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a b s t r a c t 

In this paper we analyze and investigate numerically a monolithic finite element method for the in- 

compressible Navier–Stokes equations coupled to the Saint Venant–Kirchhoff hyperelastic model. The ap- 

proach strongly enforces the coupling conditions on the fluid–structure interface and treats both solid 

and fluid equations in a reference domain accounting for geometric motion through time-dependent co- 

efficients. The paper derives an energy balance for the fully discrete system and proves that the finite 

element method is numerically stable. The performance of the method is further assessed by validating 

numerical results for the pressure impulse prorogation test and against the results of a recently proposed 

experimental 3D fluid-structure interaction benchmark problem. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Many practically interesting problems of fluid dynamics involve 

mutual interaction of a fluid and an elastic structure: Fluid flow 

depends on the structure displacement, while structure motion is 

influenced by the fluid dynamics. In mathematical modeling such 

setup is known as a fluid–structure interaction (FSI) problem. Ex- 

amples of FSI problems arise in structural and fluid mechanics, 

aerodynamics, and cardiovascular system modeling [8,16,20] . Nu- 

merical simulation plays an increasingly important role in under- 

standing and prediction of fluid–structure interaction phenomena 

in many engineering and life science applications [6,29,51] . 

A typical FSI model includes equations governing the fluid dy- 

namics and the motion of elastic materials together with coupling 

conditions at the fluid–structure interface. The Navier-Stokes equa- 

tions of fluid dynamics are nonlinear parabolic and are commonly 

given in the Eulerian coordinates, while for solids motion one usu- 

ally considers Lagrangian description, which results in a hyperbolic 

equation for the displacement variable. Thus, an FSI problem poses 

the numerical challenge of handling a coupled system of nonlinear 

equations of mixed type given in Eulerian and Lagrangian frames 

of references. 
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The numerical method studied in this paper falls into the cate- 

gory of monolithic approaches [22,29–31,40,42,45,53] that treat the 

fluid and the structure as a single continuum. In a monolithic ap- 

proach, the coupling conditions at interface are implicit to the so- 

lution procedure. This is opposite to the alternative partitioned ap- 

proach [3,12,13,35,41,44,52] , when the fluid and the structure are 

treated separately, and one consequently solves fluid and structure 

subproblems in the course of simulation. In general, monolithic 

methods are known to be more robust and stable, especially for 

unsteady FSI problems. This robustness comes with the expense of 

more computationally demanding algebraic systems to be solved; 

see, e.g. [25] for comparison. One of the popular approaches to 

deal with the discrepancy between Eulerian and Lagrangian for- 

mulations for fluid and solid is the Arbitrary Lagrangian-Eulerian 

(ALE) method [15,28,32] . In the scope of ALE method, the structure 

is presented in Lagrangian coordinates whereas the fluid flow is 

considered in an artificial coordinate system. This system is given 

by an auxiliary mapping from the reference fluid domain to the 

physical one. Further, in the ALE method one handles the time 

derivative in the reference domain, but often treats all other terms 

of the fluid equations in the physical domain. We note that ALE 

formulation is not the only possible choice for a monolithic ap- 

proach. One may adopt a pure Eulerian description of the fluid and 

structure motion [17] or treat both in a fully Lagrangian way [45] . 

Among the most recent studies of monolithic FSI methods we 

mention [4] , which applies the ALE description for the fluid but 

allows for large displacements of 1D coupled structures, [46] and 

[55] , where monolithic methods with fully Lagrangian descrip- 

tion of fluid and structure motion were applied for incompressible 

https://doi.org/10.1016/j.compfluid.2018.11.004 

0045-7930/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.compfluid.2018.11.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.11.004&domain=pdf
mailto:saiya-jin@yandex.ru
mailto:molshan@math.uh.edu
mailto:yuri.vassilevski@gmail.com
https://doi.org/10.1016/j.compfluid.2018.11.004


278 A. Lozovskiy, M.A. Olshanskii and Y.V. Vassilevski / Computers and Fluids 179 (2019) 277–288 

and quasi-compressible fluids, respectively, and [2] that focused on 

building an efficient algebraic solver for ALE/Lagrangian formula- 

tion for incompressible fluids and elasticity. 

To solve the FSI problem, we use an ALE formulation for 

the discretization of equations in the reference time-independent 

domain. The geometry evolution is accounted for by the time- 

dependent coefficients. For this formulation, the paper introduces a 

finite element method. Thus we effectively have a method of lines 

for the coupled system with a finite difference approach to handle 

time dependence. Other options available in the literature include 

space–time finite element monolithic [31,49] or hybrid [40] formu- 

lations. We carry out full stability analysis for the case of the im- 

plicit Euler time discretization. We note that numerical analysis of 

a finite element method for the FSI problem is challenging due to 

the non-linearity of the system and its mixed hyperbolic–parabolic 

type. Several stability analyses are known from the literature often 

in simplified settings; see, e.g., [9,19,24,37,43,47,54] . In the present 

paper, we show the correct energy balance and prove the uncondi- 

tional (without a time-step restriction) stability of a fully discrete 

method. We note that no full error analysis is known for FSI prob- 

lems, the full error analysis of the quasi-Lagrangian (mesh nodes 

do not follow fluid particles) FE method for fluid equations in a 

time-dependent domain (no elasticity model is included) became 

available in [38] only recently. 

The FSI FE method is further validated numerically on a set of 

two benchmark problems. The first one is the well-known pres- 

sure wave propagation in an elastic cylindrical tube filled with vis- 

cous incompressible fluid [21] . The second one is the recently in- 

troduced challenging benchmark test [26] that involves steady and 

periodic interactions between a viscous incompressible fluid and 

a nonlinear solid filament in a 3D setting. For this test, numeri- 

cal results are assessed against experimental data collected using 

phase-contrast magnetic resonance imaging. 

The outline of the remainder of the paper is the follow- 

ing. Section 2 introduces governing equations, suitable interface 

and boundary conditions and recalls the fundamental energy bal- 

ance equality satisfied by all smooth solutions to the system. In 

Section 3 we present the discretization method. The method is an- 

alyzed in Section 4 , where suitable a priori energy estimates for 

numerical solutions are shown. Section 5 collects the results of nu- 

merical experiments and compares them to available experimental 

data. The method is implemented using the open source package 

Ani3D [36] . 

2. Problem formulation 

Consider a time-dependent domain �(t) ⊂ R 

3 , partitioned into 

subdomains �f ( t ) and �s ( t ) occupied by fluid and solid, respec- 

tively. Let �fs ( t ) := ∂�f ( t ) ∩ ∂�s ( t ) be the interface where the in- 

teraction of the fluid and solid takes place. Denote the reference 

domains by 

� f = � f (0) , �s = �s (0) , � f s = � f s (0) , 

and the deformation of the solid medium by 

ξ
s 
: �s × [0 , t] → 

⋃ 

t∈ [0 ,T ] 
�s (t) , 

with the corresponding displacement u s given by u s (x , t) := 

ξ
s 
(x , t) − x and velocity v s := ∂ t u s = ∂ t ξ

s 
(x , t) . 

For the fluid, we adopt an ALE formulation by introducing an 

auxiliary mapping 

ξ
f 

: � f × [0 , t] → 

⋃ 

t∈ [0 ,T ] 
� f (t) 

such that ξ
s = ξ

f 
on �fs . The mapping is defined by a continuous 

extension of the displacement field u s to the flow reference do- 

Fig. 1. Mapping of the reference solid and fluid domains to the currrent configura- 

tion. 

main 

u 

f := Ext (u 

s ) = ξ
f 
(x , t) − x in � f × [0 , t] . (1) 

The extension Ext( u s ) can be provided by a PDE solution in �f × [0, 

t ]. Mapping ξf is not Lagrangian since it does not follow fluid par- 

ticles trajectories. Fig. 1 illustrates the mapping. 

The fluid dynamics is described by the velocity vector field v f 

and the pressure scalar field p f defined in current domain �f ( t ) for 

t ∈ [0, T ]. From now on, for notational simplicity, we will be using 

the same notation for these fields redefined on the reference con- 

figuration as v f ( x , t ) := v f ( ξf ( x , t ), t ) and p f ( x , t ) := p f ( ξf ( x , t ), t ). 
Following [30] we consider a monolithic numerical approach 

using the continuous globally defined displacement and velocity 

fields 

u = 

{
u 

s in �s , 

u 

f in � f , 
v = 

{
v s in �s , 

v f in � f . 

The corresponding globally defined deformation gradient is F = I + 

∇u . Its determinant will be denoted by J := det( F ). 

Denote by ρs and ρ f = const the densities of solid and fluid, 

and by σs , σ f the Cauchy stress tensors, so that J( σs ◦ ξ
s 
) F −T is the 

Piola-Kirchhoff tensor in the structure, with σs ◦ξs ( x ) := σs ( ξs ( x )). 
The conservation of momentum equations for the solid and 

fluid written in the Lagrangian and ALE coordinates, respectively, 
takes the form 

∂v 

∂t 
= 

⎧ ⎨ 

⎩ 

ρ−1 
s div (J( σs ◦ ξ

s 
) F −T ) in �s , 

(Jρ f ) 
−1 

div (J( σ f ◦ ξ
f 
) F −T ) − (∇v ) 

(
F −1 

(
v − ∂u 

∂t 

))
in � f . 

(2) 

The definition of v in the solid domain gives 

∂u 

∂t 
= v in �s . (3) 

For incompressible fluid, the conservation of mass equation in the 

reference domain reads: 

div (JF −1 v ) = 0 in � f . (4) 

On the fluid–structure interface, we assume no-slip no-penetration 

of fluid and the balance of normal stresses, 

v s = v f and σ f F 
−T n = σs F 

−T n on � f s , (5) 

where n is the unit normal vector on �fs . 

To prescribe boundary conditions on ∂�(0), we distinguish be- 

tween the structure boundary �s 0 := ∂�(0) ∩ ∂�s , fluid Dirichlet 

and outflow boundaries: ∂�(0) ∩ ∂� f = � f0 ∪ �out . Depending on 

the type of the boundary, the following conditions are imposed: 

v = g D on � f0 , σ f F 
−T n = g N + 

ρ f κ
2 

(v · n ) −v on �out , 

u = 0 on �s 0 ∪ � f0 ∪ �out , 
(6) 

where ( f ) ± := 

1 
2 ( f ± | f | ) , n is the outward unit normal vector 

on �out , and κ ∈ [0, 1] is a parameter introduced to stabilize the 
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system against nonphysical energy increase produced by backflow 

phenomenon on �out ; see, e.g., [7] . Stabilized outflow conditions 

are found in many places in the literature, e.g. [5] . For κ = 1 , they 

were analyzed as “directional do-nothing condition” in [10] . Their 

stabilizing effect will become clear from the energy balance (12) , 

where κ close to 1 is seen to ensure decay of the numerical energy. 

The governing equations are complemented with initial conditions 

u (x , 0) = 0 , v (x , 0) = v 0 (x ) on �(0) . (7) 

We assume the fluid to be Newtonian, with the viscosity pa- 

rameter μf . In the ALE coordinates, the Cauchy tensor of Newto- 

nian fluid is given by 

σ f = −p f I + μ f (∇vF −1 + F −T (∇v ) 
T 
) in � f . (8) 

For the structure we consider the compressible geometrically non- 

linear Saint Venant–Kirchhoff material with 

σs = 

1 

J 
F (λs tr (E ) I + 2 μs E ) F 

T , (9) 

where E = 

1 
2 

(
F T F − I 

)
is the Lagrange-Green strain tensor and λs , 

μs are the Lame constants. Both analysis and numerical experi- 

ments in this paper are restricted to the Saint Venant–Kirchhoff

material since material parameters in 3D benchmark problems ad- 

dressed in Section 5 are given for this material. The method, how- 

ever, can be easily extended to neo-Hookean materials [37] . 

For the notation convenience, we set p s = 0 in �s and define 

the global pressure variable by 

p = 

{
p f in � f , 

p s in �s . 

Thus, the FSI problem consists in finding pressure distribution 

p and continuous velocity and displacement fields v, u satisfying 

the set of equations, interface and boundary conditions (2) –(9) and 

subject to a provided extension rule (1) . 

We note a few identities that are useful for the design of a nu- 

merical method and its analysis. In the fluid region the mass bal- 

ance yields the equation 

∂ J 

∂t 
+ div 

(
JF −1 

(
v − ∂u 

∂t 

))
= 0 in � f . (10) 

Furthermore, the Piola identity div (JF −1 ) = 0 implies the following 

equality 

div (JF −1 v ) = J(∇v ) : F −T in � f , (11) 

where A : B := 

∑ N 
i, j=1 A i j B i j . 

For homogeneous boundary conditions, one shows with the 
help of (10) –(11) that any smooth solution to (2) –(9) satisfies the 
energy equality, cf. [37] , 

1 

2 

d 

dt 

( ∫ 
�s 

ρs 

∣∣∣∣∂u ∂t 

∣∣∣∣
2 

d x + ρ f 

∫ 
� f 

J | v | 2 d x + 

∫ 
�s 

(λs tr (E ) 
2 + 2 μs | E | 2 F ) d x 

) 

+2 μ f 

∫ 
� f 

J| D u (v ) | 2 F d x + 

ρ f 

2 

∫ 
�out 

{ (v · n ) + 
+(1 − κ)(v · n ) −}| v | 2 d s = 0 , (12) 

where D u v := 

1 
2 

(
(∇v ) F −1 (u ) + F −T (u ) (∇v ) T 

)
and | . . . | F denotes 

the matrix Frobenius norm. In the energy equality (12) the vari- 

ation of the total system energy is balanced by the fluid viscous 

dissipation and the energy rate at the open boundary. Note that 

for κ = 1 the last term is non-negative. 

3. Discretization 

In this section we introduce both time and space discretization 

of the FSI problem. Treating the problem in the reference domain 

allows us to avoid triangulations and finite element function spaces 

dependent on time. For an alternative approach based on space- 

time finite element methods see, for example, [49,50] . We consider 

a collection of tetrahedra, which form a consistent regular tessel- 

lation of the reference domain �(0) = �s ∪ � f . In the monolithic 

approach we consider conforming FE spaces V h ⊂ H 

1 (�(0)) 3 and 

Q h ⊂ L 2 (�(0)) for trial functions and the following two subspaces 

for the test functions: V 

0 
h 

= { v ∈ V h : v | �s 0 ∪ � f0 
= 0 } and V 

00 
h 

= { v ∈ 

V 

0 
h 
: v | �s f 

= 0 } . We assume that V 

0 
h 

and Q h form the LBB-stable 

finite element pair: There exists a mesh-independent constant c 0 , 

such that 

inf 
q h ∈ Q h 

sup 
v h ∈ V 0 h 

(q h , div v h ) 

‖∇v h ‖‖ q h ‖ 

≥ c 0 > 0 . 

Assuming a constant time step �t , we use the notation 

u k ( x ) ≈u ( k �t , x ). The backward finite difference approximation of 

the time derivative at t = k �t is denoted by [
∂u 

∂t 

]k 
= 

u 

k − u 

k −1 

�t 
. 

Similar notation is used for v , p and other time-dependent quanti- 

ties. 

To formulate the discretization method, we need some further 

notations. For F (u ) = I + ∇u , E (u ) = 

1 
2 

(
F (u ) T F (u ) − I 

)
we de- 

fine S (u ) = λs tr (E (u )) I + 2 μs E (u ) , F k = F (u k ) , J k = det (F k ) , E k = 

E (u k ) , S k = S (u k ) , D k = D u k , and F k + 1 
2 

= 

1 
2 (F k + F k +1 ) . 

The finite element method for the ALE monolithic FSI formu- 

lation reads: Given { u k −1 , v k −1 } ∈ V 

0 
h 

× V h find { u k , v k , p k } ∈ V 

0 
h 

×
V h × Q h such that v 

k = g D (·, k �t) on �f 0 and the following equa- 

tions hold: ∫ 
�s 

ρs 

[
∂v 

∂t 

]k 
ψ d x + 

∫ 
�s 

F k − 1 
2 
S k : ∇ ψ d x 

+ 

∫ 
� f 

ρ f J k −1 

[
∂v 

∂t 

]k 
ψ d x + 

∫ 
� f 

ρ f J k (∇v k ) F −1 
k 

(
v k −

[
∂u 

∂t 

]k )
ψ d x 

+ 

∫ 
� f 

2 μ f J k D k v 
k : D k ψ d x −

∫ 
� f 

p k J k F 
−T 
k 

: ∇ ψ d x 

+ 

∫ 
� f 

ρ f 

2 

( [
∂ J 

∂t 

]k 
+ div 

( 

J k F 
−1 
k 

( 

v k −
[
∂u 

∂t 

]k ) ) ) 

ψ d x 

= 

∫ 
�out 

(g N + 

ρ f κ

2 
(v k · n ) −v k ) · ψ d s (13) 

for all ψ ∈ V 

0 
h 
, 

∫ 
�s 

[
∂u 

∂t 

]k 
φ d x −

∫ 
�s 

v k φ d x = 0 (14) 

for all φ ∈ V 

00 
h 

, and ∫ 
� f 

J k (∇v k ) : F −T 
k 

q d x = 0 (15) 

for all q ∈ Q h . The integrals over the interface in (13) cancel out 

due to the interface condition (5) . The coupling condition on �sf is 

enforced strongly, [
∂u 

∂t 

]k 
= v k on �s f . (16) 
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In other words, for all degrees of freedom corresponding to the in- 

terface nodes, we add equations 1 
�t 

u k − v k = 

1 
�t 

u k −1 to the total 

algebraic system for the unknowns u k and v k . Hence, (16) is satis- 

fied up to the accuracy of our algebraic solver. This together with 

(14) implies the equality 
[

∂u 
∂t 

]k = v k is satisfied pointwise in �s . 

Eqs. (13) –(16) subject to initial conditions and a choice of con- 

tinuous extension of u k from �s onto �f ensuring u 
k ∈ V 

0 
h 
define 

the discrete problem. We shall use an extension based on auxiliary 

elasticity equation, see Section 5 . 

Remark 1. The last term in the left-hand side of (13) is consis- 

tent due to the identity (10) and is added in the FE formulation 

to enforce the conservation property of the discretization. While 

computations show that in practice this term can be skipped, sta- 

bility analysis benefits from including it. In the analysis of FEM 

for incompressible Navier-Stokes equations in the Eulerian descrip- 

tion, including this term corresponds to the Temam’s [48] skew- 

symmetric form of the convective terms. 

4. Numerical stability 

In this section, we show energy balance and stability estimate 

for the solution to (13) –(16) . As common in the stability analy- 

sis, we consider the homogeneous boundary conditions on �f 0 , i.e. 

g D = 0 in (6) . 

Note the following identities: 

2 F T 
k − 1 

2 

(∇ u 

k − ∇ u 

k −1 ) = 2 F T 
k − 1 

2 

( F k − F k −1 ) 

= F T k F k − F T k −1 F k −1 + 

(
F T k −1 F k − F T k F k −1 

)
= 2(E k − E k −1 ) + N , (17) 

where N is skew-symmetric. For arbitrary real square matrices A, 

B, C , it follows from the definition of trace that AB : C = tr (ABC T ) = 

tr (BC T A ) = B : A T C. Thus, it holds 

F k − 1 
2 
S k : (∇ u 

k − ∇ u 

k −1 ) = S k : F 
T 
k − 1 

2 

(∇ u 

k − ∇ u 

k −1 ) . 

Due to the symmetry of S k it holds S k : N = 0 and we get from 

(17) 

F k − 1 
2 
S k : (∇ u 

k − ∇ u 

k −1 ) = S k : (E k − E k −1 ) . (18) 

Now we set in (13) 

ψ = 

{[
∂u 
∂t 

]k 
in �s , 

v k in � f . 

Thanks to (16) , ψ is a suitable test function, i.e. ψ ∈ V 

0 
h 
. We han- 

dle each resulting term separately and start with the first term in 

(13) : ∫ 
�s 

ρs 

[
∂v 

∂t 

]k 
ψ d x = 

∫ 
�s 

ρs 

(
v k − v k −1 

�t 

)(
u 

k − u 

k −1 

�t 

)
d x 

= 

∫ 
�s 

ρs 

(
v k − v k −1 

�t 

)
v k d x 

= 

1 

2�t 

(
‖ ρ

1 
2 
s v 

k ‖ 

2 
�s 

− ‖ ρ
1 
2 
s v 

k −1 ‖ 

2 
�s 

)

+ 

| �t| 
2 

∥∥∥∥∥ρ 1 
2 
s 

[
∂v 

∂t 

]k ∥∥∥∥∥
2 

�s 

. (19) 

Here and further ‖ · ‖ �s 
denotes the L 2 ( �s ) norm. Thanks to 

(17) and (18) we obtain for the second term in (13) : ∫ 
�s 

F k − 1 
2 
S k : ∇ ψ d x = 

1 

�t 

∫ 
�s 

S k : (E k − E k −1 ) d x 

= 

λs 

2�t 

(‖ tr (E k ) ‖ 

2 
�s 

− ‖ tr (E k −1 ) ‖ 

2 
�s 

)

+ 

μs 

�t 

(‖ E k ‖ 

2 
�s 

− ‖ E k −1 ‖ 

2 
�s 

)
+ 

λs �t 

2 

∥∥∥∥∥
[
∂ tr (E ) 

∂t 

]k ∥∥∥∥∥
2 

�s 

+ μs �t 

∥∥∥∥∥
[
∂E 

∂t 

]k ∥∥∥∥∥
2 

�s 

. (20) 

Straightforward computations show for the third term in (13) : 

∫ 
� f 

ρ f J k −1 

[
∂v 

∂t 

]k 
ψ d x = 

∫ 
� f 

ρ f 

2 

J k | v k | 2 − J k −1 | v k −1 | 2 
�t 

d x 

−
∫ 
� f 

ρ f | v k | 2 
2 

[
∂ J 

∂t 

]k 
d x + 

∫ 
� f 

�t ρ f J k −1 

2 

∣∣∣∣∣
[
∂v 

∂t 

]k ∣∣∣∣∣
2 

d x . (21) 

Applying integration by parts to the fourth (inertia) term in 

(13) gives 

∫ 
� f 

ρ f J k (∇v k ) F −1 
k 

( 

v k −
[
∂u 

∂t 

]k ) 

ψ d x 

= −
∫ 
� f 

ρ f 

2 
div 

( 

J k F 
−1 
k 

( 

v k −
[
∂u 

∂t 

]k ) ) 

| v k | 2 d x 

+ 

∫ 
�out 

ρ f 

2 
v k · n | v k | 2 d s . (22) 

Here we used boundary and interface conditions. The fifth term in 

(13) gives ∫ 
� f 

2 μ f J k D k v 
k : D k ψ d x = 

∫ 
� f 

2 μ f J k 
∣∣D k v 

k 
∣∣2 
F 
d x , 

and the next pressure term vanishes due to the incompressibil- 

ity condition (15) . Finally, the last term cancels with similar terms 

with opposite sign which appear in (21) and (22) . Substituting all 

equalities back into (13) , we obtain after some cancellations the 

following energy balance for the finite element FSI problem with 

the first order discretization in time: 

1 

2�t 

(
‖ ρ 1 

2 
s v 

k ‖ 2 �s 
− ‖ ρ 1 

2 
s v 

k −1 ‖ 2 �s 

)
+ 

ρ f 

2 | �t| 
∫ 
� f 

(
J k | v k | 2 − J k −1 | v k −1 | 2 )d x }variation of 

kinetic energy 

+ 

λs 

2�t 

(‖ tr (E k ) ‖ 2 �s 
− ‖ tr (E k −1 ) ‖ 2 �s 

)
+ 

μs 

�t 

(‖ E k ‖ 2 �s 
− ‖ E k −1 ‖ 2 �s 

)} variation of 
potential energy 

+ 2 μ f 

∫ 
� f 

J k 
∣∣D k (v k ) ∣∣2 F d x 

}
energy dissipation 

in fluid 

+ 

λs �t 

2 

∥∥∥∥∥
[

∂ tr (E ) 

∂t 

]k ∥∥∥∥∥
2 

�s 

+ μs �t 

∥∥∥∥∥
[

∂E 

∂t 

]k ∥∥∥∥∥
2 

�s 

+ 

ρ f (�t) 

2 

∫ 
� f 

J k −1 

∣∣∣∣∣
[

∂v 

∂t 

]k ∣∣∣∣∣
2 

d x + 

| �t| 
2 

∥∥∥∥∥ρ 1 
2 
s 

[
∂v 

∂t 

]k ∥∥∥∥∥
2 

�s 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

O (�t) dissipative 

terms 

= − ρ f 

2 

∫ 
�out 

{ (v k · n ) + + (1 − κ)(v k · n ) −}| v k | 2 d s . 
}
energy flux through 

open boundary 

One notes that the above equality resembles the energy balance 

(12) of the original FSI problem up to several O ( �t ) terms. In the 

structure these extra terms are always dissipative. For the fluid we 

need the following assumption on the ALE displacement field. As- 

sume that the extension of displacements to the fluid domain is such 

that for all k it holds J k > 0 in �f , i.e. the displacements do not tan- 

gle the mesh. For the sake of notation simplicity we shall also use 

‖ · ‖ 
�k 

f 

:= 

(∫ 
� f 

J k | · | 2 d x 
) 1 

2 
, which defines a k -dependent norm for 

J k > 0. The terms in the fourth group on the left-hand side are non- 

negative and dropping them changes the equality to inequality. If 

κ = 1 , then the outflow term is non-negative and standing with 
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minus sign it can be also dropped. We end up with the inequal- 

ity: 

1 

2 

∥∥∥∥∥ρ 1 
2 
s 

[
∂u 

∂t 

]k ∥∥∥∥∥
2 

�s 

+ 

ρ f 

2 
‖ v k ‖ 

2 
�k 

f 

+ 

λs 

2 
‖ tr (E k ) ‖ 

2 
�s 

+ μs ‖ E k ‖ 

2 
�s 

+ 2 μ f (�t) ‖ D k v 
k ‖ 

2 
�k 

f 

≤ 1 

2 

∥∥∥∥∥ρ 1 
2 
s 

[
∂u 

∂t 

]k −1 
∥∥∥∥∥
2 

�s 

+ 

ρ f 

2 
‖ v k −1 ‖ 

2 
�k −1 

f 

+ 

λs 

2 
‖ tr (E k −1 ) ‖ 

2 
�s 

+ μs ‖ E k −1 ‖ 

2 
�s 

. 

The energy estimate follows if we sum up the above inequalities 

for k = 0 , . . . , N − 1 : 

1 

2 

∥∥∥∥∥ρ 1 
2 
s 

[
∂u 

∂t 

]N ∥∥∥∥∥
2 

�s 

+ 

λs 

2 
‖ tr (E N ) ‖ 

2 
�s 

+ μs ‖ E N ‖ 

2 
�s 

+ 

ρ f 

2 
‖ v N ‖ 

2 
�N 

f 

+ 2 μ f 

N ∑ 

k =1 

�t‖ D k v 
k ‖ 

2 
�k 

f 

≤ ‖ ρ
1 
2 
s v 

0 ‖ 

2 
�s 

+ 

ρ f 

2 
‖ v 0 ‖ 

2 
�0 

f 

+ 

λs 

2 
‖ tr (E 0 ) ‖ 

2 
�s 

+ μs ‖ E 0 ‖ 

2 
�s 

. (23) 

We summarize the results in the following theorem. 

Theorem 1. Assume that the extension of the finite element displace- 

ment field to �f is such that J k > 0 for all k = 1 , . . . , N − 1 , and κ = 1 . 

Then the solution to the finite element method (13) –(16) satisfies the 

a priori estimate (23) . 

5. Numerical experiments 

This section assesses the performance of the monolithic FSI FE 

method on two benchmark problems: the propagation of a pres- 

sure impulse in a flexible tube and the interaction of a three- 

dimensional clamped beam with a fluid flowing in a pipe, the 

benchmark tests suggested in [21] and [26] , respectively. The first 

test problem is related to the blood flow through a compliant 

artery, and it has been extensively considered in the literature for 

validating the performance of FSI solvers, e.g. [14,18,22,23,34,39] . 

Since the problem is an idealization of a practical setup, no ex- 

perimental data is available and the test serves to validate mesh 

convergence and the physical plausibility of the computed solu- 

tions. For the clamped beam in a pipe flow problem, experimental 

measurements are available and documented in [26] with the in- 

tention to provide a challenging FSI test case for the rigorous test- 

ing of FSI algorithms. This test case utilizes the geometry obtained 

from computer-aided design, but is also motivated by biomedi- 

cal applications. Flow and structure statistics were measured for 

both steady-state and transient laminar flows at maximal Reynolds 

numbers of 651 and 1283, reflecting Re numbers found for the car- 

diovascular flows. The benchmark has been recently used to vali- 

date numerical FSI solvers in [11,27,35] . 

For all experiments we use P2-P1 (Taylor–Hood) elements for 

velocity and pressure variables and P2 elements for displacements. 

The scheme (13) –(16) is implemented on the basis of the open 

source package Ani3D [36] . To handle the nonlinear system on 

each time step, we linearly extrapolate all geometric terms and 

the advection velocity in the inertia term from two previous time 

steps. The resulting linear system is solved by the multifrontal 

sparse direct solver MUMPS [1] . Application of the direct solver is 

feasible, since in all numerical tests the number of degrees of free- 

dom is moderate (about 10 5 d.o.f.). The latter is achieved thanks 

to the higher than the second order accuracy of the method com- 

bined with 3D mesh adaptation. For finer meshes, one would need 

to solve the linear systems iteratively. Parallel preconditioning for 

such FSI systems has been addressed, e.g., in [33] . 

For the continuous extension of the displacement field u in (1) , 

we use the following elasticity equation [35] for the velocity of 

the displacement: 

−div 

[ 

J 

( 

λm 

tr 

( 

∇ 

[
∂u 

∂t 

]k 
F −1 

) 

I 

+ μm 

⎛ 

⎝ ∇ 

[
∂u 

∂t 

]k 
F −1 + 

( 

∇ 

[
∂u 

∂t 

]k 
F −1 

) T 
⎞ 

⎠ 

⎞ 

⎠ F −T 

⎤ 

⎦ 

= 0 in � f . (24) 

The boundary condition 
[

∂u 
∂t 

]k = v k is used on the interface. The 

space dependent auxiliary parameters were chosen as shown: 

μm 

= μs | �e | −1 . 2 , λm 

= 16 μm 

, 

where | �e | denotes the physical volume of a mesh tetrahedron �e 

subjected to displacement from the previous time step. 

5.1. Pressure wave in flexible tube 

The problem configuration consists of an incompressible vis- 

cous flow through an elastic tube with circular cross-section. The 

tube is 50mm long, it has inner diameter of 10mm and the wall is 

1mm thick. The fluid density is 10 −3 g/mm 

3 and kinematic viscosity 

is 3mm 

2 /s. The wall has density ρs = 1 . 2 · 10 −3 g/mm 

3 . The Saint 

Venant–Kirchhof hyperelastic model is used with elastic modulus 

E = 3 · 10 5 g/mm/s 2 and Poisson’s ratio ν = 0 . 3 . Initially the fluid is 

at rest and the tube is non-deformed. The tube is fixed at both 

ends. On the left open boundary of the tube, the external pressure 

p ext is set to 1.333 ·10 3 Pa for t ∈ (0 , 3 · 10 −3 ) s and zero afterwards, 

while on the right open boundary the external pressure p ext is zero 

throughout the experiment. This generates a pressure impulse that 

travels along the tube. The external pressure is incorporated into 

(13) –(16) through the open boundary condition σ f F 
−T n = p ext n . 

We built three computational meshes (coarse, fine and finer) 

for this experiment. On each level of refinement the mesh size 

was decreased by approximately a factor of 
√ 

2 . The resulting num- 

bers of tetrahedra in the fluid and solid subdomains, respectively, 

are 13,200 and 6336 for coarse, 29,202 and 11,904 for fine, and 

89,232 and 38,016 for finer. We set �t = 10 −4 s. For this problem, 

we do not use outflow boundary stabilization, i.e. κ = 0 on both 

open boundaries. 

Fig. 2 depicts the computed velocity field in the middle cross- 

section and wall displacement exaggerated by a factor of 10 for 

clarity. The results are similar to those found in other publications 

cited. Fig. 3 shows the time variations of the radial and axial com- 

ponents of the displacement of the inner tube wall at half the 

length of the pipe. Both graphs suggest that the finer mesh results 

are close to convergence. The maximum relative deviation between 

coarse and fine mesh displacement 2.1% in the axial component 

and 2.7% in the radial component, which decreases to maximum 

relative deviation between fine and finer mesh to 0.7% in the axial 

component and 2.3% in the radial component. Both plots are con- 

sistent with the results reported in [18] . 

Finally, we demonstrate stability bound (23) for this particular 

problem. Since the problem setup involves specification of non- 

zero pressure on the inflow for the first 30 time steps, for checking 

(23) we consider the computed velocity at t = 0 . 003 s as the initial 

condition, and evaluate all quantities in (23) for t ∈ [0.003 s , 0.02 s ]. 

For the right-hand side of (23) , the computed value was 1197.7 μJ , 

while for the left-hand side it was 247.62 μJ . 
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Fig. 2. Pressure wave: middle cross-section velocity field, pressure distribution, velocity vectors and 10-fold enlarged structure displacement for several time instances. 

Fig. 3. Pressure wave: The axial and radial components of displacement of the inner tube wall at half the length of the pipe. Solutions are shown for three mesh sequentially 

refined meshes (see the text). The plots are almost indistinguishable. 

5.2. Clamped beam in a pipe flow 

The flow chamber is a cylindrical domain aligned with z -axis 

with length 173.55mm, and diameter 76.2mm, see Fig. 4 . Two in- 

let pipes of diameter 21.9mm and length 29.5mm merge smoothly 

into a single outlet. The inlet cross-sections are circles with cen- 

ters at (0,27.15,-29.5) and (0,-27.15,-29.5). A silicon filament is at- 

tached to the wall in the merging section z = 0 . The filament (solid 

body) has dimensions 2 ×11 ×65mm. According to [26] , the den- 

sity of the silicone filament is ρs = 1063 kg/m 

3 . Uniaxial traction 

data from [26] yield the Young modulus E = 2 . 1626 10 5 Pa and Pois- 

son ratio ν = 0 . 3151 [35] . The gravity force 9.81m/s 2 acts along the 

y -direction. For Phase I and Phase II of the experiment, the fluid 

density is 1163.3kg/m 

3 and 1164kg/m 

3 , respectively, and the kine- 

matic viscosity is 10.75mm 

2 /s and 11.49mm 

2 /s, respectively. 

For Phase I experiment, the parabolic flow profiles are pre- 

scribed on both inflow boundaries with a smooth increase of the 

peak velocity values ( z -component) from 0 to 615mm/s in the top 

section and 630mm/s in the bottom one and further stay constant. 

For Phase II, the inflow condition is periodic with the frequency 

1/6s −1 . The inflow velocity profiles are parabolic in each compo- 

nent with peak velocities recovered from the experimental data. 

These measured peak inflow velocities are shown in Fig. 5 . There 

is a difference between y -velocity components profiles at top and 

bottom cross-sections; following [26] we set v y = 0 at the inflow 

of the bottom pipe. 
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Fig. 4. FSI benchmark domain (top); Computational mesh for fluid and structure domains (bottom). 

Fig. 5. Measured peak velocity for parabolic inflow used for the boundary condition 

in the computations (Phase II). 

The computational mesh is built for the stress-free configura- 

tion, cf. Fig. 4 . The tetrahedral mesh is fitted to the fluid–solid 

boundary and uses two layers of tetrahedra to resolve the silicon 

filament. The fluid domain is tesselated into 28,712 tetrahedra, and 

Fig. 6. An equilibrium position of the elastic beam in the hydrostatic equilibrium. 

the number of tetrahedra in the solid domain is 733. For P2-P2-P1 

elements (displacement–velocity–pressure) this results in the total 

number of 254,439 unknowns. 

On the outflow boundary we prescribe directional outflow con- 

dition as in (6) with κ = 1 and g N = g y n , where g is the accelera- 

tion of gravity. 
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Fig. 7. Evolution of the beam from the neutral position to the hydrostatic equilib- 

rium. Position of the middle line for the beam is shown at times t = 1 . 65 · k sec, 
k = 1 , . . . , 5 . 

Fig. 8. Visualization of the flow in Phase I. The figure shows streamlines colored by 

the velocity magnitude (mm/s). 

5.3. Hydrostatic equilibrium 

We first compute the hydrostatic equilibrium solution under 

the action of the gravity force. The fluid density and viscosity were 

taken the same as for Phase I. To avoid unnecessary fluctuations 

Fig. 9. Displacement of the beam middle line on its upper surface in Phase I. 

and accelerate convergence to equilibrium, we added a damping 

term for the solid in the form of the friction force −αv , where 

α = 10 −4 kg/mm 

3 /s. The final position of the filament and snap- 

shots of its position in different time moments are illustrated in 

Figs. 6 , 7 respectively. We further use this equilibrium solution as 

the initial condition in Phases I and II. 

5.4. Phase I 

We run calculations up to T = 23 . 5 s with time step �t = 10 −2 

s. After a short transition phase, the solution attains an equilib- 

rium, which can be slightly perturbed by flow dynamics. Fig. 8 il- 

lustrates the final position of the deformed elastic beam and a 

passing flow. We note the formation of recirculation zone behind 

the z = 0 wall where the filament is attached. 

Fig. 9 compares the computed displacement of the silicon beam 

to the data recorded in the experiment. We see that the nu- 

merical results underestimate the experimental data, although the 

overall agreement is good and the discrepancy is comparable to 

the deviation between numerical and experimental results found 

in references [27,35] . In [11] the authors reported the perfect 

matching of experimental and numerical results, which we are 

unable to achieve. The discrepancy in results might be caused 

by the existence of multiple steady states for this problem or 

by the treatment of outflow boundary, which is set not suffi- 

ciently far from the beam. We next compare in Fig. 10 the com- 

puted fluid velocity y and z components at cross-sections z = 

10 and z = 30 with those acquired by MRI techniques and re- 

Fig. 10. Fluid velocity components in Phase I. Comparison of the experimental data and the numerical solution at the cross-sections z = 10 and z = 30 . 
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Fig. 11. Snapshots of the flow at Phase II. The figure shows streamlines colored by the velocity magnitude (mm/s). 

ported in [26] . Some mismatch of numerical and experimental 

beam positions seem to produce the discrepancy in y -component 

of numerical and experimental fluid velocities. At the same time, 

z -component demonstrates good agreement with experimental 

data. 

The MUMPS algebraic solver was executed with 8 MPI pro- 

cesses, using 10 CPU cores for each process for parallel BLAS op- 

erations. The entire computation in Phase I took 14.7 hours in to- 

tal (12.7 hours spent for linear solvers and 1.93 hours for matrix 

and right-hand side assembly). One time step took 22.5 seconds in 

average to complete. 

5.5. Phase II 

In this experiment, a pulsatile inflow results in the periodic so- 

lution. We run calculations for two periods, up to T = 12 s with 

time step �t = 10 −2 s. Below we use the computed data for the 

first period to ease the comparison with [11,27,35] , where only the 

first period results are shown. 

Fig. 11 illustrates the predicted flow in Phase II. We note some 

unsteady vortical structures passing the beam and forming in the 

wake. These structures interact with the filament and may influ- 

ence its motion. 
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Fig. 12. Phase II: Computed and experimentally recorded y -displacement of the beam centerline at x = 0 for several time instances. 

Fig. 13. Phase II: Track of the computed y -displacement of the point in the struc- 

ture with coordinate z ≈53, x = 0 for t ∈ [0, 6] and recorded experimental data. 

Figs. 12 and 13 present the comparison of the recorded and 

predicted displacements of the silicon beam over one period. The 

experimental data is only provided for 6 positions as shown in 

Fig. 12 . The numerical method is able to perfectly predict the max- 

imum deflection of the beam. The dynamics of the beam in this 

experiment with unsteady flow is driven by the competition be- 

tween normal stresses exerted on the beam by upcoming flow jet 

and the buoyancy force. The basic features of the beam motion in- 

cluding the swing and time when the beam has minimal and max- 

imal deflections are well captured by the numerical method, see 

Fig. 13 . 

Fig. 14 compares experimental measurements and predicted 

results of the fluid velocity components at different time steps 

for cross-section z = 33 . 5 . This is the most remote from the in- 

let cross-section with recorded data for three velocity compo- 

nents and so the hardest for numerical prediction. The velocity z - 

component is somewhat underresolved, suggesting that the com- 

puted solution is slightly diffusive. However the main patterns of 

the flow are well captured. 

Similarly to Phase I, we used 8 MPI processes for the MUMPS 

solver, but with 12 CPU cores per each process. This resulted in 6 

hours of the overall computation (5.2 hours spent for linear solvers 

and 0.8 hours for matrix and right-hand side assembly), with 18.1 

seconds per time step. 

6. Conclusions 

In the paper we addressed stability and performance of a 

monolithic finite element method for incompressible fluid – hy- 

perelastic structure interaction problems. We demonstrated that 

the method of lines for the ALE/Lagrangian formulation of 

fluid/structure equations in a reference domain is a feasible ap- 

s s

s s

Fig. 14. Fluid velocity components in Phase II. Comparison of the experimental data and the numerical solution on the cross-section z = 33 . 5 . 
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proach, and time-dependent coefficients can be time-lagged with- 

out undermining stability. In fact, numerical experiments demon- 

strated that in practice the size of time step is dictated by accu- 

racy consideration rather than any stability condition. The com- 

puted kinetic, potential energy and energy dissipation were found 

to satisfy the theoretically predicted bound. Although the method 

is completely formulated in the reference triangulated domain, it 

was found to share limitations with those FE ALE formulations that 

update mesh in a physical domain. Namely, finding a suitable ex- 

tension of the displacement field to the fluid domain is crucial for 

the stability of computations and becomes an increasingly chal- 

lenging task when structural displacements are large. If a suitable 

prolongation technique is available (in this paper (24) was found to 

work well), then the presented method is stable and predictive in 

realistic 3D settings even with a modest overall number of degrees 

of freedom. 
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