34] 58.757 5.081 46.3 67.4

LCL measured 53.319 13.968 38.033 87.088

the distance between voxel (pointwise) landmarks of inser-
tions and origins, whereas one may include the attachment
region size to the length of the ligament. According to [35],
the average cross-sectional area of the fibular collateral lig-
ament attachment site on the femur was 0.48 cm2 (ranging
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from 0.43 to 0.52); the average cross-sectional area of the
attachment on the fibular head was 0.43 cm2 (ranging from
0.39 to 0.50). The 11mm discrepancy may be caused by
differences in the attachment point locationwithin the attach-
ment area.

The experiments with lower resolution datasets were also
carried out. The difference of the mean length and that pre-
sented in [34] is greater compared to the case of higher
resolution dataset. The algorithms based on the curvature
analysis are sensitive to data resolution andmay evenproduce
incorrect results (Table 3), since local curvature recovery for
lower-resolution datasets may be prone to large numerical
errors. A large number of incorrect results for PL are caused
by thewrong tibial tuberosity detection. Parameter tuning for
this algorithm is required (Table 4).

The accuracy of the segmentation results for higher res-
olution was also evaluated using ground truth annotations
provided by clinical experts. The distance errors were mea-
sured for 208 points: origins and insertions of ACL, PCL,
PL, and LCL ligaments for 26 knee joints (13 datasets). The
mean error for all points is 12mm; the maximal error is 23
mm. The biggest error values were achieved for attachments
with relatively large area, e.g., ACL, PCL, PL. The length
of the femoral ACL attachment was 17.9± 2.0 mm (mean±
SD) [37]; the femoral attachment of the PCL extends more
than 20 mm in an anterior-posterior direction [38]. For these
attachments, the error depends on the point selection within
the attachment area.

Discussion and conclusion

We discussed three approaches to automatic detection of ten-
dons and ligaments attachment sites. The approaches are
based on the qualitative and quantitative anatomical descrip-
tions as well as analysis of the bone surface curvature.
The examples of the detection algorithms based on these
approaches were presented. The algorithms were tested on
knee CT images of 26 anonymous patients. The detected
sites were approved by experienced clinicians. The statistics
for ACL, PCL, PL, LCL lengths due to Algorithms 4 and 5
was compared to the statistics reported in [34]. The detected
attachments of ACL, PCL, PL, LCL were compared with
ground truth annotations provided by clinical experts for 13
CT images (26 knee images) in higher resolution. The other
algorithms cannot be validated in the similar way since the
considered ligament/tendon has origin or insertion located
outside the knee joint.

Since some of the proposed algorithms are based on the
local curvature properties of the bones surface, the correct-
ness of the segmentation depends on the bones segmentation
quality. Most of the segmentation methods take into account
(in some form) significantly higher intensity values of the

bones cortical layer in comparison with surrounding tis-
sues. Thinning of the cortical layer is common in the case
of older patients. If the cortical layer thickness is compa-
rable to CT voxel spacing, the bone boundary cannot be
detected correctly and manual segmentation correction is
required. It is crucial for local neighborhoods of the attach-
ments sites. Manual correction of the femur boundaries was
carried out for several patients in order to obtain accurate
attachment sites.

For datasets with higher resolution, the measured mean
lengths for ACL, PCL, PL well match to the statistics [34].
The measured mean length for LCL is 11 mm smaller in
our case due to different definitions of the LCL length. The
systematic discrepancy is caused by possible inclusion of
fractions of the attachment sizes to theLCL length in [34]. For
datasets with lower resolution, the matching with statistics
[34] is worse. To obtain better results for the lower resolu-
tion images, some parameters of the algorithms need to be
adjusted.

Ligaments and tendons attachment sites may be used as
anatomical landmarks for registration purposes and in the
development of personalized biomechanical models.
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