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Abstract

The paper develops a finite element method for the Navier–Stokes equations of incompressible viscous fluid in a time-dependent
domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence
analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any
CFL time-step restriction, it rather needs mild conditions of the form ∆t ≤ C , where C depends only on problem data, and
h2mu+2

≤ c∆t , mu is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of
practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of
numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart,
where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced computed tomography images.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Fluid flows in time-dependent domains are ubiquitous in nature and engineering. In many cases, finding the
domain evolution is part of the problem and the mathematical model couples fluid and structure dynamics. Examples
include fluid–structure interaction problems for blood flow in compliant vessels, flows around turbine blades or fish
locomotion. In other situations, one may assume that the motion of the domain is given and one has to recover the
induced fluid flow. One example of a problem, which often assumes a priori information about the flow domains
evolution, is the blood flow simulation in a human heart when the (patient-specific) motion of the heart walls is
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recovered from a sequence of medical images [1–8]. Nowadays numerical simulations are commonly used to
understand fluid dynamics and predict statistics of practical interest in this and other applications. In the present paper,
we develop a finite element (FE) method for a quasi-Lagrangian formulation of the incompressible Navier–Stokes
equations in a moving domain. We consider an implicit–explicit method, i.e. an implicit method with advection field
in the inertia term lagged in time. For the spatial discretization we employ inf–sup stable pressure–velocity elements.

Several techniques have been introduced in the literature to overcome numerical difficulties due to the evolution
of the domain. This includes space–time finite element formulations, immersed boundary methods, level-set method,
fictitious domain method, unfitted finite elements, and arbitrary Lagrangian–Eulerian (ALE) formulation, see, e.g.,
[9–17]. In this paper we analyze a finite element method based on a quasi-Lagrangian formulation of the equations
in the reference domain. Related analysis of finite element methods for parabolic or fluid equations in moving
domains can be found in several places in the literature. We note that well-posedness of space–time weak saddle-point
formulations of the (Navier–)Stokes equations is a subtle question, see the recent treatment in [18] for the case of a
steady domain. A rigorous stability and convergence analysis of space–time (FE) methods for fluid problems seems
to be largely lacking. Scalar problems have been understood much better; for example, a space–time discontinuous
FE method for advection–diffusion problems on time-dependent domains was analyzed in [19]. ALE and Lagrangian
finite element methods are more amenable to analysis. The stability of ALE finite element methods for parabolic
evolution problems was treated in [16]. The authors of [20] analyzed the convergence of a finite element ALE method
for the Stokes equations in a time-dependent domain when the motion of the domain is given. The analysis [20]
imposes time step restriction, assumes zero velocity boundary condition and certain smoothness assumptions for
the finite element displacement field. A closely related method to the one studied here was considered in [21].
However, that paper introduced an assumption that a divergence free extension of a boundary condition function to the
computational domain is given. This assumption is not always practical and the present paper avoids it. Moreover, this
paper develops error analysis, while the thrust of [21] was the stability analysis and the numerical recovery procedure
of the domain motion from medical images.

In the present paper, we analyze a quasi-Lagrangian FE formulation that is closely related to an ALE formulation,
although they are not equivalent. In the present approach we discretize equations in a reference time-independent
domain. The geometry evolution is accounted in time-dependent coefficients. Inertia terms are further linearized
so that only a system of linear algebraic equations is solved in each time step. We consider practically relevant
boundary conditions, which result in non-homogeneous velocity on the boundary. For this method we prove numerical
stability and optimal order error estimates in the energy norm without a CFL condition in the time step. Divergence-
free condition enforced in the reference domain leads to time dependent functional spaces; this and handling non-
homogeneous boundary conditions are two main difficulties that we overcome in the analysis. For the numerical
stability bound we shall need the condition on the space mesh size and time step of the form h2mu+2

≤ c∆t , where
mu ≥ 1 is polynomial degree of velocity finite element space and c is a constant. We note that if one assumes zero
boundary conditions for velocity, which is a standard assumption for FE stability bounds in steady domains, then the
results of the paper hold without the above conditions on h and ∆t . In our opinion, homogeneous boundary conditions
are not a suitable assumption for the FE analysis in evolving domains, see discussion in Section 3.

Thus the paper advances the known analysis by including inertia effect, removing CFL time-step restriction,
handling physically meaningful boundary conditions, and making no further auxiliary assumptions except the
following one: the domain evolution is given a priori by a smooth mapping from a reference domain to a physical
domain and exact quadrature rules are applied in the reference domain, i.e. we do not analyze possible errors due
to inexact numerical integration. The mapping is not necessarily Lagrangian in the internal points, but it has to
be Lagrangian for those parts of the boundary, where correct tangential velocity boundary values are important.
Theoretical results are illustrated numerically for an example with a synthetic known solution. We further illustrate
the performance of the numerical method by applying it to blood flow simulation in a simplified model of the human
left ventricle. The domain motion in this example is reconstructed from a sequence of CECT images of a real patient
heart over one cardiac cycle. The reconstruction procedure is described in detail in our preceding paper [21].

The remainder of this paper is organized as follows. In Section 2 we review the mathematical model, including
governing equations and boundary conditions, and some useful results for this model found in the literature. We
recall the energy balance satisfied by smooth solutions. A suitable weak formulation is introduced. Based on the
weak formulation, in Section 3 we introduce the finite element method. Non-homogeneous boundary conditions are
interpolated numerically. Energy stability estimate for the finite element method is shown in Section 4. Optimal order
error bound for the method is demonstrated in Section 5. Section 6 collects results of numerical experiments. Some
closing remarks can be found in the summary and outlook Section 7.
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2. Mathematical model

Consider a time-dependent domain Ω (t) ⊂ Rd , d = 2, 3, occupied by fluid. To formulate a flow problem, we
introduce the reference domain Ω0 = Ω (0) and a mapping from the space–time cylinder Q := Ω0 × [0, T ] to the
physical domain,

ξ : Q → Qphys
:=

⋃
t∈[0,T ]

Ω (t) × {t}.

The mapping is assumed to be level-preserving, i.e. ξ (Ω0 × {t}) = Ω (t) for all t ∈ [0, T ]. We assume also that the
evolution of Ω (t) is sufficiently smooth such that ξ ∈ C3(Q)d . Denote the spatial gradient matrix of ξ by F = ∇xξ ,
and J := det(F). Furthermore, we assume that there exist such positive reals CF , cJ that

inf
Q

J ≥ cJ > 0, sup
Q

(∥F∥F + ∥F−1
∥F ) ≤ CF , with ∥F∥F := tr(FFT )

1
2 . (1)

The dynamics of incompressible Newtonian fluid can be described in terms of the velocity vector field û(x, t)
and the pressure function p̂(x, t) defined in Ω (t) for t ∈ [0, T ]. This paper studies a finite element method for fluid
equations formulated in the reference domain. For u = û ◦ ξ , p = p̂ ◦ ξ defined in Q, the fluid dynamics is given by
the following set of equations:{

ut − J−1div (J (σ̂ ◦ ξ )F−T ) + (∇u)(F−1(u − ξ t )) = f
div (JF−1u) = 0

in Q, (2)

with body forces f = f̂ ◦ ξ and the initial condition u(x, 0) = u0(x) in Ω0. We assume the fluid to be Newtonian, with
the kinematic viscosity parameter ν. The constitutive relation in the reference domain reads

σ̂ ◦ ξ = −pI + ν(∇uF−1
+ F−T (∇u)T ) in Q. (3)

2.1. Boundary conditions

We distinguish between the no-slip ∂Ωns(t), Dirichlet ∂Ω D(t) and outflow ∂Ω N (t) parts of the boundary, and
∂Ω (t) = ∂Ωns(t) ∪ ∂Ω D(t) ∪ ∂Ω N (t). On ∂Ωns(t) we impose no-penetration no-slip boundary condition, i.e. the fluid
velocity on ∂Ω (t) is equal to the material velocity of the boundary (see the discussion below),

û = ξ t ◦ ξ−1 on ∂Ωns(t), (4)

while on ∂Ω D(t) and ∂Ω N (t) we prescribe Dirichlet and Neumann conditions,

û = ûD on ∂Ω D(t), σ̂ n̂ = ĝ on ∂Ω N (t). (5)

Here ûD is a given velocity and n̂ is the exterior unit normal vector on ∂Ω (t). If ∂Ω N (t) = ∅ for some t ∈ [0, T ] we
assume

∫
∂Ωns (t) n̂ · ξ t ◦ ξ−1 ds +

∫
∂ΩD (t) n̂ · ûD ds = 0.

In the reference domain, define ∂Ω D
0 = ξ−1∂Ω D(t), ∂Ω N

0 = ξ−1∂Ω N (t), ∂Ωns
0 = ξ−1∂Ωns(t). We assume that

∂Ω D
0 , ∂Ω D

0 , ∂Ω D
0 are independent of t .

Remark 1. The normal velocity of the boundary ∂Ω (t) is vΓ = n̂·(ξ t ◦ξ
−1). However, the material tangential velocity

of the boundary is defined by the tangential part of ξ t only if ξ is the Lagrangian mapping, i.e. ξ (x, t), t ∈ [0, T ],
defines the material trajectory for x ∈ Ω0 (or at least for x ∈ ∂Ω0). In some applications such Lagrangian mapping
is not available, and in this case (4) may produce spurious tangential velocities on the boundary. For example, this
may happen if ξ is reconstructed from medical images. Thus, in practice one may or may not amend (4) based on any
additional information about the tangential motions for a better model.

2.2. An extension result

The solvability of the problem (2)–(3) and the existence of its weak solutions is treated, for example, in [22].
Moreover, it is shown in [22] that for smoothly evolving Ω (t) the mapping ξ can be chosen in such a way that J
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depends only on t . From numerical viewpoint, such a mapping ξ may not be practically available, and so we allow J
to vary in time and space. However, the following corollary of this result is important for us, see Theorem 4.4. in [22]:
Assume |Ω (t)| = |Ω (0)|, then there exists v̂1 ∈ C2(Qphys)d such that v̂1 = ξ t ◦ ξ−1 on ∂Ω (t) and div v̂1 = 0 in Ω (t)
for t ∈ [0, T ]. The condition |Ω (t)| = |Ω (0)| is satisfied in the case of ∂Ω (t) = ∂Ωns(t) for all t ∈ [0, T ]. Indeed, the
Reynolds transport theorem and the incompressibility assumption for fluid imply

d
dt

|Ω (t)| =
d
dt

∫
Ω(t)

dx =

∫
∂Ω(t)

vΓ ds =

∫
∂Ω(t)

n̂ · û ds =

∫
Ω(t)

div û dx = 0.

For the finite element analysis in this paper we assume that v̂1 can be taken C3-smooth. We define smooth function
v1 = v̂1 ◦ ξ that satisfies

v1 ∈ C3(Q)d , div (JF−1v1) = 0 in Ω0, v1 = ξ t on ∂Ω0. (6)

We stress that we need the result about existence of v1 for the finite element analysis, but one never needs to know
or compute v1 for the implementation of the FE method.

2.3. Energy equality

In this section, we assume no-penetration no-slip boundary condition (4) imposed on the whole boundary,
i.e. ∂Ω (t) = ∂Ωns(t). By (·, ·) we denote the L2(Ω0) scalar product, and ∥ · ∥ denotes the L2(Ω0) norm. For vector
fields v,u : Ω0 → Rd and tensor fields A,B : Ω0 → Rd×d , we use the same notation to denote (u, v) =

∫
Ω0

uT v dx
and (A,B) =

∫
Ω0

tr(ABT ) dx, and obviously ∥u∥ := (u,u)
1
2 , ∥A∥ := (A,A)

1
2 . We shall also make use of the identity

for all u, v ∈ H 1(Ω ), w ∈ H 1(Ω )d :

(w · ∇u, v) +
1
2

((div w)u, v) =
1
2
((w · ∇u, v) − (w · ∇v, u))+

1
2

∫
∂Ω0

(n · w)uv ds. (7)

We multiply the first equality in (2) by Ju, integrate it over the reference domain, and employ (7) for integration
by parts. We get

1
2

d
dt

∥J
1
2 u∥

2
−

1
2

(Jt u,u) + (J (σ̂ ◦ ξ )F−T ,∇u) −

∫
∂Ω0

(
J (σ̂ ◦ ξ )F−T n

)
· ξ t ds

+
1
2

(div (JF−1(u − ξ t )) u,u) = (J f,u),

here n is the exterior unit normal vector on ∂Ω0. The mass balance yields the equality

Jt + div (JF−1(u − ξ t )) = 0 in Q. (8)

This identity leads to some cancellations and we get
1
2

d
dt

∥J
1
2 u∥

2
+ (J (σ̂ ◦ ξ )F−T ,∇u) −

∫
∂Ω0

(
J (σ̂ ◦ ξ )F−T n

)
· ξ t ds = (J f,u) .

The Piola identity, div (JF−1) = 0, implies the following equality

div (JF−1u) = J (∇u) : F−T in Q, (9)

where A : B := tr(ABT ). Using the notation Dξ (u) =
1
2 (∇uF−1

+ F−T (∇u)T ) for the rate of deformation tensor in
the reference coordinates, we get with the help of (9) and the second equation in (2)

(J (σ̂ ◦ ξ )F−T ,∇u) = (J (−pI + ν(∇uF−1
+ F−T (∇u)T ))F−T ,∇u) = 2ν(JDξ (u)F−T ,∇u)

= 2ν(JDξ (u),∇uF−1) = 2ν(JDξ (u),Dξ (u)).

In the last equality we used that for any symmetric tensor A and any tensor B, it holds A : B =
1
2 A : (B + BT ).

Therefore, the energy balance equality in reference coordinates takes the form
1
2

d
dt

∥J
1
2 u∥

2
+ 2ν∥J

1
2 Dξ (u)∥2

−

∫
∂Ω0

(
J (σ̂ ◦ ξ )F−T n

)
· ξ t ds = (J f,u) . (10)



A. Lozovskiy et al. / Comput. Methods Appl. Mech. Engrg. 333 (2018) 55–73 59

The mechanical interpretation of (10) is the following one: the work of external forces (right-hand side) is balanced by
the change of kinetic energy (the first term), viscous dissipation of energy (the second term), and flow intensification
due to the boundary condition (the third term).

2.4. Weak formulation

For t ∈ [0, T ] we introduce the following time-dependent trilinear and bilinear forms:

c(ξ ; w,u,ψ) =

∫
Ω0

J
(
(∇u)F−1w

)
· ψ dx, w,u,ψ ∈ H 1(Ω0)d ,

a(ξ ; u,ψ) =

∫
Ω0

2ν JDξu : Dξψ dx, u,ψ ∈ H 1(Ω0)d ,

b(ξ ; p,ψ) =

∫
Ω0

pJF−T
: ∇ψ dx, p ∈ L2(Ω0), ψ ∈ H 1(Ω0)d ,

with J = J (ξ ), F = F(ξ ).
The weak formulation of (2)–(3) reads: Find {u, p} ∈ L2(0, T ; H 1(Ω0)d ) ∩ L∞(0, T ; L2(Ω0)d ) × L2(Q) satisfying

u = ξ t on ∂Ωns
0 , u = uD on ∂Ω D

0 and

(Jut ,ψ)+ c(ξ ; u − ξ t , v,ψ) + a(ξ ; u,ψ) − b(ξ ; p,ψ) + b(ξ ; q,u) = (J f,ψ) +

∫
∂ΩN

0

Jg · ψds (11)

for all ψ ∈ H 1(Ω0)d , ψ = 0 on ∂Ωns
0 ∪ ∂Ω D

0 , q ∈ L2(Ω0) for all t ∈ [0, T ].

3. Discretization method

In this section we introduce both time and space discretizations of the formulation (2) in the reference domain.
Treating the flow problem in reference coordinates allows us to avoid triangulations and finite element function
spaces dependent on time. In this paper, we assume that the mapping ξ is given explicitly and used in the finite
element formulation without any further numerical approximation apart from the boundary condition.

Let a collection of simplices Th (triangles for d = 2 and tetrahedra for d = 3) form a consistent regular triangulation
Th of the reference domain Ω0. We let h = maxT ∈Th diam(T ). Consider conforming FE spaces Vh ⊂ H 1(Ω0)d and
Qh ⊂ L2(Ω0); V0

h is a subspace of Vh of functions vanishing on ∂Ωns
0 ∪ ∂Ω D

0 . We assume that V0
h and Qh form the

LBB-stable finite element pair: There exists a mesh-independent constant c0, such that

inf
qh∈Qh

sup
vh∈V0

h

(qh, div vh)
∥∇vh∥∥qh∥

≥ c0 > 0. (12)

As an example of admissible discretization, we consider the generalized Taylor–Hood finite element spaces,

Vh = {uh ∈ C(Ω0)d
: uh |T ∈

[
Pm+1(T )

]d
,∀ T ∈ Th},

Qh = {qh ∈ C(Ω0) : qh |T ∈ Pm(T ),∀ T ∈ Th},
(13)

where integer m ≥ 1 is polynomial degree.
Assuming a constant time step ∆t =

T
N , we use the notation uk(x) := u(k∆t, x), and similar for p and ξ . To

emphasize the dependence on k, denote Fk := ∇ξ k , Jk := det(Fk), Dk(v) := Dξk (v).
For given spatial functions f i , i = 0, . . . , k, [ f ]k

t :=
f k

− f k−1

∆t denotes the backward finite difference at tk = k∆t .
For a sufficiently smooth vector function v, denote by Ih(v) ∈ Vh its nodal Lagrange interpolant.

Let u0
h = Ih(u(t0)). The finite element discretization of (11) reads: For k = 1, 2, . . ., find {uk

h, pk
h} ∈ Vh × Qh

satisfying uk
h = Ih(ξ k

t ) on ∂Ωns
0 , uk

h = Ih(uk
D) on ∂Ω D

0 and the following equations(
Jk−1[uh]k

t ,ψh
)
+

(
1
2

[J ]k
t uk

h,ψh

)
+

1
2

(div
(
JkF−1

k wk
h

)
uk

h,ψh)

+ c(ξ k
; wk

h,uk
h,ψh) + a(ξ k

; uk
h,ψh) − b(ξ k

; pk
h,ψh) + b(ξ k

; qh,uk
h) = (Jkfk,ψh) +

∫
∂ΩN

0

Jkgk
· ψds

(14)

for all ψh ∈ V0
h, qh ∈ Qh with advection velocity wk

h :=
(
uk−1

h − ξ k
t

)
.
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The second and third terms in (14) are consistent due to the identity (8) and are added in the FE formulation
to enforce the conservation property of the discretization. While our computations show that in practice these
terms can be skipped, we need these terms for the stability bound in the next section. In the numerical analysis
of incompressible Navier–Stokes equations in the Eulerian description, including these terms corresponds to the
Temam’s skew-symmetric form of the convective terms [23].

Note that the inertia terms are linearized so that a linear algebraic system should be solved at each time step. In the
next section we show that the finite element method is energy stable.

Note that if ∂Ω N
0 = ∅, then the boundary condition should be compatible with divergence constraint. Therefore, in

this case we let ck
⊥

:=
∫
∂Ω0

JkF−T
k Ih(uk) · nds and let uk

h = Ih(ξ k
t ) − ck

⊥
on ∂Ωns

0 and uk
h = Ih(uD(tk)) − ck

⊥
on ∂Ω D

0 .

Remark 2. Condition uh = 0 on those parts of the boundary, where no-slip and no-penetration take place, of an
evolving fluid domain is not physically reasonable. Moreover, it leads to strong simplifications of finite element
analysis. Indeed, we shall see that constructing suitable FE extensions of boundary conditions to computational
domain is not straightforward.

4. Stability of FEM solution

From now on we assume ∂Ωns
0 = ∂Ω0 for all t ∈ [0, T ]. To show the stability, we need several preparatory steps

which help us to handle non-homogeneous boundary conditions and time-dependent bilinear forms. First we note the
Korn’s-type inequality in the reference domain,

∥∇u∥ ≤ CK ∥J
1
2 Dξ (u)∥ ∀ u ∈ H 1

0 (Ω0)d , t ∈ [0, T ], (15)

with CK uniformly bounded with respect to t ∈ [0, T ]. The estimate (15) easily follows from the standard
Korn inequality and assumptions in (1); see [21]. Thanks to (15) the bilinear form a(ξ (t); ·, ·) is coercive on
H 1

0 (Ω0)d
× H 1

0 (Ω0)d uniformly in time. Also due to (1) the bilinear forms a(ξ (t); ·, ·) and b(ξ (t); ·, ·) are continuous
uniformly in time on H 1(Ω0)d

× H 1(Ω0)d and L2(Ω0) × H 1(Ω0)d , respectively.
Unlike the continuous case, the finite element solution {uk

h, pk
h} does not satisfy a strong formulation and so the

arguments from Section 2.3 do not apply directly. To show the proper energy balance for the finite element solution,
we split it into a part vanishing on the boundary and another a priori defined (and so stable) part, which satisfy correct
boundary conditions. Therefore, we consider decomposition uk

h = vk
h + vk

h,1, such that

vk
h,1 = uk

h on ∂Ω0 × [0, T ], b(ξ k
; qh, vh,1) = 0 ∀ qh ∈ Qh, k = 1, 2, . . . , N , (16)

and

∥vk
h,1∥W 1,∞ ≤ C, (Jk−1(vk

h,1 − vk−1
h,1 ), vk

h) ≤ C∆t(∥vk
h∥ + hm+2

∥[vh]k
t ∥), (17)

with some real C depending only on data and independent of k, h. The existence of such decomposition will be
explicitly demonstrated in the next section.

With the help of this decomposition, the finite element method can be re-formulated as follows: find {vk
h, pk

h} ∈

V0
h × Qh satisfying for all ψh ∈ V0

h, qh ∈ Qh(
Jk−1[vh]k

t ,ψh
)
+

(
1
2

[J ]k
t vk

h,ψh

)
+

1
2

(div
(
JkF−1

k wk
h

)
vk

h,ψh)

+ c(ξ k
; wk

h, vk
h,ψh) + c(ξ k

; vk
h, vk

h,1,ψh) + a(ξ k
; vk

h,ψh)

− b(ξ k
; pk

h,ψh) + b(ξ k
; qh, vk

h) = ⟨̃fk
h,ψh⟩ (18)

with ⟨̃fk
h,ψh⟩ = (Jk(f−(∇vk

h,1)F−1(vk
h,1−ξ

k
t )),ψh)−a(ξ k

; vk
h,1,ψh)−(Jk−1

[
vh,1

]k
t ,ψh). We stress that the formulation

(18) appears here only for the purpose of analysis. Although equivalent to (14), the formulation (18) is not practical,
since it requires an explicit knowledge of v1,h . For the analysis, it is sufficient to know that v1,h exists.

We test (18) with ψh = vk
h , qh = pk

h . We handle each resulting term separately and start with the first term in (18):

(Jk−1[vh]k
t , vk

h) =
1

2∆t

(
∥J

1
2

k vk
h∥

2
− ∥J

1
2

k−1vk−1
h ∥

2
)

−
1
2

([J ]k
t vk

h, vk
h) +

∆t
2

∥J
1
2

k−1[vh]k
t ∥

2 . (19)
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The term −
1
2 ([J ]k

t vk
h, vk

h) in (19) cancels with the second term in (18). Applying (7) to the fourth (inertia) term in (18)
and using boundary conditions give

(Jk(∇vk
hF−1

k wk
h), vk

h) = −
1
2

(div
(
JkF−1

k wk
h

)
vk

h, vk
h). (20)

This cancels with the third term in (18). We keep the fifth term as it is. The sixth term in (18) gives

a(ξ k
; vk

h, vk
h) = 2ν

(
JkDk(vk

h),Dk(vk
h)
)

= 2ν
J

1
2

k Dk(vk
h)
2

.

The b-terms cancel out for qh = pk
h . Substituting all equalities back into (18), we obtain the following energy balance

for the vh-part of finite element solution uh :

1
2∆t

(
∥J

1
2

k vk
h∥

2
− ∥J

1
2

k−1vk−1
h ∥

2
)

+ 2ν
J

1
2

k Dk(vk
h)
2

+
∆t
2

J
1
2

k−1[vh]k
t

2

+ (Jk(∇vk
h,1F−1

k )vk
h, vk

h) = ⟨̃fk
h, vk

h⟩. (21)

We deduce an energy stability estimate for the finite element method from the balance in (21) and a priori estimates

in (17). For the sake of notation, we introduce ∥·∥k :=

(∫
Ω0

Jk |·|
2 dx

) 1
2 , which defines a k-dependent norm uniformly

equivalent to the L2-norm. Using estimates (17) and the definition of f̃k
h one shows that the forcing term is bounded,

⟨̃fk
h, vk

h⟩ ≤ C(∥f∥∥vk
h∥ + ∥∇vk

h,1∥(∥vk
h,1∥L∞ + ∥ξ t∥)∥vk

h∥ + ∥∇vk
h,1∥∥Dkvk

h∥)

+ C(∥vk
h∥ + hm+2

∥[vh]k
t ∥)

≤ C(∥Dk(vk
h)∥k + (∆t)−1h2m+4) +

∆t
2

[vh]k
t

2
k−1

with a constant C depending only on problem data. We substitute this in (21) and further use the bound C∥Dk(vk
h)∥k ≤

ν−1C2
+ ν∥Dk(vk

h)∥2
k . This yields the estimate

1
2∆t

(
∥vk

h∥
2
k − ∥vk−1

h ∥
2
k−1

)
+ ν

Dk(vk
h)
2

k + (Jk(∇vk
h,1F−1

k )vk
h, vk

h) ≤ C(ν−1
+ (∆t)−1h2m+4), (22)

where the constant C depends on the problem data, but not on ν, h and ∆t .
Thanks to Sobolev’s embedding inequalities as well as (1) and (15), we bound the fourth term in (22) resulting

from the boundary motion in two ways,

|(Jk(∇vk
h,1F−1

k )vk
h, vk

h)| ≤

{
C∥∇vk

h,1∥∥∇vk
h∥

2
≤ C1∥∇vk

h,1∥∥Dk(vk
h)∥

2
k,

C∥∇vk
h,1∥L∞(Ω0)∥vk

h∥
2

≤ C2∥vk
h∥

2
k .

If the factor C1∥∇vk
h,1∥ is not too large such that it holds

C1∥∇vk
h,1∥ ≤ ν/2, (23)

then the intensification term can be absorbed by the viscous dissipation term. Note that C1 depends on Ω0 and ξ . So
we obtain from (22)

1
2
∥vk

h∥
2
k + ν∆t∥Dk(vk

h)∥
2
k ≤

1
2
∥vk−1

h ∥
2
k−1 + C∆t(ν−1

+ (∆t)−1h2m+4), (24)

with some C depending only on problem data.
Summing up inequalities (24) over k = 1, . . . , n, n ≤ N , gives

1
2
∥vn

h∥
2
n + ν

n∑
k=1

∆t∥Dk(vk
h)∥

2
k ≤

1
2
∥v0∥

2
0 + C∆t(ν−1

+ (∆t)−1h2m+4). (25)

Otherwise, if (23) does not hold, we estimate
1
2

(1 − 2C2∆t)∥vk
h∥

2
k + ν∆t∥Dk(vk

h)∥
2
k ≤

1
2
∥vk−1

h ∥
2
k−1 + C∆t(ν−1

+ (∆t)−1h2m+4). (26)
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Now we assume that ∆t is sufficiently small such that (1 − 2C2∆t) = α > 0. Summing over k = 1, . . . , n, gives

1
2
∥vn

h∥
2
n + ν

n∑
k=1

∆t∥Dk(vk
h)∥

2
k ≤ C2

n∑
k=1

∆t∥vk
h∥

2
k +

1
2
∥v0∥

2
0 + C(ν−1

+ (∆t)−1h2m+4). (27)

Applying discrete Gronwall’s inequality yields

1
2
∥vn

h∥
2
n + ν

n∑
k=1

∆t∥Dk(vk
h)∥

2
k ≤ e

2C2
α T

(
1
2
∥v0∥

2
0 + C(ν−1

+ (∆t)−1h2m+4)
)
. (28)

Constant C2 depends on ξ , which defines the evolution of Ω (t), but not on ν.
Finally, we apply the triangle inequality and (17) one more time to show the stability bound for the velocity solution

uh to (14),

1
2
∥un

h∥
2
n + ν

n∑
k=1

∆t∥Dk(uk
h)∥

2
k ≤ C(ν−1

+ (∆t)−1h2m+4) ≤ Cstab, if c∆t ≥ h2m+4, (29)

where constant Cstab depends on the problem data, i.e. f, T , Ω0, ξ , ν, but not on h and ∆t . If condition (23) does not
hold, then ∆t is assumed sufficiently small to satisfy 1 − 2C2∆t > 0.

Note that the restriction ∆t ≥ h2m+4 has resulted from handling non-homogeneous boundary conditions. Indeed,
one gets the extra h-dependent term in (17) while estimating the difference vk

h,1 − vk−1
h,1 . If one defines vk

h,1 as a nodal
interpolant to the smooth divergence-free function v1 then the estimate as in (17) follows without this extra term.
However, the nodal interpolant does not satisfy the required “divergence-free” condition in (16) and so vk

h,1 will be
defined as a suitable projection of v1.

5. Convergence analysis

In this section, we demonstrate optimal order convergence of uh to u. From now on, we assume that Ω0 is a convex
polyhedron (polygon if d = 2).

5.1. Preliminaries

For the Navier–Stokes equations solution in the reference domain we recall the notations uk
:= u(k∆t), pk

:=

p(k∆t). The finite element solution to (14) is {uk
h, pk

h}. Furthermore,

{ek, ek
} := {uk

− uk
h, pk

− pk
h}

denotes the finite element error.
For the fixed time instance tk = k∆t , we define the subspace of Vh ,

Xk
h := {ψh ∈ Vh : b(ξ k

; qh,ψh) = 0 ∀ qh ∈ Qh}.

In Lemma 5.1 we prove an important technical result: if the pair of spaces Vh − Qh is inf–sup stable in the sense of
(12), and ξ satisfies certain assumptions, then the subspace Xk

h has full approximation properties. Here and further we
assume that for all t ∈ [0, T ] the domains Ω (t) are such that the Stokes problem in the physical domain Ω (t) satisfies
H 2-regularity property: for any f ∈ L2(Ω (t)) the unique solution {φ̂, λ̂} of

− ∆φ̂ + ∇λ̂ = f, div φ̂ = 0 in Ω (t), φ̂ = 0 on ∂Ω (t) (30)

satisfies φ̂ ∈ H 2(Ω (t))d , λ̂ ∈ H 1(Ω (t)) and

∥φ̂∥H2(Ω(t)) + ∥λ̂∥H1(Ω(t)) ≤ CR∥f∥L2(Ω(t)), (31)

with some CR uniformly bounded for t ∈ [0, T ].
We recall that Ih(v) ∈ Vh denotes the nodal interpolant of v and c⊥ :=

∫
∂Ω0

JF−T Ih(v) · n ds.

Lemma 5.1. Assume (12) and

sup
Q

∥I − F∥F ≤ ε, (32)
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with sufficiently small ε > 0 and the identity matrix I. Then for v ∈ H m+
5
2 (Ω0)d satisfying div (JkF−1

k v) = 0,
1 ≤ k ≤ N, we have

inf
vh∈Xk

h
vh=Ih (v)−c⊥ on ∂Ω0

(∥v − vh∥ + h∥∇(v − vh)∥) ≤ c hm+2
∥v∥

Hm+
5
2 (Ω0)

, (33)

where m is the polynomial degree from (13) and c depends on ξ , but not on k, h or v.

Proof. From (32) it follows that

sup
Q

∥I − F−1
∥F ≤

ε

1 − ε
, sup

Q
|1 − J | ≤ c ε (34)

holds with some c > 0 depending only on space dimension d = 2, 3. The inf–sup condition (12) implies that for a
given qh ∈ Qh there exists ψh ∈ V0

h such that (qh, divψh) = ∥qh∥
2 and c0∥∇ψh∥ ≤ ∥qh∥. Thanks to (34) we estimate

b(ξ k
; qh,ψh) = (JkF−T

k : ∇ψh, qh) = (divψh, qh) + ([JkF−T
k − I] : ∇ψh, qh)

≥ ∥qh∥
2
− sup

Q
∥I − F−1 J∥F∥∇ψh∥∥qh∥

≥ ∥qh∥
2
− (sup

Q
∥I − F−1

∥F + cε sup
Q

∥F−1
∥F )∥∇ψh∥∥qh∥

≥ c0∥∇ψh∥∥qh∥ − c̃ε∥∇ψh∥∥qh∥ = (c0 − c̃ε)∥∇ψh∥∥qh∥.

Thus we proved that for ε > 0 small enough, the bilinear form b(ξ k
; ·, ·) satisfies the uniform inf–sup condition

inf
qh∈Qh

sup
ψh∈V0

h

b(ξ k
; qh,ψh)

∥∇ψh∥∥qh∥
≥ ĉ0 > 0, (35)

with ĉ0 independent of k and h.
Now consider arbitrary v ∈ H m+

5
2 (Ω0)d satisfying div (JF−1v) = 0, and hence b(ξ k

; q, v) = 0 for all q ∈ L2(Ω0).
The nodal Lagrange interpolant of v is well defined. From

∫
∂Ω0

JF−1v · nds = 0 and approximation properties of the
polynomial interpolation, we get

|c⊥| = |

∫
∂Ω0

JF−1(Ih(v) − v) · nds| ≤ c∥Ih(v) − v∥L2(∂Ω0) = c
∑

Γi ⊂∂Ω0

∥Ih(v) − v∥L2(Γi )

≤ chm+2
∑

Γi ⊂∂Ω0

∥v∥Hm+2(Γi ) ≤ chm+2
∥v∥

Hm+
5
2 (Ω0)

,

(36)

where we sum over all faces Γi of our polyhedral domain Ω0. By the same argument and also using the triangle
inequality, we get

∥v − (Ih(v) − c⊥)∥L2(∂Ω0) ≤ chm+2
∥v∥

Hm+
5
2 (Ω0)

. (37)

Now we define vh as the quasi-Stokes projection of v satisfying suitable boundary condition: One finds vh ∈ Vh such
that vh = Ih(v) − c⊥ on ∂Ω0

a(ξ k
; v − vh,ψh) − b(ξ k

; ph,ψh) + b(ξ k
; qh, vh) = 0 ∀ ψh ∈ V0

h, qh ∈ Qh .

For zero Dirichlet boundary conditions, showing the optimal order estimate of ∥∇(v − vh)∥ for the Stokes projection
is standard, see, e.g., Theorems 5.2.1–5.2.2 in [24] or Section 2.4 in [25]. To handle non-homogeneous boundary
conditions, we use Proposition 8 from [26]. The proof of the proposition in [26] is given for the Stokes problem,
but the arguments only need the coercivity of the bilinear form a(ξ k

; ·, ·) on H 1
0 (Ω0)d

× H 1
0 (Ω0)d , the continuity of

a(ξ k
; ·, ·) and b(ξ k

; ·, ·) and the inf–sup property (35). This proposition establishes the estimate

∥∇(v − vh)∥ ≤ C inf
ψh∈Xk

h
ψh=Ih (v)−c⊥ on ∂Ω0

∥v − ψh∥H1(Ω0).
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Lettingψh = Ih(v)−c⊥ on the right-hand side of this inequality, using (36) and interpolation properties of polynomial
functions, we find the bound

∥∇(v − vh)∥ ≤ chm+1
∥v∥

Hm+
5
2 (Ω0)

.

In order to show the higher order bound for v − vh in the L2 norm, we consider the weak formulation of the
quasi-Stokes problem with Jk(v − vh) on the right-hand side: Find φ, λ such that

a(ξ k
;φ,ψ) − b(ξ k

; λ,ψ) + b(ξ k
; q,φ) = (Jk(v − vh),ψ) ∀ ψ ∈ H 1

0 (Ω0)d , q ∈ L2(Ω0).

Denote φ̂ = φ ◦ (ξ k)−1, λ̂ = λ ◦ (ξ k)−1, then {φ̂, λ̂} satisfies (30)–(31) with t = k∆t , f = (v − vh) ◦ (ξ k)−1. From this
and (1), we derive

∥φ∥H2(Ω0) + ∥λ∥H1(Ω0) ≤ C∥v − vh∥.

Now the bound ∥v − vh∥ ≤ C hm+2
∥v∥

Hm+
5
2 (Ω0)

follows by the generalized Nitsche argument of Proposition 9 from

[26] and (37). □

Note that the extra 1
2 in the Sobolev space order arises in the lemma due to the trace theorem needed to treat

non-homogeneous boundary conditions.

Remark 3. In the statement of the lemma and in further arguments one may replace H m+
5
2 (Ω0) by Cm+2(Ω0) .

The only change required in the proof is a slightly different argument to show the estimate in (36) and (37). From∫
∂Ω0

JF−1v · nds = 0 and approximation properties of polynomial interpolation, we get

|c⊥| = |

∫
∂Ω0

JF−1(Ih(v) − v) · nds| ≤ c∥Ih(v) − v∥L2(∂Ω0)

≤ chm+2
∥v∥Cm+2(∂Ω0) ≤ chm+2

∥v∥Cm+2(Ω0).

(38)

By Pk
h : C(Ω0)d

→ Xk
h we denote the projection with respect to the scalar product (Jk ·, ·), defined by

∥v − Pk
h (v)∥k−1 = inf

ψh∈Xk
h

ψh=Ih (v)−c⊥ on ∂Ω0

∥v − ψh∥k−1.

With the help of the standard variational argument one checks the orthogonality property

(Jk−1(v − Pk
h (v)),ψ) = 0 ∀ ψ ∈ Xk

h ∩ H 1
0 (Ω )d . (39)

Due to the equivalence of L2 and ∥ · ∥k−1 norms, we have

∥v − Pk
h (v)∥ ≤ c inf

ψh∈Xk
h

ψh=Ih (v)−c⊥ on ∂Ω0

∥v − ψh∥. (40)

On the other hand, due to the finite element inverse inequality it holds

∥∇(v − Pk
h (v))∥ ≤ ∥∇(v − ψh)∥ + ∥∇(ψh − Pk

h (v))∥

≤ ∥∇(v − ψh)∥ + h−1
∥ψh − Pk

h (v)∥

≤ ∥∇(v − ψh)∥ + h−1(∥ψh − v∥ + ∥v − Pk
h (v)∥)

(41)

for arbitrary ψh ∈ Xk
h . Now one applies (33) first in (40) and next in (41) to show the following estimate for a smooth

v satisfying div (JF−1v) = 0

∥v − Pk
h (v)∥ + h∥∇(v − Pk

h (v))∥ ≤ c hm+2
∥v∥

Hm+
5
2 (Ω0)

. (42)

The orthogonality property (39) and approximation property (42) for the projection Pk
h are crucial in the proof of an

error estimate in the next section.
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Before proceeding with the error estimate, we address the question postponed in Section 4. We need to show that
there exists a decomposition uk

h = vk
h + vk

h,1 satisfying (16) and (17). To this end, we first note that due to the result in
(38) one shows the bound similar to (42) as

∥v − Pk
h (v)∥ + h∥∇(v − Pk

h (v))∥ ≤ c hm+2
∥v∥Cm+2(Ω0). (43)

We set vk
h,1 = Pk

h (v1(tk)), where v1 from (6) is the divergence-free function, which satisfies the same boundary
condition as the original Navier–Stokes solution. Thus, vk

h,1 satisfies (16) by construction. The proof of (17) relies on
(39), (43), with m = 1, and the assumption that the norm ∥v1∥C3(Q) is bounded, see Section 2.2. Using FE inverse
inequality we now estimate

∥∇(Pk
h (v1(tk)))∥L∞ ≤ ∥∇(v1(tk) − Ih(v1(tk)))∥L∞ + ∥Ih(v1(tk)) − Pk

h (v1(tk))∥L∞ + ∥∇v1(tk)∥L∞

≤ ∥Ih(v1(tk)) − Pk
h (v1(tk))∥L∞ + 2∥∇v1(tk)∥L∞ + ∥∇ Ih(v1(tk))∥L∞

≤ ch−
d
2 ∥Ih(v1(tk)) − Pk

h (v1(tk))∥ + C

≤ ch−
d
2 (∥Ih(v1(tk)) − v1(tk)∥ + ∥v1(tk) − Pk

h (v1(tk))∥) + C

≤ ch2−
d
2 ∥v1(tk)∥C3(Ω0) + C ≤ C.

This proves the first bound in (17). To show the second bound, we note that (39) implies for vk
h ∈ Xk

h ∩ H 1
0 (Ω0)d and

vk−1
h ∈ Xk−1

h ∩ H 1
0 (Ω0)d the following identity

(Jk−1(Pk
h (v1(tk)) − Pk−1

h (v1(tk−1))), vk
h) = ∆t

{
(Jk−1[v1]k

t , vk
h)q + ([J ]k−1

t (v1(tk−1) − Pk−1
h (v1(tk−1))), vk

h)

+ (Jk−2(v1(tk−1) − Pk−1
h (v1(tk−1))), [vh]k

t )
}
.

Now the desired bound in (17) follows by applying the Cauchy inequality, (43), ∥Pk−1
h (v1(tk−1))∥ ≤ C and using the

smoothness of ξ and v1 to bound

∥[J ]k−1
t ∥ ≤ c∥J∥C2(Q) ≤ C and ∥[v1]k

t ∥ ≤ c∥v1∥C2(Q) ≤ C.

5.2. Error estimate

At time t = k∆t the true Navier–Stokes solution {u, p} satisfies(
Jk−1[u]k

t ,ψh
)
+ c(ξ k

; w̃k,uk,ψh) + a(ξ k
; uk,ψh) +

1
2

(div
(
JkF−1

k w̃k)uk,ψh)

+

(
1
2

[J ]k
t uk,ψh

)
− b(ξ k

; pk,ψh) + b(ξ k
; qh,uk) − (Jkfk,ψh) = Approx(ψh) (44)

for all ψh ∈ V0
h, qh ∈ Qh , with ALE advection velocity w̃k

:= uk−1
− [ξ ]k

t , and approximation error term

Approx(ψh) =
(
Jk−1[u]k

t − Jk(ut )
k,ψh

)
+ c(ξ k

; wk,uk,ψh) − c(ξ k
; w̃k,uk,ψh)

+
(
[J ]k

t uk
− (Jt )

kuk,ψh
)
+

(
div

(
JkF−1

k w̃k)uk
− div

(
JkF−1

k wk)uk,ψh

)
. (45)

We estimate this error in the following lemma.

Lemma 5.2. Assume the solution u of (11) is sufficiently smooth such that ut t ∈ L∞(Q)d , and ∇u ∈ L∞(Q)d×d . We
have

|Approx(ψh)| ≤ C ∆t ∥Dk(ψh)∥k, (46)

with a finite constant C depending on ξ and u.
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Proof. One compares (44) against (11) satisfied at time instance k∆t . The approximation error contains terms with
time-derivatives. We handle these terms in a standard way with the help of the Taylor expansion in time. We get(

Jk−1[u]k
t − Jk(ut )

k,ψh
)

=
(
Jk[u]k

t + (Jk−1 − Jk)[u]k
t − Jk(ut )

k,ψh
)

=

(
−

1
∆t

Jk

∫ tk

tk−1

ut t (t − tk−1)dt −
1
∆t

∫ tk

tk−1

Jt dt ·

∫ tk

tk−1

ut dt,ψh

)

= −

(
Jk

∫ tk

t̃k
1

ut t dt + ut (tk
∗
)
∫ tk

tk−1

Jt dt,ψh

)
≤ C ∆t (∥ut t∥L∞(Q) + ∥ut∥L∞(Q)∥Jt∥L∞(Q))∥ψh∥L1(Ω0)

where {t̃k
1 ; tk

∗
} ∈ [tk−1, tk]. We note that for ξ ∈ C2(Q)d it holds ∥Jt∥L∞(Q) < ∞. We estimate the c-term using the

same arguments,

c(ξ k
; wk,uk,ψh) − c(ξ k

; w̃k,uk,ψh) =
(
Jk∇ukF−1

k

(
uk

− uk−1) ,ψh
)

=

(
Jk∇ukF−1

k

∫ tk

tk−1

ut dt,ψh

)
≤ C ∆t ∥ut∥L∞(Q)∥∇uk

∥∥ψh∥.

Furthermore,(
[J ]k

t uk
− (Jt )

kuk,ψh
)

=

(
uk
∫ tk

t̃k
3

Jt t dt,ψh

)
≤ C ∆t ∥Jt t∥L∞(Q)∥uk

∥∥ψh∥.

We note that for ξ ∈ C2(Q)d it holds ∥Jt t∥L∞(Q) < ∞. Finally,(
div

(
JkF−1

k w̃k)uk
− div

(
JkF−1

k wk)uk,ψh

)
=

(
div

(
JkF−1

k

∫ tk

tk−1

ut dt

)
uk,ψh

)

= −

(
JkF−1

k

∫ tk

tk−1

ut dt,∇(uk
· ψh)

)
≤ C ∆t ∥ut∥L∞(Q)∥uk

∥H1(Ω0)∥ψh∥H1(Ω0).

Collecting all the terms and applying Korn’s inequality (15) to the ψh-terms we prove the lemma. □

The finite element formulation and (44) imply the equations for the error:(
Jk−1[e]k

t ,ψh
)
+ c(ξ k

; wk
h, ek,ψh) + a(ξ k

; ek,ψh)

+
1
2

(div
(
JkF−1

k wk
h

)
ek,ψh) +

(
1
2

[J ]k
t ek,ψh

)
= Approx(ψh) + Consist(ψh) (47)

for all ψh ∈ Xh ∩ H 1
0 (Ω )d , where the consistency term on the right-hand side reads

Consist(ψh) = b(ξ k
; pk,ψh) + c(ξ k

; wk
h,uk,ψh) − c(ξ k

; uk
− ξ k

t ,uk,ψh). (48)

Decompose the error

ek
= ek

I + ek
h = {uk

− Pk
h (uk)} + {Pk

h (uk) − uk
h}.

We set J−1 = 1 to define P0
h . Thanks to the definition of Pk

h and boundary conditions for uk
h , the vector field ek

h
vanishes on ∂Ω0. Thus, we can set ψh = ek

h in (47) and apply the same arguments that were used to show (21). We
obtain the estimate

1
2
∥ek

h∥
2
k +

(∆t)2

2
∥[eh]k

t ∥
2
k + 2ν∆t∥Dk(ek

h)∥
2
k ≤

1
2
∥ek−1

h ∥
2
k−1

+ ∆t
{
Approx(ek

h) + Consist(ek
h) + Interp(ek

h)
}
. (49)
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The last term accumulates the integrals with the finite element interpolation error

Interp(ek
h) = c(ξ k

; wk
h, ek

I , ek
h) + a(ξ k

; ek
I , ek

h)

+

(
1
2

[J ]k
t ek

I , ek
h

)
+

(
1
2

Jk−2ek
I , [eh]k

t

)
+

1
2

(div
(
JkF−1

k wk)ek
I , ek

h).

Here we exploited the properties of the projections Pk−1
h , Pk

h :(
Jk−2ek−1

I , ek−1
h

)
= 0,

(
Jk−1ek

I , ek
h

)
= 0

respectively, and so
(
Jk−1[eI ]k

t , ek
h

)
= −

(
[J ]k

t ek
I , ek

h

)
−
(
Jk−2ek

I , [eh]k
t

)
.

Now we estimate the consistency and interpolation terms on the right-hand side of (49). First we treat the term
Consist(ek

h). Denote by I (pk) ∈ Qh a suitable interpolant for pk . Due to ek
h ∈ Xk

h , the polynomial interpolation
properties and Korn’s inequality, we have

b(ξ k
; pk, ek

h) = b(ξ k
; pk

− I (pk), ek
h) ≤ c ∥pk

− I (pk)∥∥∇ek
h∥ ≤ C hm+1

∥pk
∥Hm+1(Ω)∥Dk(ek

h)∥k

≤ C
(
δ−1h2(m+1)

∥pk
∥

2
Hm+1(Ω) + δ∥Dk(ek

h)∥
2
k

) (50)

for any δ > 0.
We apply Hölder’s inequality and Sobolev embedding inequalities as well as interpolation properties of the finite

element projection in (42) to handle other consistency and interpolation terms. Using ∥∇u∥L∞(Ω) ≤ C and (1), we get

c(ξ k
; wk

h,uk, ek
h) − c(ξ k

; w̃k,uk, ek
h) = c(ξ k

; ek−1,uk, ek
h) ≤ C∥ek−1

∥k∥ek
h∥k

≤ C(∥ek−1
h ∥

2
k + ∥ek−1

I ∥
2
k + ∥ek

h∥
2
k)

≤ C(∥ek−1
h ∥

2
k + ∥ek

h∥
2
k + h2(m+1)).

(51)

Now we treat the terms contributing to the interpolation error. Using also stability estimate (29) with c∆t ≥ h2m+4,
we bound

c(ξ k
; wk

h, ek
I , ek

h) ≤ C (∥vk
h∥k + 1)∥ek

I ∥∥ek
h∥k ≤ C(∥ek

h∥
2
k + h2(m+1)), (52)

a(ξ k
; ek

I , ek
h) ≤ C hm+1

∥Dk(ek
h)∥

≤

k C
(
δ−1h2(m+1)

+ δ∥Dk(ek
h)∥

2
k

)
. (53)

Using ξ ∈ C2(Q) and (42), we get(
[J ]k

t ek
I , ek

h

)
+
(
Jk−2ek

I , [eh]k
t

)
≤ C (∥J ′

t ∥L∞(Q) + ∥J∥L∞(Q))∥ek
I ∥(∥ek

h∥k + ∥[eh]k
t ∥)

≤ C(∥ek
h∥

2
k + (∆t)−1h2(m+2)) +

∆t
2

∥[eh]k
t ∥

2.
(54)

Summarizing (49)–(54) and using (46), we get for δ small enough:

1
2
∥ek

h∥
2
k + 2ν∆t∥Dk(ek

h)∥
2
k

≤
1
2
∥ek−1

h ∥
2
k−1 + C̃∆t

{
∥ek

h∥
2
+ ∥ek−1

h ∥
2
+ h2(m+1)

+ (∆t)2
+ (∆t)−1h2(m+2)} , (55)

where C̃ depends only on the data. Now we assume the following:

either ∆t is small enough s.t.
1
2

− C̃∆t > 0 or ν ≥ C̃ CK , (56)

where CK is Korn’s inequality constant from (15). Note that e0
h = u0

h − Pk
h (u(0)), where uh

0 is the Lagrange interpolant
of u(0), and so ∥e0

h∥
2
0 ≤ Ch2(m+2). We sum (55) over all k = 1, . . . , n, n ≤ N , and apply the discrete Gronwall

inequality to get

∥en
h∥

2
k + 2ν∆t

n∑
k=1

∥Dk(ek
h)∥

2
k ≤ C

(
h2(m+1)

+ (∆t)2
+ (∆t)−1h2(m+2))
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with some C independent of n, h, ∆t . Applying the triangle inequality and (42) one more time, we obtain the final
error bound in the energy norm,

∥e∥2
∗

:= max
1≤k≤N

∥ek
∥

2
k + 2ν∆t

N∑
k=1

∥Dk(ek)∥
2
k ≤ C

(
h2(m+1)

+ (∆t)2
+ (∆t)−1h2(m+2)) . (57)

The main result is summarized in the following theorem.

Theorem 1. For the fluid problem (2)–(4) and the finite element method (14) assume the following:

(1) the domain evolution is given by a smooth mapping which satisfies (1) and (32);
(2) ∂Ω (t) = ∂Ωns(t) for all t ∈ [0, T ];
(3) ξ t ◦ ξ−1 on

⋃
t∈[0,T ]∂Ω (t) × {t} is the trace of some v̂1 ∈ C3(Qphys) s.t. div v̂1 = 0;

(4) Ω0 is a convex polyhedron;
(5) ut t ∈ L∞(Ω0), u(t) ∈ H m+

5
2 (Ω0), p(t) ∈ H m+1(Ω0) for all t ∈ [0, T ];

(6) c∆t ≥ h2m+4 with some c independent of h, ∆t;
(7) condition (56) holds.

Then the finite element method is stable, see (29), and the error estimate (57) holds.

For the popular P2–P1 Taylor–Hood element we have m = 1, and the optimal error bound ∥e∥∗ ≤ C max{h2
;∆t}

follows if h2
≤ c∆t . The second order in time approximation can be achieved in practice (but not analyzed here) by

using BDF2 time stepping instead of backward Euler time stepping.
We note that constant C in (57) depends on problem data and may blow up for large Reynolds numbers. As it is

common for FE methods for fluids, the present method requires stabilization or subgrid scales modeling for higher
Re numbers. In Section 6.2 we consider the extension of our quasi-Lagrangian formulation to Smagorinsky eddy
viscosity model.

6. Numerical experiments

In this section we present numerical results for the finite element method (14) implemented within the open
source Ani3D software (www.sf.net/p/ani3d) applied to two flow examples. In the first experiment we demonstrate
experimental convergence rates for a given analytical solution and compare those to the established theoretical
expectations. The second experiment is concerned with blood flow in a geometrical dynamic model of the human
left ventricle. The motion of the ventricle was extracted from a sequence of CECT images of a real patient heart over
one cardiac cycle.

6.1. Convergence to analytical solution

In cylindrical coordinates (r, y, φ), we define the reference (initial) domain Ω0 to be the axisymmetric tube with
symmetry axis 0y:

Ω0 = {(r, y, φ) : −4 ≤ y ≤ 4, r2
≤ ey/4+1

}.

The domain has outflow boundary ∂Ω N
0 = ∂Ω0 ∩ {(r, y, φ) : y = 4} and no-slip no-penetration boundary

∂Ωns
0 = ∂Ω0 \ ∂Ω N

0 .
The physical time-dependent domain is:

Ω (t) = {(r, y, φ) : −4 ≤ y ≤ 4, r2
≤ ey/4+1(1 −

1
4

t)}, t ∈ [0, 0.2].

The analytical solution {u, p} to (2)–(5) is given in cylindrical coordinates (r, y, φ) by

ur = −
2e−

1
4 (y+4)r3

(4 − t)2 , u y =
8

4 − t
−

32e−
1
4 (y+4)r2

(4 − t)2 , uφ = 0,

p = 512ν
e−

1
4 (y+4)

(4 − t)2 − 8
y

(t − 4)2 + p̃(t),

where p̃(t) depends only on t . To ensure unique pressure, we set p = 0 on ∂Ω N (t).
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Table 1
Finite element error for the given analytic solution.

Mesh step size 1.0 1.0/
√

2 0.5 0.5/
√

2 0.25 0.25/
√

2

Number of mesh elements 389 928 2333 5813 16439 46215
Time step size 0.04 0.02 0.01 0.005 0.0025 0.00125
Number of time steps N 5 10 20 40 80 160

max
1⩽k⩽N

∥ek
∥k +

√∑N
k=1∆t∥Dk (ek )∥2

k 0.2652 0.1731 0.0983 0.0534 0.0233 0.0115

Error ratio 1.532 1.761 1.841 2.292 2.034

The external force f = ( fr , fy, fφ) is taken such that u satisfies (2)–(3) for ν = 0.04. To simplify the design of the
right-hand side and the boundary conditions, we consider in (3) the full velocity gradient tensor ∇uF−1 instead of its
doubled symmetric part. The resulting forcing vector is given by

fr = ν
e−

1
4 (y+4)

(4 − t)2

(
16r +

1
8

r3
)

− 4
e−

1
2 (y+4)

(t − 4)4 r5, fy = 2ν
e−

1
4 (y+4)

(4 − t)2 r2
− 128

e−
1
2 (y+4)

(t − 4)4 r4, fφ = 0.

The boundary condition on ∂Ω N (t) is non-homogeneous, σn = ν J∇uF−1F−T nN , nN := (0, 1, 0).
We applied the lower degree (m = 1) P2-P1 Taylor–Hood finite elements in (14) with the simplified stress tensor

(3). A sequence of six unstructured quasiuniform tetrahedral meshes with mesh sizes hi = hi−1/
√

2, i = 2, . . . , 6 is
used to measure the finite element error. The computed error norms are shown in Table 1. The second order asymptotic
convergence rate is consistent with the estimate of Theorem 1.

6.2. Blood flow in a geometrical model of the human left ventricle

We now illustrate the practical value of the finite element method (14) by applying it to simulation of the blood flow
in a simplified model of the human left ventricle. This problem arises in patient-oriented hemodynamic applications.
Our simplifications concern anatomical structure and boundary conditions on the valves as well as neglecting ventricle
twisting.

The motion of the ventricle Ω (t) is recovered from a sequence of CECT images. The input data is a dataset of 100
images with 512 ×512 ×480 voxels and 0.625 × 0.625 × 0.25 mm resolution. The images were taken from a chest
CECT of a 50 year old female. The mapping ξ is defined by a dynamic sequence of 1981 meshes for one cardiac
cycle. The mesh sequence contains topologically invariant tetrahedral meshes with 14 033 nodes, 88 150 edges and
69 257 tetrahedra which differ only in nodes positions. Denote by x the spatial coordinate of a node of the reference
grid at time t = 0, and identify the coordinate ξ (x, t) of the corresponding node at time t = tk . The mapping ξ k is
defined as the continuous piecewise linear vector function with values ξ (x, t) at the reference grid nodes x. Of course,
the recovered mapping is a piecewise smooth approximation of an unknown smooth mapping ξ . This introduces
additional modeling error which is not treated in our analysis.

Note that the time between two sequential frames of CECT input data is equal to 12.7 milliseconds. Because of the
fast heart walls motion and variation of ventricle volume (see Fig. 1) setting ∆t = 12.7 ms turned out to be too large to
deliver acceptable accuracy. The sequence of 1981 meshes allows us to use 20 times smaller time step ∆t = 0.635 ms.
For the details of generation of this sequence we refer to recent paper [21].

To set up the boundary conditions, we split the left ventricle boundary into aortic valve and mitral valve patches,
and the remaining part of the boundary. The ventricle passes through the systole phase approximately until t = 355 ms
releasing blood flow through the aortic valve. During this time interval, we set the ‘do-nothing’ boundary condition (5)
with ĝ = 0 on the patch associated with the aortic valve. For the remaining time interval ending at T = 1.2573 s, we
impose the ‘do-nothing’ boundary condition on the patch associated with the mitral valve. The latter is connected to the
atrium and intakes blood during the expansion stage called diastole. On the remaining boundary, including the aortic
valve during the diastole phase and the mitral valve during the systole phase, the no-penetration no-slip condition (4)
is imposed, u = ξ t . In future, we plan to use more physiologically suitable boundary conditions, see [27], instead of
the ‘do-nothing’ boundary conditions.
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Fig. 1. The ventricle volume change in time.

Fig. 2. The cutaway of the mesh, velocity streamlines and the Q-criterion field at t = 200 ms, horizontal long axis view.

At the initial time moment, the beginning of the systole stage, we assume the system is at rest with zero pressure
(this is, of course, an idealized initial condition). Similarly to the previous test case, we use the lower degree Taylor–
Hood finite element spaces (13) with m = 1. At every time step one has to solve a linear system with 320 582
unknowns, comprised of 14 033 nodal pressure degrees of freedom and 14 033 + 88 150 degrees of freedom residing
at the mesh vertices and edge centers, for each velocity component.

The hemodynamics of the heart is characterized by transitional or even turbulent flow regimes (see, e.g., [28,29,6]).
Our mesh is not sufficiently fine to resolve all scales in the flow, and hence a subgrid model has to be employed. For
the purposes of this paper, we use the simplest approach and replace ν with the Smagorinsky turbulent viscosity
coefficient ντ :

ντ = ν + (CshT )2
√

2Dk(wk
h) : Dk(wk

h),
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Fig. 3. The cutaway of the mesh, velocity streamlines and the Q-criterion field at t = 400 ms, horizontal long axis view.

Fig. 4. The cutaway of the mesh, velocity streamlines and the Q-criterion field at t = 600 ms, horizontal long axis view.

where Cs = 0.2 and hT = diam(T ), for any tetrahedral cell T ∈ Th . The finite element method takes the form: Find
velocity uk

∈ Vh and pressure pk
∈ Qh satisfying equation∫

Ω0

Jk
uk

− uk−1

∆t
· ψ dx +

∫
Ω0

Jk∇ukF−1
k

(
uk−1

−
ξ k

− ξ k−1

∆t

)
· ψ dx −

∫
Ω0

Jk pkF−T
k : ∇ψ dx

+

∫
Ω0

JkqF−T
k : ∇uk dx +

∫
Ω0

ντ Jk(∇ukF−1
k F−T

k + F−T
k (∇uk)T F−T

k ) : ∇ψ dx = 0 (58)

and the no-penetration no-slip uk
= (ξ k

− ξ k−1)/∆t or the ‘do-nothing’ boundary conditions, for all ψ and q from
the corresponding FE spaces.

The cutaway of the mesh and computed velocity streamlines and the Q-criterion field at 200, 400, 600 ms are shown
in Figs. 2, 3, 4, respectively. The velocity magnitude is given in mm/s. The viscosity of blood was set ν = 4 mm2/s.
These instances are chosen to demonstrate blood flow features in the middle of the systole phase, the very beginning
of the diastole phase, and the beginning of the second quarter of the diastole phase (Fig. 1). The velocity streamlines
and the Q-criterion are shown in the entire 3D domain, whereas the mesh is shown partly: only cells lying beyond the
cross-section plane are visible.
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7. Conclusions

The paper shows that the quasi-Lagrangian description of the flow in a time-dependent domain is suitable for a
practically efficient finite element method, which is amenable to mathematically rigorous numerical analysis. Major
challenges in analysis are dealing with the time-dependent divergence-free constraint in finite element spaces and
handling non-homogeneous boundary conditions. This paper proves the optimal error estimate in the energy norm
under fairly practical assumptions. In a relatively straightforward way, implementation of the method builds on
standard Navier–Stokes finite element solvers in a fixed triangulated domain. The example of the flow in the simplified
model of the human left ventricle demonstrated the practical value of the method for certain medical applications.
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