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The article introduces a finite-volume method for the Darcy problem in heterogeneous 
anisotropic media. The method is based on the mixed formulation for the pressure and 
its gradient. The method is stable despite collocation of both pressure and its gradient 
at cell centers and demonstrates the first order convergence on numerous benchmarks 
as well as good monotonicity property. The method produces quasi-definite matrix, 
which is numerically shown to have good asymptotics of the condition number. Our 
flux discretization method is a realization of our more general concept of stable flux 
discretization for saddle-point systems with vector of several unknowns. In this paper this 
vector is composed of pressure and its gradient and the saddle-point system is the mixed 
formulation of the Darcy problem.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The cell-centered finite volume (FV) method is very popular due to conservation of the flux. However, the direct ap-
plication of the method to saddle-point systems suffers from violation of Ladyzhenskaya-Babus̃ka-Brezzi (LBB) condition 
[1]. We propose a FV method that is free of such instability for the diffusion problem generated by the Darcy law. Flows 
described by the Darcy law are fundamental in a number of subsurface engineering problems, such as petroleum reservoir 
engineering, environmental modeling, radionuclide migration. The subsurface media in the above applications is described 
by a heterogeneous permeability tensor. In terms of the basic Darcy problem this implies the anisotropic diffusion equation 
for which numerous FV methods have been proposed [2]. The mixed formulation of the Darcy problem with explicit de-
gree of freedom for the velocity is very useful for reservoir simulators involving nonlinear extensions of Darcy law, such as 
Darcy-Forchheimer law and Brinkman form of Darcy law. In these cases the elimination of the velocity degrees of freedom 
is not feasible due to their nonlinear relation. For the sake of LBB-stability of the FV discretization of saddle-point coupled 
problems, the staggered degrees of freedom are usually applied [3,4]: the velocity degrees of freedom are staggered on cell 
faces and the pressure degrees of freedom are collocated at cell centers. Staggering complicates the use of general grids and 
satisfaction of conservation principles, although some progress have been made in this direction [5]. The alternative way to 
meet the LBB condition is a combination of the Rhie-Chow interpolation [6] and the collocation method which has become 
ubiquitous in most industrial applications. However, the implicit application of such interpolation results in large numerical 
stencils of the discretization.
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We consider the mixed formulation of the Darcy problem in terms of pressure and its gradient and obtain a saddle-point 
system of differential equations. We apply the FV method with collocated at cell centers pressure and gradient unknowns 
directly to the system and give a stable expression for the discrete flux. The flux discretization is linear and has the two-
point stencil which is appealing in reservoir simulators. In addition, we suggest a general approach to incorporation of all 
boundary conditions (Dirichlet, Neumann, Robin) in the stable flux discretization. Another benefit of the method is that 
it avoids or at least minimizes spurious oscillations on non-K-orthogonal grids and retains the first order convergence, 
whereas the traditional linear two-point flux approximation FV method looses approximation properties [7]. We showed 
that there exists a solution of the produced linear system which has a quasi-definite matrix with good asymptotics of the 
condition number. We evaluate the method on a number of benchmarks and demonstrate the first order convergence and 
stability of the method.

The flux discretization technique suggested for the mixed formulation of the Darcy problem is a realization of our more 
general concept of stable flux discretization of saddle-point systems with vector of several unknowns (e.g. pressure and its 
gradient). The concept expresses a FV approximation of the vector flux on a cell face as a linear combination of collocated 
at neighboring cell centers unknown vectors with matrix coefficients. The latter matrices have non-negative eigenvalues 
and spectral radius less than one. For scalar unknowns this concept produces monotone FV methods. For vector unknowns 
this concept requires eigensplitting of the matrix which defines the discrete flux. The concept will be applied to other 
coupled problems of subsurface flow simulation such as the Biot equations and the incompressible elasticity equations. 
These problems will be addressed in subsequent papers. The idea of flux matrix eigensplitting is not new, it was suggested 
earlier for FV discretizations of Maxwell [8] and Navier-Stokes [9] equations on simple computational grids, in literature it 
is known as flux difference splitting and flux vector splitting [10], split upwinding [11].

This paper is organized as follows. In section 2 we give the mixed formulation of the Darcy problem and introduce 
the cell-centered FV method. In section 3 we address the stable flux discretization on interior mesh faces. In section 4
we discuss the stable flux discretization on boundary faces. In section 5 we give the numerical analysis of the scheme. In 
section 6 we present the numerical tests. The concluding remarks are collected afterwards.

2. Darcy problem and the finite volume method

We address the solution of the Darcy problem:{ −∇TK∇p = q in �,

αp + βK∇p · n = γ (x) on ∂�,
(1)

where p ∈ H1(�) is the pressure satisfying the Dirichlet boundary conditions on a Dirichlet part of the domain bound-
ary ∂�. The polyhedral domain � is covered by a polyhedral mesh �h , K is a given 3 × 3 symmetric positive definite 
permeability tensor piecewise-constant on each polyhedral cell.

The first equation in (1) can be rewritten in the mixed formulation:

−
[ ∇

∇TK 0

][
g
p

]
=
[−g

q

]
. (2)

Here g is the gradient of pressure. We note that g is not the Darcy velocity u =K∇p, though the latter can be easily 
recovered from g. Incorporation of the boundary condition is discussed in section 4.

Integrating (2) over a cell V ∈ �h and applying Gauss theorem we obtain:∮
∂V

[
n

nTK 0

][
g
p

]
dS =

∫
V

[
g

−q

]
dV . (3)

We rewrite (3) in the equivalent formulation:∑
f ∈F(V )

[
n f

nT
f K 0

][
g f
p f

]
| f |=

∑
f ∈F(V )

F| f | =
[

gV

−qV

]
|V |, (4)

where F(V ) is the set of faces of the cell V , | f | and |V | are area of the face f and volume of the cell V , respectively, p f
and g f are averaged pressure and its gradient on face f , gV and qV are averaged gradient and the source term on cell V .

The key question in the finite volume method is how to calculate the flux F on face f . From (4) the flux F is defined by 
matrix A:

F = A

[
g f
p f

]
, A =

[
n f

nT
f K 0

]
. (5)

The flux definition (5) involves matrix A whose negative eigenvalue may cause instability. To cope with this, we split 
matrix A into a sum of singular matrices
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A = A+ + A−, (6)

where A+ has one positive eigenvalue and A− has one negative eigenvalue,

A± = 1

2

[
±m−1n f nT

f K n f

nT
f K ±m

]
= N±

[
K

1

]
, (7)

with

N± ≡ 1

2

[
±m−1n f nT

f n f

nT
f ±m

]
= 1

2

[±m−1n f
1

][
nT

f ±m
]
. (8)

In principle, any choice of positive m is possible, however, consideration of impermeable material suggests K-dependence 
of m. Splitting (6) is used for stabilization of otherwise unstable flux defined by (5).

3. Flux discretization on interior faces

Let f be an interior face shared by cells V 1 and V 2, f = V 1 ∩ V 2. The normal n f of face f is directed from V 1 towards 
V 2. The idea behind the stabilization of the discrete flux is to use the matrix coefficient with a negative eigenvalue for the 
values collocated at cell V 1 and the matrix coefficient with a positive eigenvalue for the values collocated at cell V 2. Let K1

and K2 be the permeability tensors at V 1 and V 2, respectively. Let matrix coefficients A1 = A+
1 + A−

1 and A2 = A+
2 + A−

2
be splittings (6)-(7) defined by K1 and K2, respectively. Let also g f ,1 and g f ,2 be the gradients of pressure on interface f
from the side of V 1 and V 2, respectively. We write one-sided first-order discretizations of flux (5) on f :

F = A−
1

([
g1
p1

]
+ O (h)

)
+ A+

1

[
g f ,1
p f

]
= A+

2

([
g2
p2

]
+ O (h)

)
+ A−

2

[
g f ,2
p f

]
. (9)

Due to (2) the Darcy velocity belongs to the space H(div, �) and so its normal component is continuous, nT
f u f =

nT
f K1g f ,1 = nT

f K2g f ,2, whereas due to factorization of N± in (8) only normal component of u f is required in (9). Therefore, 
the face degrees of freedom nT

f u f and p f can be eliminated from the continuity equation (9) and the flux discretization 
becomes:

F = N+
1

(
N+

1 − N−
2

)†
A+

2

[
g2
p2

]
− N−

2

(
N+

1 − N−
2

)†
A−

1

[
g1
p1

]
+ O (h), (10)

where pseudo-inverse matrix 
(
N+

1 − N−
2

)†
is

(
N+

1 − N−
2

)† =
(

m1 + m2

2

[
(m1m2)

−1 n f nT
f 0

0T 1

])†

= 2

m1 + m2

[
m1m2n f nT

f 0
0T 1

]
, (11)

for any positive m1 and m2.
Plugging (11) into (10) gives:

F = 1

m1 + m2

([
n f nT

f K2 m2n f

m1nT
f K2 m1m2

][
g2
p2

]
+
[

−n f nT
f K1 m1n f

m2nT
f K1 −m1m2

][
g1
p1

])
+ O (h). (12)

Note that in (12) we obtain the matrix coefficient for the degrees of freedom collocated at cells V i with one non-zero 
eigenvalue (−1)i(nT

f Kin + m1m2)/(m1 + m2). Formula (12) defines the discrete flux on interior faces f contributing to (4).

4. Flux discretization on boundary faces

Let f be a boundary face belonging to cell V 1 with permeability K1. The center of f is denoted by x f , the normal n f

is oriented outwards of V 1. The flux on the boundary is approximated with the first order of accuracy by:

F = Ã+
[

g f
p f

]
+ Ã−

([
g1
p1

]
+ O (h)

)
. (13)

The singular matrices Ã+ and Ã− are chosen so that A = Ã+ + Ã− and the use of face degrees of freedom g f and p f

may be replaced by the boundary condition in (1)[
βnT

f K1 α
][ g f

p

]
= γ f , (14)
f
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where γ f = 1

| f |
∫
f

γ (x)dS .

We consider two non-symmetric splittings of A. The first splitting is based on matrices Ã+
D and Ã−

D for Dirichlet type 
boundary conditions:

Ã+
D =

[
n f

0T m1

]
, Ã−

D =
[

nT
f K1 −m1

]
. (15)

Splitting (15) does not require the values of g f to calculate (13). The second splitting is based on matrices Ã+
N and Ã−

N for 
Neumann type boundary conditions:

Ã+
N =

[
m−1

1 n f nT
f K1 0

nT
f K1 0

]
, Ã−

N =
[−m−1

1 n f nT
f K1 n f

0

]
. (16)

Splitting (16) does not require the value of p f to calculate (13).
Finally, we define

Ã± = μD Ã±
D + μN Ã±

N , μD = α

α + βm1
, μN = βm1

α + βm1
. (17)

Factorization of matrices Ã+
D and Ã+

N

Ã+
D =

[
n f
m1

][
0T 1

]
, Ã+

N = m−1
1

[
n f
m1

][
nT

f K1 0
]

(18)

results in the simple definition of Ã+:

Ã+ = 1

α + βm1

[
n f
m1

][
βnT

f K1 α
]
. (19)

Note that (19) requires only the boundary condition (14) to calculate (13). The final expression for flux (13) is:

F = 1

α + βm1

([
n f
m1

]
γ f +

[
−βn f nT

f K1 βm1n f

αnT
f K1 −αm1

][
g1
p1

])
+ O (h). (20)

Formula (20) defines the discrete flux needed to calculate (4) on boundary face f . Definition (20) provides the first-
order approximation. The matrix Ã− has one non-zero eigenvalue λ = β+αm1

α+βm1
. In our numerical experiments we use 

mi =
(

nT
f Kin f

)3/2
for interior and boundary faces. This choice of mi minimizes overshoots and undershoots of the nu-

merical solution. We chose the parameter mi basing on trial and error: according to our experience, small parameters mi
destroy solution monotonicity, whereas large parameters mi deteriorate convergence rate to zero.

5. Numerical analysis

The numerical analysis is done under the following assumptions:

Assumption 1. The mesh �h is simply-connected.

Assumption 2. The permeability tensor K is symmetric positive-definite on all the cells of the mesh �h .

Let |V(�h)| denote the number of mesh cells and global vectors g ∈ �3|V(�h)| and p ∈ �|V(�h)| represent gradients and 
pressures at mesh cells. Let matrices Ig1 ∈ �3|V(�h)|×3 and I p1 ∈ �|V(�h)|×1 denote the elementary assembling matrices for 
local gradient g1 and pressure p1 unknowns, i.e. Ig1 has one unity in each column and zeros in the other entries and I p1

has the only unity so that

I T
g1

g = g1, I T
p1

p = p1, (21)

for global gradient g and global pressure p vectors. For each pair of neighboring cells we define face assembling matrices 
Ig1,2 ∈ �3|V(�h)|×6 and I p1,2 ∈ �|V(�h)|×2:

Ig1,2 = [ Ig1 Ig2

]
, I p1,2 = [ I p1 I p2

]
. (22)

During the assembling of the linear system, the contribution of fluxes on internal faces (12), boundary faces (20) and 
right hand side to the system matrix J is represented by blocks:
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J

[
g
p

]
=

∑
f ∈F(�h\∂�h)

| f |
m1 + m2

[
Ig1,2

I p1,2

]⎡⎢⎢⎢⎣
n f nT

f K1 −n f nT
f K2 −m1n f −m2n f

−n f nT
f K1 n f nT

f K2 m1n f m2n f

−m2nT
f K1 −m1nT

f K2 m1m2 −m1m2

m2nT
f K1 m1nT

f K2 −m1m2 m1m2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

g1
g2
p1
p2

⎤⎥⎥⎦
+

∑
f ∈F(∂�h)

| f |
α + βm1

[
Ig1

I p1

][
βn f nT

f K1 −βm1n f

−αnT
f K1 αm1

][
g1
p1

]

+
∑

V 1∈V(�h)

|V 1|
[

Ig1

I p1

][
g1
0

]
,

(23)

where F(�h \ ∂�h), F(∂�h) and V(�h) are the set of internal faces, boundary faces and cells, respectively.
The assembling results in a matrix with 2 × 2 block form that can be factorized:

J

[
g
p

]
=
[

AK + V B1

BT
2 K C

][
g
p

]
=
[

A + V K −1 B1

BT
2 C

][
K

I

][
g
p

]
= Ju

[
K g
p

]
, (24)

here K = diag(K1, K2, ...Kn) is the block-diagonal matrix of permeabilities, V = diag(|V 1|I, |V 2|I, ...|Vn|I) is the block-
diagonal matrix of cell volumes. Matrix Ju corresponds to the formulation with Darcy velocity K g. Under Assumptions 1
and 2, matrix A is generalized symmetric block irreducible Z-matrix with positive-definite diagonal blocks, negative semi-
definite off-diagonal blocks, zero block row-sum for internal cells and positive semi-definite block row-sum on cells next 
to the boundary with non-zero β , matrix C is symmetric irreducible M-matrix with zero row-sum for internal cells and 
positive row-sum on cells next to the boundary with non-zero α. According to [12], matrix C is positive semi-definite in 
general and is definite if α is nonzero on a part of ∂�h . According to [13], matrix A is a generalized M-matrix, that does 
not imply the invertibility of A.

Lemma 1. Matrix A + V K −1 is positive definite.

Proof. V K −1 is positive definite under Assumption 2. Matrix A is assembled from positive semi-definite factors of rank 1:

AK g =
∑

f ∈F(�\∂�)

| f |
m1 + m2

Ig1,2

[
n f

−n f

][
nT

f −nT
f

][K1g1
K2g2

]
+

∑
f ∈F(∂�)

β| f |
α + βm1

Ig1 n f nT
f

[
K1g1

]
. (25)

Therefore, matrix A + V K −1 is positive definite. �
Lemma 2. Matrix Ju is weakly quasi-definite.

Proof. Matrix A + V K −1 is positive definite. Matrix C is positive semi-definite and may have a kernel associated with a 
constant vector. If we show that B1 = −B2, then matrix Ju is symmetric provided we flip the sign for equations associated 
with pressure and hence it is weakly quasi-definite. The assembling of B1 and BT

2 matrices gives:

B1 p =
∑

f ∈F(�h\∂�h)

| f |
m1 + m2

Ig1,2

[
I2×2 ⊗ n f

][−m1 −m2
m1 m2

][
p1
p2

]
+

∑
f ∈F(∂�h)

−βm1| f |
α + βm1

Ig1 n f p1,

BT
2 K g =

∑
f ∈F(�h)

| f |
m1 + m2

I p1,2

[−m2 −m1
m2 m1

][
I2×2 ⊗ nT

f

][K1g1
K2g2

]
+

∑
f ∈F(∂�h)

−α| f |
α + βm1

I p1 nT
f K1g1

=
∑

f ∈F(�h\∂�h)

I p1,2

(
| f |
[−1

1

]
− | f |

m1 + m2

[−m1 −m2
m1 m2

]T
)[

I2×2 ⊗ nT
f

][K1g1
K2g2

]

+
∑

f ∈F(∂�h)

I p1

(
| f | [−1

]+ βm1| f |
α + βm1

)
nT

f K1g1

= −
∑

V 1∈V(�h)

I p1

⎛⎝ ∑
f ∈F(V 1)

| f |nT
f

⎞⎠K1g1 − BT
1 K g = −BT

1 K g,

(26)

since 
∑

f ∈F(V 1)

| f |nT
f = 0T , where F(V 1) denotes the set of faces for cell V 1 and normal n f is directed outwards of V 1. 

Formula (26) implies B1 = −B2 and weak quasi-definiteness of Ju . �
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Fig. 1. Grids for benchmarks with known analytic solution: hexagonal (left), square (middle), oblique barrier (right).

Theorem 3. The solution to the FV problem (4), (12), (20) exists.

Proof. When Dirichlet boundary condition is present on a part of ∂�h , at least one row-sum of matrix C is positive and 
the matrix is positive-definite, thus the inverse of Ju is quasi-definite according to [14] and the solution to the system (4), 
(12), (20) exists. When only Neumann boundary condition is set, then matrix C is semi-definite and according to [14,15] a 
non-unique solution exists due to the fact that pseudo-inverse of Ju is a weakly quasi-definite matrix. �
6. Numerical experiments

6.1. Problems with known analytic solutions

We consider 2D benchmark problems with known analytic solutions: mild anisotropy, strong anisotropy and oblique 
barrier (tests 1.1, 5 and 7 in [16]), non-symmetric tensor (test 3 in [17]), discontinuous tensor modified for 2D (test 4 from 
[18]), locking problem with Neumann boundary condition, anisotropy parameter ε = 10−5 and constraint on zero pressure 
integral (definition close to [19]). The computational domain is � = [0, 1]2, its boundary ∂� is of Dirichlet type for all the 
problems except the locking problem. We measure L2-norms of errors in discrete pressure ph and Darcy velocity uh =Kgh . 
The FV solutions are calculated on grids presented schematically in Fig. 1. The grids for the oblique barrier problem and the 
problem with discontinuous tensor are aligned with tensor discontinuities. All these benchmarks are challenging and are 
used to test the robustness of discretization methods.

The accuracy of the numerical solution is presented in Table 1. The convergence rate demonstrated by the method for 
the Darcy velocity on average is 0.8. Note that the choice mi = 1 provides O (h) convergence with possible violations of 

the discrete maximum principle. Thus we prefer to use mi =
(

nT
f Kin f

)3/2
. For the locking problem on hexagonal grid, the 

convergence is almost lost for the pressure, in other cases the numerical pressure demonstrates close to the first order 
convergence. In all the problems except for the locking problem, the boundary conditions are of Dirichlet type. The locking 
problem is non-singular due to additional constraint on pressure integral. We estimate the condition number of J , cond( J ), 
as the ratio of the spectral radii of J and J−1. Table 1 demonstrates O (h−1) asymptotics of cond( J ).

6.2. Problems with wells

First, we test the method on two problems which are used to assess monotonicity of the method. The first problem has 
two wells separated by a small number of cells and homogeneous Neumann boundary condition on the outer boundary. 
The second problem has a well in the middle of the domain and homogeneous Dirichlet boundary condition on the outer 
boundary. In both problems the permeability tensor K is strongly anisotropic, with rotated axes of anisotropy, the wells 
are represented by square holes with given Dirichlet boundary conditions (0 and 1 on each of two wells, 1 on the single 
well) [20]. According to the maximum principle, in both problems the differential solution belongs to [0, 1]. Our numerical 
solution of the first problem remains in the interval [0.0316, 0.968] on the coarse 11 × 11 grid and [0.000696, 0.9993] on 
the fine 88 × 88 grid. The condition numbers are cond( J ) = 575289 on 11 × 11 grid and cond( J ) = 4.697 × 106 on 88 × 88
grid, that indicates to O (h−1) asymptotics (see Fig. 2).

The numerical solution of the second problem has a tiny undershoot: it belongs to [−0.00018 : 0.809] on 9 × 9 grid, 
[−8.64 × 10−5 : 0.976] on 54 × 54 grid and [−1.31 × 10−6 : 0.995] on 216 × 216 grid (each grid is generated by a random 
perturbation of a square grid). The condition number exhibits O (h−1) asymptotics as well: cond( J ) = 481120 on 9 × 9 grid, 
cond( J ) = 2.884 × 106 on 54 × 54 grid, cond( J ) = 1.154 × 107 on 216 × 216 grid. Tiny violation of the discrete maximum 
principle (DMP) is not surprising: to the best of our knowledge and [21], no consistent linear FV method with a compact 
stencil can provide the DMP for a general Darcy problem (see Fig. 3).

Second, we consider a grid with non-flat faces and a heterogeneous permeability field from the realistic Norne field pro-
vided by the open porous media initiative data [22]. In order to apply properly the method, we have to ensure that the diver-
gence is zero for a constant function on each cell of the mesh. To this end, we triangulated non-flat mesh faces and applied 
(4) for general polyhedral cells. We setup three wells with prescribed bottom hole pressure which define the right hand 
side in (4) qV = W I

(
pV ,bhp − pV i

)
. We place the wells at the cells located at xV 1 = (4.567 × 105, 7.321 × 106, 2.768 × 103), 
i
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Table 1
Error norms and condition numbers of J for the problems with analytic solution.

Problem \ h−1 8 16 32 64 128 256

Mild anisotropy 
rectangular

||ph − p||L2 0.43 0.223 0.114 0.0584 0.0296 0.0149
order – 0.95 0.961 0.971 0.981 0.988
||uh − u||L2 2.25 1.428 0.84 0.472 0.259 0.14
order – 0.657 0.765 0.83 0.867 0.889
cond( J ) 58.8 117.6 234.8 469.9 939.9 1879.4

Mild anisotropy 
hexagonal

||ph − p||L2 0.412 0.217 0.112 0.0568 0.0287 0.0144
order – 0.924 0.959 0.976 0.986 0.992
||uh − u||L2 2.04 1.286 0.769 0.447 0.256 0.146
order – 0.667 0.743 0.782 0.801 0.809
cond( J ) 68.6 120 215.1 397.4 759.4 1481.1

Strong anisotropy 
rectangular

||ph − p||L2 0.788 0.463 0.276 0.16 0.091 0.05
order – 0.767 0.749 0.784 0.821 0.853
||uh − u||L2 0.202 0.12 0.074 0.048 0.0314 0.0209
order – 0.753 0.69 0.63 0.606 0.59
cond( J ) 116.2 315.4 692.7 1419.9 2856.8 5718.5

Strong anisotropy 
hexagonal

||ph − p||L2 0.85 0.531 0.314 0.177 0.097 0.052
order – 0.681 0.757 0.824 0.872 0.907
||uh − u||L2 0.223 0.145 0.102 0.0725 0.0502 0.0337
order – 0.622 0.512 0.486 0.53 0.576
cond( J ) 174.6 422.9 1006 2059.1 3925.1 7160.2

Non-symmetric 
tensor 
rectangular

||ph − p||L2 0.0267 0.0198 0.013 0.0078 0.00436 0.00234
order – 0.434 0.603 0.742 0.838 0.899
||uh − u||L2 0.577 0.4 0.252 0.149 0.0844 0.0467
order – 0.528 0.665 0.76 0.819 0.853
cond( J ) 32 63.99 130.5 268.5 551.8 1115.3

Non-symmetric 
tensor 
hexagonal

||ph − p||L2 0.02 0.0146 0.00926 0.0535 0.00291 0.00153
order – 0.471 0.656 0.791 0.876 0.928
||uh − u||L2 0.464 0.32 0.202 0.122 0.0714 0.0414
order – 0.536 0.662 0.734 0.769 0.784
cond( J ) 33.7 59 107.1 204.6 404.8 815

Locking 
rectangular

||ph − p||L2 546.2 273.1 136.6 68.3 34.14 17.07
order – 1 1 1 1 1
||uh − u||L2 0.000818 0.000421 0.000214 0.000107 5.37 × 10−5 2.67 × 10−5

order – 0.958 0.979 0.992 1 1.007
cond( J ) 1.01 × 1010 1.01 × 1010 1.02 × 1010 1.04 × 1010 1.08 × 1010 1.16 × 1010

Locking 
hexagonal

||ph − p||L2 0.7 0.697 0.694 0.688 0.677 0.657
order – 0.00613 0.00664 0.0123 0.0235 0.0435
||uh − u||L2 0.00231 0.00122 0.000665 0.000377 0.000222 0.000139
order – 0.923 0.873 0.821 0.762 0.681
cond( J ) 43061.2 154369 582511 2.26 × 106 8.9 × 106 3.52 × 107

Oblique 
barrier

||ph − p||L2 0.00878 0.00486 0.00258 0.00134 0.000685 0.000347
order – 0.854 0.912 0.946 0.968 0.982
||uh − u||L2 0.0607 0.03 0.0149 0.00743 0.00371 0.00186
order – 1.016 1.012 1.004 1.0001 0.999
cond( J ) 4379.9 7502.8 8581.3 8774.3 13141.1 26326.7

Discontinuous 
tensor 
rectangular

||ph − p||L2 0.166 0.091 0.0484 0.0252 0.0129 0.00652
order – 0.866 0.91 0.944 0.967 0.981
||uh − u||L2 2.335 1.326 0.724 0.387 0.204 0.107
order – 0.816 0.872 0.905 0.923 0.934
cond( J ) 373.4 734.4 1451.7 2882.9 5734.4 11463.8

xV 2 = (4.609×105, 7.323×106, 2.598×103) and xV 3 = (4.595×105, 7.326×106, 2.803×103), the well index is prescribed for 
all three wells by W I = 50000, the bottom hole pressures are pV 1,bhp = 265, pV 2,bhp = 105 and pV 3,bhp = 110. All the outer 
boundaries have Neumann type boundary condition. The numerical pressure belongs to the interval [105.121 : 264.872], i.e. 
remains within the bounds provided by the pressure on the wells. The pressure and the Darcy velocity magnitude in a grid 
slice are presented in Fig. 4.

Conclusion

We have introduced the first-order finite-volume method for the mixed formulation of the Darcy problem. The method 
does not suffer from the LBB-type instability although pressure and its gradient are collocated at cell centers. The future 
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Fig. 2. Pressure in test with two wells on 11 × 11 grid (left) and 88 × 88 grid (right). (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Fig. 3. Pressure in test with single well on 54 × 54 grid (left) and 216 × 216 grid (right).

Fig. 4. Pressure (left) and Darcy velocity magnitude (right) in a grid slice of the Norne field grid. The green color on the image with velocity magnitude 
indicates that velocity is over 25.

directions are extension of the method to the second order of accuracy, applications to nonlinear multiphase flows, and 
other problems such as the Biot equations and the incompressible elasticity equations.
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