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Abstract This work is devoted to the new hybrid method for solving a coupled sys-
tem of advection–diffusion equations posed in a bulk domain and on an embedded
surface. Systems of this kind arise in many engineering and natural science appli-
cations, but we consider the modeling of contaminant transport in fractured porous
media as an example of an application. Fractures in a porous medium are considered
as sharp interfaces between the surrounding bulk subdomains. The method is based
on a monotone nonlinear finite volume scheme for equations posed in the bulk and
a trace finite element method for equations posed on the surface. The surface is not
fitted by the mesh and can cut through the background mesh in an arbitrary way. The
background mesh is an octree grid with cubic cells. The surface intersects an octree
grid and we get a polyhedral octree mesh with cut-cells. The numerical properties
of the hybrid approach are illustrated in a series of numerical experiments with dif-
ferent embedded geometries. The method demonstrates great flexibility in handling
curvilinear or branching embedded structures.
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1 Introduction

At a recent time, there has been a growing interest in developing methods for the
numerical treatment of systems of coupled bulk–surface PDEs. Different approaches
can be distinguished depending on how the surface is recovered and equations are
treated. If a tetrahedral tessellation of the volume is available that fits the surface,
then it is natural to introduce finite element spaces in the volume and on the induced
triangulation of the surface. Unfitted finite element methods allow the surface to cut
through the background tetrahedral mesh. In the class of finite element methods also
known as cutFEM,Nitsche-XFEMorTraceFEM, standard backgroundfinite element
spaces are employed, while the integration is performed over cut domains and over
the embedded surface [2]. The benefits of the unfitted approach are the efficiency
in handling implicitly defined surfaces, complex geometries, and the flexibility in
dealing with evolving domains. The hybrid method described in this paper belongs
to the general class of unfitted methods.

If the finite element method is used for the bulk problem, then it is natural to con-
sider a finite element method for surface PDE as well. However, other discretizations
such as finite volume or finite difference methods can be preferred for the PDE posed
in the volume.

This paper develops a numerical method based on the sharp-interface represen-
tation, which uses a FV-method to discretize the bulk PDE. Our goal is (i) to allow
the surface to overlap with the background mesh in an arbitrary way, (ii) to avoid
regular triangulating the surface, (iii) to avoid any extension of the surface PDE to
the bulk domain. To achieve these goals, we combine the monotone (i.e. satisfying
the discrete maximum principle) finite volumemethod on general meshes [4, 6] with
the trace finite element method on octree meshes from [5]. In the octree TraceFEM
one considers the bulk finite element space of piecewise trilinear continuous func-
tions and further uses the restrictions (traces) of these functions to the surface. These
traces are further used in a variational formulation of the surface PDE. Effectively,
this results in the integration of the standard polynomial functions over the (recon-
structed) surface. Only degrees of freedom from the cubic cells cut by the surface
are active for the surface problem. Surface parametrization is not required, no sur-
face mesh is built, no PDE extension of the surface is needed. The resulting hybrid
FV–FE method is very robust with respect to the position of surfaces against the
background mesh and is well suited for handling non-smooth surfaces and surfaces
given implicitly.

While the present technique can be applied for tetrahedral or more general poly-
hedral tessellations of the bulk domain, we use octree grid with cubic cells here.
The Cartesian structure and built-in hierarchy of octree grids makes mesh adapta-
tion, reconstruction and data access fast and easy. However, an octree grid provides
only the first order (staircase) approximation of a general geometry. Allowing the
surface to cut through the octree grid in an arbitrary way overcomes this issue, but
challenges us with the problem of building efficient bulk–surface discretizations.
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We demonstrate that the hybrid TraceFEM–non-linear FV method complements the
advantages of using octree grids by delivering the higher order accuracy for both
bulk and surface numerical solutions.

2 Mathematical Model

Consider the bulk domainΩ ⊂ R
3 and a piecewise smooth surface Γ ⊂ Ω . The sur-

face Γ may have several connected components. If Γ has a boundary, for simplicity
we assume that ∂Γ ⊂ ∂Ω , but the model can be extended to immersed surfaces.
Thus, we have the subdivision Ω = ∪i=1,...,NΩ i into simply connected subdomains
Ωi such that Ω i ∩ Ω j ⊂ Γ , i �= j .

In each Ωi , we assume a given Darcy velocity field of the fluid wi (x), x ∈ Ωi .
By wΓ (x), x ∈ ΩΓ , we denote the velocity field tangential to Γ having the physical
meaning of the flow rate through the cross-section of the fracture. Consider an agent
that is soluble in the fluid and transported by the flow in the bulk and along the frac-
tures. The fractures are modeled by the surface Γ . The solute volume concentration
is denoted by u, ui = u|Ωi . The solute surface concentration along Γ is denoted by
v. Change of the concentration happens due to convection by the velocity fields wi

andwΓ , diffusive fluxes in Ωi , diffusive flux on Γ , as well as the fluid exchange and
diffusion flux between the fractures and the porous matrix. These coupled processes
can be modeled by the following system of equations [1], in subdomains,

⎧
⎨

⎩

φi
∂ui
∂t

+ div(wi ui − Di∇ui ) = fi in Ωi ,

ui = v on ∂Ω i ∩ Γ,

(1)

and on the surface,

φΓ

∂v

∂t
+ divΓ (wΓ v − dDΓ ∇Γ v) = FΓ (u) + fΓ on Γ, (2)

where we employ the following notations: ∇Γ , divΓ denote the surface tangential
gradient and divergence operators; FΓ (u) stands for the net flux of the solute per
surface area due to fluid leakage and hydrodynamic dispersion; fi and fΓ are given
source terms in the subdomains and in the fracture; Di denotes the diffusion tensor
in the porous matrix; the surface diffusion tensor is DΓ . Both Di , i = 1, . . . , N ,
and DΓ are symmetric and positive definite; d > 0 is the fracture width coefficient;
φi > 0 and φΓ > 0 are the constant porosity coefficients for the bulk and the fracture.

The total surface flux FΓ (u) represents the contribution of the bulk to the solute
transport in the fracture. The mass balance at Γ leads to the equation

FΓ (u) = [−Dn · ∇u + (n · w)u]Γ , (3)
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where n is a unit normal vector at Γ , [w(x)]Γ denotes the jump of w across Γ in the
direction of n.

If Γ is piecewise smooth, we need additional conditions on the edges, assuming
the continuity of concentration, conservation of fluid mass and solute flux. Also we
add Dirichlet’s boundary conditions for the concentration u and v on ∂ΩD and ∂Γ D

and homogeneous Neumann’s boundary conditions on ∂ΩN and ∂Γ N , respectively.
Initial conditions are given by the known concentration u0 and v0 at t = 0.

3 Hybrid Finite Volume–Finite Element Method

To produce a grid with an octree hierarchical structure we assume a Cartesian back-
ground mesh with cubic cells and allow local refinement of the mesh by sequential
division of any cubic cell into 8 cubic subcells. This mesh gives the tessellation Th

of the computational domain Ω , Ω = ∪T∈Th T . The surface Γ ⊂ Ω cuts through
the mesh in an arbitrary way. For the purpose of numerical integration, instead of Γ

we consider Γh , a given polygonal approximation of Γ . We assume that similar to
Γ , the reconstructed surface Γh dividesΩ into N subdomainsΩi,h , and ∂Γ h ⊂ ∂Ω .
We do not imply any restrictions on how Γh intersects the background mesh. The
reconstructed surface Γh is a C0,1 surface that can be partitioned in planar triangular
elements:

Γh =
⋃

K∈Fh

K , (4)

whereFh is the set of all triangular segments K . In practice, we construct Γh using
Multi-material cubical marching squares algorithm [3].

The induced tessellation of Ωi,h can be considered as a subdivision of the volume
into general polyhedra. LetTi,h be the tessellation of Ωi,h into non-intersected poly-
hedra. For the transport and diffusion in the matrix we apply a non-linear FVmethod
devised on general polyhedral meshes in [4], which is monotone and has compact
stencil. The trace of the background mesh on Γh induces a ‘triangulation’ of the
fracture, which is very irregular, and so we do not use it do build a discretization
method. To handle transport and diffusion along the fracture, we first consider finite
element space of piecewise trilinear functions for the volume octree mesh Th . We
further, formally, consider the restrictions (traces) of these background functions on
Γh and use them in a finite element integral form over Γh . Thus the irregular triangu-
lation of Γh is used for numerical integration only, while the trial and test functions
are tailored to the background regular mesh. It appears that the properties of this
trace finite element method are driven by the properties of the background mesh, and
they are independent on how Γh intersects Th . The TraceFEM was devised and first
analysed in [7] and extended for the octree meshes in [5]. A natural way to couple
two approaches is to use the restriction of the background FE solution on Γh as the
boundary data for the FV method and to compute the FV two-side fluxes on Γh to
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provide the source terms for the surface discrete equation. Further we provide details
of the coupling between discrete bulk and surface equations.

The equations in the bulk and on the surface are coupled through the boundary
condition ui = v on ∂Ωi,h ∩ Γh (second equation in (1)) and the net flux FΓh (u) on
Γh , which stands as the source term in the surface Eq. (2). On Γh the solution vh is
defined as a trace of the background finite element piecewise trilinear function. The
averaged value of vh is computed on each surface triangle K ∈ Fh using a standard
quadrature rule. These values assigned to the barycenters of K from Fh serve as
the Dirichlet boundary data for the FV method on Γh . The discrete diffusive and
convective fluxes are assigned to barycenters of all faces onTi,h , i = 1, . . . , N . Since
each triangle K ∈ Fh is a face for two neighbouring cells Ti ∈ Ti,h and Tj ∈ T j,h ,
i �= j , the diffusive and convective fluxes are assigned to K from both sides of Γh .
The discrete net flux FΓh (uh) at the barycenter of K is computed as the jump of the
fluxes over K . In the TraceFEM this value is assigned to all x ∈ K , and numerical
integration is done over all surface elements K ∈ Fh to compute the right-hand side
of the algebraic system.

To satisfy all discretized equations and boundary conditions we iterate between
the bulk FV and surface FE solvers on each time step. We assume an implicit time
stepping method (in experiments we use backward Euler). This results in the follow-
ing system on each time step:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L u := φ̃u + div(wu − D∇)u = f̂ in Ω \ Γ,

u = v on Γ,

n∂Ω · ∇u = 0 on ∂ΩN , u = uD on ∂ΩD,

LΓ v := φ̃Γ v + divΓ (wΓ v − dDΓ ∇Γ v) = FΓ (u) + f̂Γ on Γ,

n∂Γ · ∇v = 0 on ∂Γ N , v = vD on ∂Γ D,

(5)

the right hand sides f̂ , f̂Γ account for the solution values at the previous time step.
For the sake of brevity we will not describe the iterative process in this paper and

continue with numerical experiments.

4 Numerical Results

This section shows several numerical examples, which demonstrate the accuracy and
capability of the hybrid method. Here we confine only steady problems. For unsteady
problem with given reference solution we observe that the computed solution well
approximates the reference one; the computed front has the correct position and not
too much smeared, we do not observe overshoots or undershoots in vh .
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4.1 An Example with a Smooth Curved Surface

The first experiment deals with the case when Γ is a smooth surface embedded in
a bulk domain Ω . Consider Γ – the unit sphere centered at the origin and Ω =
[−1, 1]3. By Ω1 we denote the interior of Γ , Ω2 denotes the exterior part of Ω .
Let v(x) = (−y

√
1 − z2, x

√
1 − z2, 0)T . The transport velocity field is set to be

wΓ (x) = v(x) for x ∈ Γ , wi (x) = v(x) + 0.1si , s1 = (1, 1, 0)T , s2 = (2, 1, 0)T .

Other parameters in (1), (2) are set to be D1 = D2 = I , DΓ = 10I , I ∈ R
3×3 is the

identity tensor, d = 0.1. In this test we solve for a steady-state solution, so we set
φ1 = φ2 = φΓ = 0.

For the exact solution on the surface we take v(x) = xy arctan (2z) on Γ .
In Ω2 the bulk concentration u2 is defined by the same formula as v, and in Ω1

the bulk concentration is defined by the equality

u1(x) = xy arctan (2z) · exp(1 − |x|2) in Ω1.

The concentration is continuous across Γ , i.e. the second equation in (1) is satisfied.
However, the diffusive flux in (3) is discontinuous across Γ .

We prescribe Dirichlet boundary conditions on ∂Ω . The source terms fi and fΓ
are computed such that the triple {v, u1, u2} solves the stationary Eqs. (1)–(2).

Next we apply non-uniform refinement of the bulk mesh, starting with a uniform
grid and h = 1

4 .On each refinement step the cells intersected by the surface are refined
four times, and the mesh in the bulk is refined one time. The mesh is gradely refined
between the surface and bulk cells, see Fig. 1 (right). Table1 shows the convergence
results for themethod on the sequence of locally refined grids. The computed solution
after one refinement step is demonstrated in Fig. 1. The convergence rates for the
fracture solution varies because the refinement is not uniform, but asymptotically the
second order can be observed.

Fig. 1 Left: Induced surface mesh and the computed solution on the surface. Right: Cutaway of
the bulk mesh after one step of local refinement
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Table 1 Convergence of numerical solutions in the experiment with a smooth curvedΓ and locally
refined bulk meshes as in Fig. 1

#d.o.f. L2-norm rate H1-norm rate L∞-norm rate

3D 120 1.139e-2 1.447e-1 2.817e-2

3576 3.457e-3 1.72 5.602e-2 1.37 2.582e-2 0.13

74176 9.631e-4 1.84 2.111e-2 1.41 7.609e-3 1.76

2D 100 1.043e-2 1.020e-1 1.938e-2

1628 1.506e-3 2.79 5.118e-2 0.99 6.467e-3 1.58

26724 6.134e-4 1.30 2.652e-2 0.95 3.980e-3 0.70

4.2 Steady Analytical Solution for a Triple Fracture Problem

Consider the coupled surface–bulk diffusion problem in the domainΩ = [0, 1]3 with
an embedded piecewise planar Γ . We design Γ to model a branching fracture. In
the basic model, Γ = Γ (0) consists of three planar pieces, Γ (0) = Γ12 ∪ Γ13 ∪ Γ23,
Γi j = Ωi ∩ Ω j i �= j , such that Ω1 = {x ∈ Ω | x < 0.5 and y > x}, Ω2 = {x ∈
Ω | x > 0.5 and y > x − 1}, Ω3 = Ω \ (Ω1 ∪ Ω2).

To model a generic situation when Γ cuts through the background mesh in an
arbitrary way, we consider the tessellations of Ω = [0, 1]3 into three subdomains by
a surface Γ (α). The surface Γ (α) is obtained from Γ (0) by applying the clockwise
rotation by the angle α around the axis x = z = 0.5. We show the results with α =
20o. The resulting tessellation of Ω and surfaces mesh are illustrated in Fig. 2.

Fig. 2 The figure illustrates the bulk domain with uniform mesh and the surface mesh on the
fracture, rotated by 20 degrees
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Table 2 The error in the numerical solution for the steady problem with triple fracture, α = 20

#d.o.f. L2-norm rate L∞-norm rate

3D 965 6.319e-3 3.754e-2

7872 1.805e-3 1.79 1.280e-2 1.55

63592 5.623e-4 1.80 3.411e-3 1.90

2D 321 7.792e-3 2.716e-2

1692 2.084e-3 1.59 5.400e-3 1.94

7944 7.019e-4 1.41 2.001e-3 1.29

To define the solution {v, u} solving the stationary Eq. (1), we introduce

ψ1 =
{
16(y − 1

2 )
4, y > 1

2
0, y ≤ 1

2
, ψ2 = x − y, ψ3 = x + y − 1.

We define the solution of the basic model problem (α = 0)

u(x) =
⎧
⎨

⎩

sin(2π z) · ψ2(x) · φ3(x) x ∈ Ω1,

sin(2π z) · ψ1(x) x ∈ Ω2,

sin(2π z)2x · ψ1(x) x ∈ Ω3,

v = u|Γ (0).

The solution for the problem with rotated fracture is obtained by applying the
same rotation. Other parameters are set to be w = wΓ = 0, φi = φΓ = 0, Di = I ,
DΓ,i = 10I for i = 1..3, and d23 = 0.1, d13 = d12 = 0.1√

2
. An interesting feature of

this problem is that the surface Γ is only piecewise smooth. The bulk grid is not
fitted to the internal edge E = Γ12 ∩ Γ13 ∩ Γ23, and hence the tangential derivatives
of v are discontinuous inside certain cubic cells from T Γ

h . We have the situation,
when a kink in v is not resolved in the finite element spaces. This is well-known to
result in the 1

2 -reduction of convergence order. This suboptimal order for a sequence
of uniform background meshes is demonstrated by the results in Table2.
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