
1) Levin V. A. Multiple imposition of large deformations in elastic and
viscoelastic bodies / Preface. acad. L. I. Sedova. — M.: Nauka, Fizmat
lit, 1999. — 223 p.

FOREWORD OF THE SCIENTIFIC EDITOR OF THE
FIVE-VOLUME CYCLE OF MONOGRAPHS

This volume of a five-volume cycle of monographs for a specialist in
the field of strength calculations stands somewhat apart. A researcher
or a strength engineer usually does not think about algorithms, and even
more so about the most complex mathematical apparatus, on the basis
of which the algorithms for constructing (generating) grids for the
numerical solution of strength problems are developed. This is probably
due to the fact that if a universal or niche CAE (Computer Aided
Engineering - engineering analysis system) is used for calculations, then
it contains an industrial grid generator. If the solution of a particular
complex research problem requires the development of an independent
program, then the existing grid generator is used, since this is almost
always enough to solve a particular problem. At the same time, it should
be understood that such a program is usually workable only in the
hands of a researcher. The need for

a deeper dive into the problem arises when developing a fully
functional CAE, for example, for strength engineering analysis, capable
of solving complex problems with finite deformations and their
redistribution. Such problems describe mechanical processes, with finite
deformations under loading, in which the boundaries and boundary
conditions change. Such processes include, for example: the formation
of stress concentrators during loading; changing the material properties
of a body part; forced, from the point of view of the mechanics of a
deformable solid body, an increase (change) in the mass of the body.
Such problems are solved on the basis of the theory of multiple
superimposition of large deformations (vols. I–III). Academician L.I.
Sedov,

noting more than a third of a century ago its practical significance in
the future. It should be noted that in our time, with the development of
additive technologies, the creation of new materials, with an increased
need to more accurately evaluate supercritical loading scenarios and
product life, the industrial implementation of such problems has become
a practical necessity.

Machine Translated by Google

increasing geometry (topology) of the computational domain
and to stress/strain fields in the process of solution, including
anisotropic meshes that make it possible to take into account
the induced anisotropy in the vicinity of stress concentrators.
This is important, for example, in dynamic problems in which it
is necessary to

ensure high accuracy of the solution at the wave front. To
implement this functionality, it is necessary, in particular, to
solve the problem of mesh rebuilding near the curvilinear
boundaries of the body; control of anisotropic adaptation of
meshes through their local modifications; restoration of body
geometry using a deformed mesh; automatic mesh rebuilding
to improve the convergence of iterative algorithms for solving
essentially nonlinear problems under large deformations and
distortions of the original body geometry; automatic rebuilding
(improving properties) of a finite element mesh based on the
original mesh containing strongly elongated

elements and/or elements with "excessively sharp" corners.
This volume is devoted to the description of the solution of
such problems. Most of the research in this area, due to the
specialization that has arisen in modern science, unfortunately
ends at the stage of the research code and rarely gets
industrial implementation. The authors of the volume were
able to bring them to an alienable software product that has
proven its usefulness in research tasks and is able to
complement the functionality of industrial mesh generators 1). Academician G.I. Marchuk.

It should be noted that in the four years that have elapsed from the
coordination of the structure of the five volume cycle to its release, a
serious trend has emerged in the technologies for solving the problems
of strength engineering analysis using the methods of isogeometric
analysis [29, 33, 44, 58, 84]. The essence of the approach is to use
the linear space as the basis functions, within which the solution of the
original boundary value problem in partial derivatives is sought, for
example, by the method of weighted Galerkin residuals, inhomogeneous
rational B-splines (NURBS), simultaneously specifying the geometry
of the considered body (CAD -model; in practice, this is a joint use of
CAD and CAE). In this case, there is no need to introduce an additional
basis consisting of shape functions given on the finite element
discretization of the original model

Foreword by the scientific editor of the five-volume series of monographs 7

This approach in industrial problems of strength engineering
analysis is generally impossible because of the unsolved problem
of constructing a basis from three dimensional NURBS for regions
of arbitrary shape [32]. When (if) this problem is overcome, it is
likely that a significant part of the trivial standard strength
calculations will be carried out using isogeometric analysis.
Complex problems associated with the analysis of defect behavior,
the development of prefracture zones, changes in boundaries and
boundary conditions, and body mass will still require the use of
mesh generators. And, probably, a symbiosis of these or similar
approaches will be implemented in industrial packages. We can
assume the emergence of a computational block with the conditional
name

"sampling generator", combining these approaches 2). A
methodologically similar process is observed when the method of spectral elements
one hundred of the finite element method (see vols. I, II) 3).

1) Cottrell JA, Hughes TJR, Bazilevs Y. Isogeometric Analysis: Toward

In this case, a very high functionality is required from the mesh
generator. This is not only the basic functionality - the ability to build
structured and some types of unstructured grids, but also, in particular,
automatic adaptation of the grid to changes.

Integration of CAD and FEA. — NY: Wiley & Sons, 2009.
2) Therefore, the scientific editor of this series of monographs proposed to

prepare the second part of vol. IV (as a separate volume) on the use of
isogeometric analysis in the numerical solution of problems in the mechanics of
a deformable solid body.

The method

1) This integration is done in CAE FIDESYS (www.cae-fidesys.com).

3) The described combination of numerical discretization methods is
implemented in the industrial strength engineering analysis package CAE
FIDESYS (www.cae-

fidesys.com). 4) Apanovich VN Method of external finite element
approximations. - Minsk: Highest. school, 1991. - 170 p.; Aubin J.P.
Approximation of elliptic boundary value problems. — NY: Wiley-Interscience, 1972. See also [2].

and, as a consequence, the construction, often nontrivial, of
unstructured grids is not

required. It should be noted that at present, effective methods
have been developed for the geometric description of the
boundaries of three-dimensional bodies (curved linear surfaces)
using NURBS, and, as a result, isogeometric analysis is
successfully used, for example, in solving problems for shell structures 1). However, the use

external approximations 4). This method is a kind of logical generalization
of the finite element method, expanding and supplementing its main
ideas, including the weak formulation and the search for a solution in
Sobolev subspaces. Without going into details, we note that, within the
framework of the method of external approximations, the concept of a
generalized finite element is introduced, which in problems of the
strength of assemblies and complex composite structures is actually
their component part — in fact, each assembly detail can be described by one generalized

6 Foreword by the scientific editor of the five-volume series of monographs

Machine Translated by Google

Moscow, Moscow State University M. V.
Lomonosov June 11, 2016

finite element of arbitrary geometric shape. Another difference from the classical
finite element with isoparametric discretization of the geometry and fields of
unknown functions inside the element is the possibility of specifying an arbitrary
set of basis functions that are in no way related to the geometry of the generalized
element; the only requirement for choosing a basis is completeness in the
corresponding Sobolev subspace. An unsolved problem from the point of view
of mass industrial use is the insufficiently accurate description of complex
boundaries. Note that, from a practical point of view, for the user, the method of
external approximations is similar to isogeometric analysis, allowing one to
perform calculations directly on the initial geometry of the body without any
modifications and additional actions to prepare the model for calculation.
Considering all of the above, the editor of the cycle expects the creation within
the next decade in industrial packages of strength

engineering analysis of some combinations of “sampling generators” and
solvers that combine existing and emerging methods for solving strength
problems. In conclusion, I would like to note the deep immersion of the authors
of the volume into the problems of strength at finite strains and their redistribution,
their practical

participation in their solution 1), careful study of the examples given in the
book and proposed by the editor of the cycle 2). This volume will be of interest

to both users and developers of packages for strength engineering analysis, as
well as useful to senior students and graduate students of specialized specialties.

Professor V. A. Levin

1) In particular, automatic mesh adaptation in problems of elastic wave
propagation under finite deformations over a damaged material (vol. I) was
performed by A.A. Danilov.

We started working on the problem of constructing quasioptimal grids for the
numerical solution of partial differential equations more than 15 years ago.
Initially, it was obvious to us that such grids should be unstructured and may
contain triangles or tetrahedra that are strongly elongated in some direction.
Analysis of the properties of numerical solutions on such grids required the
development of new algorithms and special software. The purpose of the book
is a detailed discussion of various practical tools that are in demand in
engineering applications and necessary for efficient automated construction of
unstructured adaptive computational grids, both regular and anisotropic. One of
our practical observations is that the fast and reliable construction of
computational grids requires a combination of three different methods. The
advancing

front method constructs a mesh fairly quickly in 95–99% of the computational
domain. The Delaunay triangulation method requires more computational costs
for constructing each element of the grid, but allows one to complete the grid in
the remaining problematic subdomains. Finally, the shape of the mesh elements
in the problematic subdomains is improved using the anisotropic meshing
method, which has the highest computational complexity. The algorithms that
form the basis of our reliable meshing technology are presented in Chapters 3
and 5. Optimization of computational costs in dynamic problems assumes that
the initial mesh changes over time depending on the dynamics of the solution.
Chapter 4 presents methods for constructing adaptive dynamic meshes through
their multilevel hierarchical refinement and coarsening. In the remaining
chapters and appendix, we discuss various methods for controlling the local size
and shape of mesh elements using scalar and tensor metrics, as well as various
numerical error estimates. The book is intended for developers of engineering
analysis systems, engineers and mathematicians whose activities are related to
the construction of computational grids. Our colleagues have provided us with
considerable assistance in writing the book. A. Aguzal made a decisive
contribution to the theoretical analysis of the properties of numerical solutions
on anisotropic grids. The mathematical methods

developed jointly with him formed the basis of a number of algorithms
implemented in our open source software,

2) That is why the author of the preface considered it right for himself not to be part
of the team of authors, but to confine himself to selecting examples and discussing
the structure of the volume.

AUTHOR'S PREFACE

8 Foreword by the scientific editor of the five-volume series of monographs

Machine Translated by Google

INTRODUCTION

The work on the book took several years and a lot of personal time.

10

This book is the fourth volume of the cycle "Nonlinear Computational
Mechanics of Strength". The main goal of this cycle is to present various
mathematical models, numerical methods, and algorithms that form the basis
of engineering analysis (SIA) systems and make it possible to describe the
behavior of a deformable solid body under finite deformations, when boundaries
and boundary conditions change during its loading, discretely or continuously.
conditions. An important application of SIA is strength problems, the solution of
which is associated with numerical simulation of the development of a defect
in a solid, taking into account the occurrence of prefracture zones and phase
transitions at the defect tip under the action of mechanical stresses. Numerical
solution of this kind of problems requires rich tools for constructing computational
grids. The fourth volume of the series is devoted to the description of various
meshing technologies.

The main purpose of the book is to present a number of modern algorithms
for constructing computational grids for engineering applications, in particular,
those related to strength problems. We confine ourselves to considering only
unstructured grids, which can be constructed in almost any computational
domain, given both in the plane and in space. Technologies for constructing
structured grids (i.e., grids with an ijk-structure of connectivity between nodes)
based on constructing a mapping of some canonical domain into a given
computational domain are less automated than technologies for constructing
unstructured grids. A number of monographs and scientific collections published
both in our country and abroad are devoted to methods and algorithms for
constructing structured grids [1, 10, 14–16, 22, 56, 59, 61, 68, 69]; we refer the
interested reader to these sources.

We are deeply grateful to our families for their support during this time.

Moscow, Russia and Los Alamos, USA
December 3, 2014

Ani2D and Ani3D packages. We are grateful to A.V. Vershinin and A.V.
Plenkinu, who made a significant contribution to the development of a method
for improving a given surface mesh. We thank V.A. Garanzhu, R.V. Garimello,
V.M. Goloviznina, N. Deby, V.G. Dyadechko, P.L. George, I.V. Kapyrina, T.K.
Kozubskaya, V.D. Liseikin, D.R. Madison, Yu.M. Nechepurenko, K.D. Nikitina,
I.B. Petrova, A.V. Plenkina, I.A. Sazonova, P.E. Farrell, F. Hesh and A.Yu.
Chernyshenko for discussions of algorithms for constructing computational
grids and comments that allowed us to improve the book. For the invaluable
contribution to testing our software, we are grateful to the students of the
Moscow Institute of Physics and Technology and Moscow State University, as
well as to many users around the world who sent their

Yu.V. Vasilevsky
A.A. Danilov

K.N. Lipnikov

V.N. Chugunov

This book is a summary of many years of experience of the authors in the
practical construction of unstructured computational grids. The main purpose of
the book is to discuss the various tools used in the construction of such grids.
We see the area of application of the presented tools primarily in the
development and implementation of new grid generators in engineering
applications. The target audience of the book is SIA developers, engineers
and mathematicians whose activities are related to the construction of
computational grids, i.e. those who directly program or use grid generators.

Chapter 1

comments.

Author's preface

Machine Translated by Google

The book by no means claims to be an exhaustive review and theoretical
analysis of all methods for constructing unstructured grids and the data
structures used for this. The reader can study these issues using monographs
[8, 11, 18, 36, 50, 52, 54] and the works of specialized domestic
(NUMGRID-2004, 2006, 2008, 2010, 2012) and international (International
Meshing RoundTable, 1992–2014) conferences (see, for example, [76, 77]).
The yet unpublished monograph by V.A. Garangi "Numerical geometry and
construction of computational grids", containing rich theoretical material on
the subject under consideration. The framework of our book is formed by a
set of algorithms implemented by us in the ani2D and ani3D software
packages, which are freely available on the Internet: www.sf.net/projects/
ani2d; www.sf.net/projects/ani3d. The content is a discussion of the
presented algorithms, including practical results of their use.

grids.

Ch. 1. Introduction

This book has a number of features that distinguish it from already
published monographs. First, it represents all the stages of the technological
chain of construction of the computational grid, starting from the specification
of the area and ending with the procedures for improving and adapting the
grid. In the monographs known to the authors [18, 36, 50, 54], one or several
stages of the technological chain are considered. Second, we consider
automated technologies for reliable mesh generation that ensure the trouble
free operation of algorithms. This quality is extremely important when
building unstructured 3D meshes in complex areas. Reliability of 3D meshing
is achieved by a combination of several methods, since no individual
method alone can provide an acceptable quality mesh. Thirdly, we give a
detailed description of the algorithms used, which makes it possible to
understand the features of the technical implementation of the algorithms
in our programs. An algorithmic view of the methods for constructing
computational grids is also characteristic of the book [18]. The features of
the book listed above and software implementations of the described
algorithms make it a convenient guide not only for users of our software, but
also for developers of new generation libraries.

time; secondly, to rebuild the grid at each time step, condensing it to a new
calculated position of the crack edge and coarsening it in other zones. In the
case of calculation of prefracture zones in bodies with cavities, it is necessary
to adapt the mesh to the vertices of defects and track the boundaries of
prefracture zones and, possibly, rebuild the mesh depending on the
implementation of phase transitions. We do not present the results of
calculations for problems of deformation of a solid body, but we present
meshes that can be used to solve such problems, as well as possible
technologies for their construction.

Most of the geometric models considered in the book are typical
examples in strength problems: a two-dimensional or three-dimensional body
with holes or cracks. When a significant mechanical load is applied to such
bodies, it is very important to calculate internal stresses and predict
prefracture zones, which is apparently impossible without the use of adaptive
meshes. For example, in the case of crack propagation, it is necessary to
dynamically rebuild the mesh, ensuring its thickening to the current position
of the crack edge. For this, it is necessary: firstly, to construct an initial
mesh that adaptively thickens to the edge of the crack at the initial moment

Ch. 1. Introduction

In addition to hierarchical refinement and coarsening, unstructured
meshes can be completely rebuilt through a sequence of local mesh
modifications. This approach has the greatest potential compared to
hierarchical refinement.

Let us briefly list the main advantages of the technologies developed by
us for constructing and adapting unstructured computational grids. The
concepts we use in the introduction will be rigorously defined in chapter 2
of the book.

1) Wanglophone literature CAD (Computer Aided Design).

13

The book proposes a set of algorithms and software tools for the reliable
construction of 2D and 3D grids with regular cells in regions of complex
shape, which can be specified in various ways. For example, a three-
dimensional region can be defined as a set of union, subtraction, and
intersection operations of geometric primitives such as an ellipsoid, box,
cone, etc. The region boundary can also be defined as a set of parameterized
surface pieces whose boundaries are also parameterized. The most common
approach to defining an area is to use a design automation system (CAD)
1), which is an integral part of many CIAs. The interaction of the grid
generator with CAD, which stores the internal parametric representation of
the region boundary, is provided by a special software interface. The
constructed unstructured meshes can be refined using local mesh
refinement methods. In this case, triangular or tetrahedral cells selected by

the user are divided into two subcells, as well as some neighboring cells,
which guarantees the conformity of the resulting mesh. When applied
several times, this procedure provides multi-level local grinding, during
which the quality of new cells can only slightly deteriorate. Moreover, refined
meshes allow multi-level local coarsening according to rules set by the user,
thereby providing the construction of dynamically adaptable meshes that
track the moving features of the mesh solution.

12

Machine Translated by Google

Chapter 3 is devoted to the construction of unstructured simplicial grids in arbitrary

domains with a piecewise smooth boundary. Section 3.1 discusses several ways of specifying

the boundary of a region. The set of methods covers the widest range of areas encountered

in applications. In §§ 3.2 and 3.3, two main methods for constructing two-dimensional meshes

are discussed - the Delaunay triangulation method and the advancing front method. In § 3.4

the advancing front method is transferred to the construction of surface triangulations, which

is the initial stage in the generation of a tetrahedral mesh. If the boundary of the three-

dimensional area is already defined by surface triangulation, then this stage of the technological

chain can be omitted. If the quality of a given surface mesh is poor, it may be necessary to

improve it, as discussed in § 3.5. Sections 3.6 and 3.7 are devoted to questions of automatic

generation of tetrahedral meshes with a given trace on the boundary. Chapter 4 covers the

technology of multilevel hierarchical local refinement and coarsening of simplicial grids, which

preserves the regularity of simplex cells. In this chapter, as in all the following, it is assumed

that the initial mesh in the region has been built. Section 4.1 gives the basic principles of

hierarchical mesh refinement. Sections 4.2 and 4.3

describe in detail the algorithms of the bisection method for triangular and tetrahedral

meshes. In § 4.4, the technology of multilevel coarsening of a locally refined mesh is

considered,

chennaya

14

b Fig. 1.1. Examples of computational grids: (a) unadapted unstructured, (b) anisotropically
adapted, (c) hierarchical locally refined

Ch. 1. Introduction

A

Finally, another advantage of our approach is that

that the technologies for constructing computational grids listed above are implemented in

freely distributed software packages, and therefore can be tested by any user. Let's move on

to a brief description of the contents of the book. Chapter 2 is

introductory for the non-specialized reader. In § 2.1 we give the main definitions of
unstructured grids considered in the book, and also introduce common notation. The general

name for the grids generated by our technological chain is conformal simplicial grids. A

simplex is a triangular cell for 2D meshes or a tetrahedral cell for 3D meshes. In § 2.2 we

discuss the main properties of simplicial grids that can be used in applications. Section 2.3

discusses the data structures and fast algorithms underlying the technology for generating

unstructured meshes.

15

Examples of an unadapted unstructured grid, an anisotropic adapted grid, and a

hierarchical locally refined grid are shown in Figs. 1.1. The choice between locally refined

and completely unstructured meshes depends on the problem. In a number of problems of
elasticity and hydrodynamics, especially in problems with strong singularities, an anisotropic

unstructured mesh makes it possible to achieve an acceptable accuracy of the mesh solution

on a much smaller number of cells than a regular mesh. On the other hand, the construction

of an anisotropic grid requires more computational effort.

Automated algorithms for adaptive rebuilding of computational grids require control over
the properties of these grids. You can control the local hierarchical rebuilding of the grid using

the indicators of a posteriori error, examples of which we give. To construct unstructured

grids, it is necessary to determine continuous functions that characterize the local properties

of the cells, for example, their desired size at each point of the region. A posteriori error
estimates underlie the construction of such functions. Functions,

that control the isotropic refinement or coarsening of the mesh are scalar, and the functions

that control the anisotropic adaptation are tensor, since they must specify both the cell size

and the direction of its elongation. The correct setting of the control function is an important

condition for the efficiency of the computational grid. We propose new methods for constructing

these functions and show their efficiency both theoretically [24, 26] and practically.

Ch. 1. Introduction

V

meshes, because it allows you to build anisotropic meshes. Anisotropic adaptation reduces
or increases the size of cells in preferred directions, which is reasonable for solutions with

anisotropic features. The set of local operations is very limited. In the 2D case, it suffices to

implement just five basic operations: inserting a node onto an edge, replacing an edge,

shifting a node, deleting an edge, and deleting a node. In the three-dimensional case, the
number of basic operations is seven: inserting a node onto an edge, direct and reverse

replacement of a face by an edge, replacing an edge by a polygonal face, shifting a node,

deleting an edge, and deleting a node. The same basic operations are used to fix and detangle

meshes. Such meshes arise, for example, when solving deformation problems using dynamic
meshes that move

along with the deformable body.

Machine Translated by Google

v2 and v3, i.e. the set of points

i=1

The algebraic area of a triangle ÿ is the quantity

Ch. 1. Introduction

3

Sÿ
2

which opens the way to the construction of a sequence of grids with dynamic adaptation,
described in § 4.5.

3

§ 2.1. Triangular and tetrahedral meshes

.

=

A plane triangle is the simplest polygon having three vertices v1, v2, v3 and three

edges e12, e23, e13. The edge eij is a segment, where 1 i<j 3. If all three vertices of a
triangle connecting a pair of vertices vi and vj lie on the same straight line, then it is

called degenerate. Let a Cartesian coordinate system (x, y) be given on the plane, in
which any point

vi can be represented by a vector vi with two components xi and yi. A directed edge eij
connecting two vertices vi and vj can be represented by the vector eij = vj ÿ vi. (Here and

below we will use regular font for points or edges as such, and bold font for points or edges
as vectors.) The triangle ÿ is the convex hull of the three vertices v1,

i=1

spare.

16

A canonical triangle is a triangle in which two edges of unit length coincide with the unit
vectors of the chosen Cartesian

BASIC CONCEPTS

ÿivi, ÿi 0,

det{e12,e13} ÿ 2

This chapter will introduce the basic concepts needed to construct triangular and
tetrahedral meshes. We also recall the main results of graph theory, which will be used in
subsequent chapters. Finally, we describe the basic data structures needed to implement
the locally refined and unstructured meshing algorithms presented in the book.

i = 1

((x2 ÿ x1)(y3 ÿ y1) ÿ (x3 ÿ x1)(y2 ÿ y1)), (2.1.1)

where

det{e12,e13} denotes the determinant of a matrix with two columns e12 and e13. Due to
the properties of the determinant, the algebraic area changes sign when any two vertices
in the triangle ÿ are interchanged. The area of a triangle is the absolute value of the
algebraic plane

1

Chapter 2

ÿ=x:x=

1

Chapter 5 presents the most general technology for adaptive rebuilding of simplicial
meshes by means of their local modifications. The flexibility and generality of the
technology is due to the fact that, firstly, the properties of the adaptive rebuilt mesh are
practically independent of the properties of the initial mesh and, secondly, this approach
allows the construction of anisotropic adaptive meshes. Section 5.1 presents the basic
principles of organizing mesh rebuilding algorithms based on its local modifications.
Sections 5.2 and 5.3 describe in detail all types of local operations on 2D and 3D meshes,
respectively. The sequence of local modifications of a tetrahedral mesh can be
computationally expensive, so in § 5.4 we describe a parallel version of the technology
under consideration. In addition to adaptability, a set of local mesh modifications also
provides the ability to correct and unravel meshes, which is discussed in § 5.5. Although
small, Chapter 6 provides the reader with important practical information about controlling
the properties of unstructured meshes. Sections 6.1 and 6.2 successively consider methods
for controlling the properties of regular and anisotropic simplicial grids. These sections
describe the construction

of the necessary scalar and tensor functions, respectively. Adaptation of computational
grids is an important link in the technological chain for constructing grids with the optimal
arrangement of nodes and edge connections between them, which minimize the error of
the grid solution. Some important practical issues of grid adaptation are considered in the
appendix. Section A.1 considers the rebuilding of grids near curvilinear boundaries.
Inaccurate approximation of curvilinear boundaries

can severely limit the accuracy of grid solutions. Section A.2 describes a posteriori
error estimation methods for controlling the properties of hierarchical locally refined
adaptive grids. Section A.3 presents various approaches to controlling the anisotropic
adaptation of meshes by means of their local modifications.

Machine Translated by Google

The data in the last two lines correspond to an isosceles triangle with a varying

angle with equal sides. An angle less than 90ÿ corresponds to the extension of the
triangle, and an angle greater than 90ÿ corresponds to its flattening. We note in particular
that the quality of the shape of a right triangle is quite high and equals approximately
0.9.

Qÿ 0.382 0.820 0.983 0.986 0.892 0.738 0.548 0.336 0.113

A triangle is said to be regular if the ratio of its area and the area of an equilateral
triangle of the same diameter is on the order of 1. There are several equivalent measures
for the regularity of a triangle. Let |e| denotes the length of the edge e of the triangle ÿ,
and Pÿ is its perimeter: Pÿ = |e12| + |e13| + |e23|. In this book we consider the following
measure of the regularity, or quality of the shape, of a triangle:

2 4

Qÿ = 12ÿ3 |Sÿ|

Ch. 2. Basic concepts

(2.1.3)

19

16

Rice. 2.1. Canonical (a) and equilateral (b) triangles

The relationship between the quality of the shape of a triangle and the parameters
of its geometric shape is illustrated in Table. 2.1 for two examples. The data in the first
two lines correspond to the extension of an equilateral triangle into an acute isosceles

triangle. The triangle stretch factor s is 1 for an equilateral triangle and grows linearly
with the triangle's largest height. Note that the quality of the shape of a prolate triangle
decreases approximately in inverse proportion to the stretch factor s.

64 128 256

The area of a canonical triangle is 1/2, and the area of an equilateral triangle of
diameter 1 is

This formula is based on the following property: an equilateral triangle has the largest
area among all triangles with a fixed perimeter. It follows from this definition that Qÿ is a
positive value not exceeding 1. Moreover, Qÿ = 1 only for an equilateral triangle.

18

Due to the convexity of the triangle, its diameter coincides with the length of the largest
edge. Examples of canonical and equilateral triangles are shown in fig. 2.1.

ÿ 10ÿ 30ÿ 50ÿ 70ÿ 90ÿ 110ÿ 130ÿ 150ÿ 170ÿ

(2.1.2)

§ 2.1. Triangular and tetrahedral meshes

T a b l e 2.1
Changes in the quality of the shape when stretching (second line) and

flattening (fourth line) an isosceles triangle

1 8

— the region ÿ is completely covered by these triangles; — the
boundary of the domain ÿÿ is completely covered by triangle edges; The interiors of

the triangles do not intersect. This mesh definition is quite
general and includes both conformal and nonconformal triangulations (a triangulation

is said to be conformal if the intersection of any two triangles is either their common

vertex, their common edge, or the empty set). A triangulation is called uniform if it
consists of equilateral triangles, and quasi-uniform with step h if all its triangles are close
(in measure Qÿ) to an

equilateral triangle of diameter h. Note that uniform grids do not exist in three
dimensions.

32

In practice, we recommend building grids with elements for which Qÿ 0.7. For the
examples above, this means that s ÿ (1, 2,9) and ÿ ÿ (23ÿ,114ÿ). A triangular mesh, or

triangulation ÿh of a polygonal
(polygonal) domain ÿ, is a finite set of triangles ÿi, i = 1, ... , N, such that:

s

coordinate systems. An equilateral triangle is a triangle with equal edge lengths. The
diameter of a triangle ÿ, like any polygon, is the value

P2ÿ
.

diam(ÿ) = max |x ÿ y|. xÿÿ,yÿÿ

Qÿ 1.0 0.849 0.563 0.325 0.174 0.090 0.046 0.023 0.012

Sÿ = ÿ34 .

Machine Translated by Google

(2.1.4)

ÿ=x:x=

1

Vÿ =
6 ÿ 2

A tetrahedron is called regular if the ratio of its volume and the volume of a regular
tetrahedron of the same diameter is

c

i = 1

det{e12,e13,e14},

Ch. 2. Basic concepts

A canonical tetrahedron is a tetrahedron in which three edges coincide with the unit
vectors of the chosen Cartesian coordinate system. An equilateral, or regular, tetrahedron
is a tetrahedron with equal edge lengths. The diameter of a tetrahedron ÿ is the length of
its largest edge. Examples of canonical and regular tetrahedra are shown in fig. 2.3. The
volume of a canonical tetrahedron is 1/6, and the volume of a regular tetrahedron of
diameter 1 is

21

1i N

i=1

for a closed two-dimensional surface which is the boundary of a three-dimensional body.
In this case, the grid nodes must have three coordinates (x, y, z), the edge of the triangle
is a curved segment lying on a two-dimensional surface, and the absolute value of the
algebraic area (2.1.1) is only an approximation of the integral area of the triangle.
Tetrahedral meshes in space are defined by analogy with triangular meshes in the plane.
A tetrahedron in

three dimensions is the convex hull of four vertices v1, v2, v3, and v4. If all the
vertices of a tetrahedron lie in the same plane, then it is called degenerate. An edge of a
tetrahedron is a segment eij connecting and a face of a tetrahedron is a triangle fijk a pair
of vertices vi and vj , with vertices vi, vj and vk.

points

Algebraic, or oriented, volume of the tetrahedron ÿ on

In many practical applications, the boundary nodes of a triangulation lie on a
curvilinear boundary (see Figure 2.2). This ensures that the boundary of the domain is
approximated by triangulation edges with the second order of accuracy with respect to
the length of the edge, i.e., the distance from the boundary edge of the grid e to the
curvilinear boundary is a value of the order of |e| 2. The concept of triangulation can be

generalized for a
region defined on a two-dimensional surface in three-dimensional space, as well as

20

ÿÿ

4

is called the quantity

(2.1.6)

§ 2.1. Triangular and tetrahedral meshes

< 1,
diam(ÿ)

where ÿ ÿ is the radius of the inscribed circle, and the constant c does not depend on the
grid triangle. In contrast to a quasi-uniform grid, a regular grid can contain triangles that
differ greatly in diameter, although the diameters of any two adjacent triangles do not
differ much, i.e., are close (in measure Q ÿ). For example, for the regular grid shown in
Fig. 1.1c, we have c = (ÿ 2 ÿ 1)/2. The measure of the regularity of the grid ÿh, or its

quality Q(ÿh), can be the smallest of the qualities of the form Q ÿi of the triangles ÿi
composing the grid: Q(ÿh) = min

ÿivi, ÿi 0,

Q ÿi .

Vÿ = 6

.

The concept of triangulation of a domain ÿ with a piecewise smooth curvilinear
boundary is a natural generalization of the concept of triangulation of a polygonal domain.
The main difference is that the boundary of the region is approached by the mesh edges,
and both incomplete coverage of the near-boundary part of the region and the mesh going
beyond the boundaries of the region are allowed, see Fig. 2.2.

i=1

.

A triangulation is regular if it consists of regular triangles. For triangular regular grids,
the following inequalities hold:

where det{e12,e13,e14} denotes the determinant of a matrix with three columns e12,
e13 and e14. The algebraic volume changes sign when any two vertices in the tetrahedron
ÿ are interchanged. The volume of a tetrahedron is the absolute value of the algebraic
volume.

Rice. 2.2. The boundary nodes of triangulation lie on the curvilinear boundary (a) and
near this boundary (b)

Let us define some Cartesian coordinate system (x, y, z) in which any point vi is
represented by a vector vi with three components xi, yi, zi. A directed edge connecting
two vertices vi and vj can be represented by the vector eij = vj ÿ vi. The orientation of the

face with vertices vi, vj, and vk is given by the normal vector nijk = eij × eik. The normal
vector can be directed both inside and outside the tetrahedron. The definition of a
tetrahedron can be formalized as follows. A tetrahedron with vertices v1, v2, v3 and v4 is
a set

4

(2.1.5)

1

Machine Translated by Google

order 1. There are several equivalent measures of tetrahedron regularity. Let Pÿ be the sum of

the lengths of the edges of the tetrahedron ÿ, i.e., Pÿ = |e12| + + |e13| + |e14| + |e23| + |e24| + |

e34|. In this book we consider the following measure of the regularity, or shape quality, of a

tetrahedron:

A tetrahedralization is regular if it consists of regular tetrahedra. The inequalities (2.1.4)

hold for regular grids. The measure of regularity Q(ÿh) of the tetrahedralization ÿh can be the

least of the qualities Q ÿi of the tetrahedra ÿi that make up the mesh:

8

ÿ 84.2ÿ 71ÿ 54.7ÿ 41.4ÿ 29.1ÿ 17.4ÿ 5.78ÿ

Qÿ

Q(ÿh) = min

32

Ch. 2. Basic concepts

Regular triangulations and tetrahedrizations are widely used in engineering calculations,

since discretizations on regular grids have a number of advantages, such as discretization

stability, acceptable conditionality of generated matrices, and the existence of efficient search

algorithms. The concept of tetrahedralization of a domain with a curvilinear piecewise smooth

boundary is a natural generalization of the concept of

tetrahedralization

23

(2.1.7)

(2.1.8)

The data in the last three rows of the table correspond to the tetrahedron, which is obtained

from the canonical tetrahedron by changing the three equal dihedral angles at the vertex v1 (see

Fig. 2.3). These angles can vary within a limited range ÿ ÿ (60ÿ, 180ÿ), where the extreme values

correspond to degenerate tetrahedra. In the penultimate row of the table, we present the values

of ÿ for three other equal dihedral angles. The quality of a rectangular tetrahedron is about 0.8.

Similarly, Table. 2.1, as ÿ tends to 180ÿ, the quality of the tetrahedron also decreases. However,

the limited dihedral angles in a tetrahedron do not mean its high quality: in the limiting case,

when ÿ ÿ 60ÿ and ÿ ÿ 90ÿ, the quality Q ÿ tends to zero. This shows a significant difference

between the quality of a tetrahedron and the quality of a triangle, where the limited angles

means its high quality. The tetrahedron needs both dihedral and planar angles to be limited.

ÿ

1

Q ÿ 1.0 0.785 0.398 0.148 0.046 0.013 0.003

22

Rice. 2.3. Canonical and regular tetrahedra

just write "quality". The relationship

between the value of the quality of a tetrahedron and its shape in two specific examples is

shown in Table. 2.2. The data in the first two lines correspond to the extrusion of a regular

tetrahedron in the direction of one of its heights. The stretch factor s is 1 for a regular

tetrahedron. A comparison with a similar table for triangles shows a much faster decrease in

quality with increasing s. For larger values of s, doubling s results in

4

70ÿ 90ÿ 110ÿ 130ÿ 150ÿ 170ÿ

P3

|Vÿ| = 64 ÿ 2

T a b l e 2.2

Changes in quality upon modification of regular (second row) and
canonical (fifth row) tetrahedra

§ 2.1. Triangular and tetrahedral meshes

16

Q ÿ 0.468 0.999 0.804 0.575 0.386 0.223 0.073

.

1i N Q ÿi .

to a decrease in the quality of the tetrahedron by a factor of 3–4. Therefore, in practice, we

recommend constructing meshes with quality Q(ÿh) 0.2.

64s

A polyhedral (polyhedral) region is a region with a piecewise smooth boundary represented

by a finite set of flat faces. A tetrahedral mesh or tetrahedralization ÿh of a polyhedral region ÿ is

a finite set of tetrahedra ÿi, i = 1, ... , N, such that: — the region ÿ is completely covered by

these tetrahedra; — the boundary of the region is completely covered by the faces of tetrahedra;
— the interiors

of the tetrahedra do not intersect. This mesh definition includes both

conformal and non-conformal meshes. A tetrahedralization is said to be conformal

if the intersection of any two tetrahedra is either their common

vertex, or their common edge, or their common face, or the empty set. A tetrahedralization

is said to be quasi-uniform with step h if all its tetrahedra are close in measure Q ÿ to a regular

tetrahedron of diameter h. Note that space cannot be covered by regular tetrahedra, i.e., there

are no uniform tetrahedral grids.

It follows from the definition of Q ÿ that the quality of the shape of a tetrahedron is a positive

value not exceeding 1. It can be shown that Q ÿ = 1 only for a regular tetrahedron. In what

follows (chaps. 2–5) sometimes instead of “quality of form”

we will

2

ÿ 61ÿ

Machine Translated by Google

(2.2.1)

5

as a vector

Therefore, for a conformal triangulation of a simply connected domain,

In the case of a nonsimply connected domain, the conformal triangulation will contain Nh

nontriangulated polygons, each of which corresponds to a region cut out from the domain. Such

regions

ÿ(vi).

1

5

v vi

§ 2.2. Properties of grids and elements of graph theory

24

1

e eij ÿ vj ÿ vi

The relationship between graphs and grids makes it possible to use some results of graph

theory in studying the properties of grids and performing operations on grids. Approximate ratios

between the numbers of nodes, edges and mesh elements given

§ 2.2. Grid Properties and Elements of Graph Theory

Similarly, the superelement ÿ(e) denotes the set of simplices with a common edge e. If v ÿ e ÿ ÿ,

then

4

At the end of the section, we present the notation used in what follows for various grid

elements. The term "simplex" is used for the common name for the triangle and tetrahedron. The

symbol ÿ is used to denote the computational domain, and ÿh is used for its triangulation or

tetrahedrization. The superelement ÿ(v) denotes the set of simplices with a common vertex v.

The symbol ÿ(ÿ) denotes the superelement, or the set of simplices intersecting with the simplex

ÿ. Thus,

Let d denote the dimension of the space: d = 2 for the plane and d = 3 for the space. A grid

element (simplex) with vertex d + 1 is denoted as ÿ(vk1 , ..., vkd+1), or i = 1, ... for short,

ÿk1...kd+1 . Similarly, we will use f(vk1 , vk2 , vk3) or fk1 k2 k3 to denote a

triangular face in space, and e(vk1 , vk2) or ek1 k2 to denote an edge. For each type of grid
element, depending on the context, we will use the notation given in Table. 2.3:

4

vertex

2

25

Nf = Ne ÿ Nv + 2. For

example, for a tetrahedron Nv = Nf = 4, Ne = 6, and for a cube Nv = 8, Nf = 6, Ne = 12. Based on

the Euler formula
(2.2.1), we derive the relation between the number of nodes, edges and triangles in an

arbitrary two-dimensional conformal triangulation. To do this, we note that any conformal

triangulation of some simply connected domain can be represented as a surface of some

polyhedron spread out on a plane, in which one of the faces has been removed (see Fig. 2.4).

The polyhedron shown is the union of a ÿ4567 tetrahedron and a triangular prism. With such

spreading, it is assumed that the removed face corresponds to the addition of the considered

triangulation to a plane or an infinite cell.

b

7

facet fijk

Ch. 2. Basic concepts

ÿ(ÿ) =

mi vki,

viÿÿ

T a b l e 2.3
Symbol table for grid elements

v vi

Nf = Ne ÿ Nv + 1.

ÿ(v) ÿ ÿ(e) ÿ ÿ(ÿ).

6

3

3

polyhedral region, in which the boundary of the region is approached by the boundary faces of

the mesh. In this case, both incomplete coverage of the border part of the region and the grid

going beyond the boundaries of the region are allowed. In practice, as a rule, the boundary nodes

of tetrahedralization lie on the boundary of the region, which makes it possible to approximate

this boundary with the second order of accuracy with respect to the face diameter.

Grid element as an object

e eij

below are useful for estimating the computer memory required to store the grid. The most famous

result of graph theory

applicable to the analysis of grids is Euler's formula relating the numbers of vertices, edges,

and faces of any convex polyhedron. Let Nv, Ne, Nf denote, respectively, the numbers of vertices,

edges, and faces of some polyhedron. Note that the faces of a polyhedron can be arbitrary

polygons. Then

6

edge

nf nijk ÿ eij × eik 2 Fig. 2.4. Polyhedron (a) and its flattened surface, lower face removed (b)

ratio

7 a

Machine Translated by Google

Ne 3Nv ÿ 6.

Let us now consider tetrahedral meshes and use the Euler formula (2.2.1)
to derive the relation between the number of tetrahedra Nt, edges Ne, and nodes
Nv in a tetrahedralization of a connected domain satisfying the following
constraint: for each node v, the set of tetrahedra containing v (incident to v)
forms a polyhedron homeomorphic to a sphere. Recall that each such polyhedron
is called a superelement and is denoted by ÿ(v), or ÿ for short. The introduced
restriction is not burdensome in practice. Let us define the characteristic function
ÿb for the boundary of the grid domain. Let ÿb(v) = 1 if the node v lies on the

boundary of ÿh, and ÿb(v) = 0 for an internal node of the domain. Let us
introduce the number of faces Nf (ÿ), edges

Nf 2Nv ÿ 5.

(2.2.2)

2Nei + Neb = 3Nf .

Nv(ÿ) = Ne(v) + ÿb(v), Nf (ÿ) = Nt(ÿ) + Nb(ÿ),

Ch. 2. Basic concepts

Nt(ÿ) + Nb(ÿ) + Ne(v) + ÿb(v) = Ne(ÿ) + 2.

27

Nf ÿ 2Nv and Ne ÿ 3Nv,

Using formulas (2.2.2) and (2.2.3), we obtain the relation for the number Nf :

allocate the memory necessary for operation, using only one parameter - the
maximum allowable number of triangulation nodes.

Rice. 2.5. Triangular mesh in square hole area: Nv = 8, Ne = 16, Nf = 8, Nh = 1,
Nei = 8 and Neb = 8

(2.2.4)

(2.2.7)

26

(2.2.6)

Formula (2.2.2) can be rewritten using the number of boundary edges
instead of the number of all triangulation edges. The boundary edge eb belongs
to only one triangle, in contrast to the interior edge ei, which belongs to two
triangles. Therefore, between the numbers of boundary edges Neb, internal
edges Nei, and the number of triangles Nf in a conformal triangulation, there is
the following relationship:

an estimate of the number of triangles for Nh = 0:

§ 2.2. Grid Properties and Elements of Graph Theory

In the vast majority of practical cases, the number of nodes in a conformal
triangulation significantly exceeds the number of boundary edges Neb and the
number of cut components Nh; therefore, in practice, there are approximate
relations

Ne(ÿ), nodes Nv(ÿ) on the surface of the polyhedron ÿ, the number of tetrahedra
Nt(ÿ) in ÿ, the number of edges Ne(v) incident to v, and the number of faces
Nb(ÿ) in ÿ lying on the boundary ÿh and containing v. Then:

Nf + Nh = Ne ÿ Nv + 1. As

an illustration, we will use the triangular grid shown in fig. 2.5.

(2.2.5)

expressing the asymptotic dependence between the numbers of triangles,
edges, and nodes of the conformal triangulation. Note that

formula (2.2.4) was derived under the assumption that ÿh is a triangulation
of a connected domain defined on the plane. For triangulations of closed
surfaces defined in space, such as the boundaries of three-dimensional bodies,
this formula may not be true. In this case, it is necessary to use the topological
characteristics of the surface based on the classification of closed two dimensional
surfaces as a finite sum of spheres and tori. For example, if on a connected
closed surface it is possible to draw Ng nonintersecting closed curves that do
not cut the surface into disconnected components, then such a surface is
homeomorphic to a sphere with Ng handles, and its triangulation is true [3, 17]

Nf = 2Nv ÿ Neb + 2Nh ÿ 2.

(2.2.3)

are given, for example, by obstacles in flow problems or voids in a sample in
problems of solid body mechanics. Each of these polygons contributes to the
number of faces in the Euler formula, but must not contain triangles of the
considered triangulation. Thus, the modification of the Euler formula (2.2.1) for
the case of conformal triangulation of a nonsimply connected domain has the
form

and formula (2.2.1) is written for ÿ as follows:Since the number of triangles in a grid with Nh > 0 is less than in a grid with
triangulated voids, estimate (2.2.5) is also valid for the general case Nh 0. When
constructing dynamic grids, we can

From formulas (2.2.2) and (2.2.5) we obtain an unimprovable estimate for
the number of edges

Nf = 2Nv + 4 Ng ÿ 4.

Since Neb 3 and Nv 3, from (2.2.4) we obtain an unimprovable

Machine Translated by Google

Nv

2

d

Nv(Nv ÿ 1),

3

2

And

ratio

ÿb(v) + Nv.

Nvb.

1

2

v

Graph theory is applicable to the analysis of the properties of triangular grids. One of the

consequences of the theory of planar graphs is the statement about the possibility of

unraveling any triangulation, which is a "tangled" network of triangles bordering in pairs

through their integer edges, into a conformal triangulation. Let us explain this statement and

also explain the term "disentanglement of triangulation". A graph G = (V , E) is a set of

vertices V and a set of edges E, not necessarily straight lines, where each edge from

E connects a pair of vertices from V . A planar graph is an undirected graph that can be
laid on a plane without self-intersections. A planar graph drawn on a plane is called a planar

graph. A face of a planar graph is a bounded singly connected region whose boundary is

given by the edges of the graph in the form of a simple cycle v1v2, v2v3, ..., vkv1, where all

vertices enter twice. If all faces of a planar graph are triangles (i.e., k = 3), then such a graph

is called triangulated. Graph triangulation is a procedure for complementing the set of edges

E to obtain a triangulated graph. According to Rado's theorem [80], any polygon with a

boundary that has the form of a simple closed broken line with a finite number of links,

Ne

where the vast majority of vertices are internal, the approximate is true

v

and the maximum possible

(2.2.9)

Nt(ÿ) +

Let Nfb and Nvb be the number of boundary faces and the number of boundary nodes
Nb(ÿ(v)) = 3Nfb of the tetrahedralization ÿh, respectively. Because the

4

2

ÿb(v) = Nvb ,

1

§ 2.2. Grid Properties and Elements of Graph Theory

1

Nb(ÿ(v)) ÿ

Ne = Nt + Nv +

1

ÿ 1Nv.

Ne(v) =

v

Nt(ÿ) = 4 Nt,

(ÿ1)knk = 0.

2

ÿ

Using formula (2.2.3), on the surface ÿ we have the identity

1

Nfb-

Since Nv 4, Nfb Nvb , the set of edges
Ne is bounded by the pessimistic estimate

Nv(Nv ÿ 3).

which, taking into account (2.2.7), gives

2

2

Nv(Nv ÿ 3) ÿ2

Ne(v) = 2Ne,

That

(2.2.8)

However, by imposing additional restrictions, one can obtain a more optimistic estimate.
If for each node v its degree (the number of edges incident or converging in it) is bounded by

some value ÿ, i.e., Ne(v) ÿ, then

Nt

Ch. 2. Basic concepts

v

The relationship between d-dimensional and 3-dimensional definitions is:

Nvb

v ,

1

1

2

29

we get

3

ÿ

28

2Ne(ÿ) = 3(Nt(ÿ) + Nb(ÿ)),

1

1

Nfb +

Euler's formula can be generalized to the multidimensional case as follows. Consider a

d-dimensional convex polytope (polytope) consisting of a set of k-dimensional faces, k =

0, ... , d ÿ 1. By a k-dimensional face we mean here a convex open set lying in some k-

dimensional hyperplane. The vertex of the polyhedron is a 0-dimensional face, the edge is

a 1-dimensional face, and the polyhedron itself is a d-dimensional face. For convenience, we

introduce a (ÿ1)-dimensional face. Let nk denote the number of k-dimensional faces of a

polyhedron, where each polyhedron corresponds to exactly one (ÿ1)-dimensional face, and
the d-dimensional face coincides with the polytope itself. Thus, by definition, n ÿ1 = 1 and

nd = 1. The generalized Euler formula for d-dimensional polytopes is as follows:

Summing over all grid nodes ÿh and taking into account that

And

Ne

2

Nt ÿ 5.5 Nv.

v

Ne = Nt + 4

4

Nt

Thus, in tetrahedralizations with a uniformly limited degree of sites, the number of tetrahedra
is estimated from above in terms of a linear function of the number of sites. We note that
there are tetrahedralizations in which Nt N2, however, the methods considered in this book
generate grids with a uniformly bounded degree of knots. Here ab means that the ratio a/b
is about 1. In unstructured tetrahedra with a large number of tetrahedra and nodes,

Nb(ÿ) ÿ ÿb(v) + 2.

n2 = Nf , n1 = Ne, n0 = Nv.

v

k= ÿ1

That

Machine Translated by Google

definition of conformal triangulation for polygonal regions.

To store the grid and perform any operations on it, you need to use various
data structures. There are a large number of different data structures for storing a
grid, oriented to different purposes [18, 50, 54]. The enumeration and comparative
analysis of these data structures is beyond the scope of this book, and we will limit
ourselves to only those structures that are often used when working with
triangulations and are easily transferred to tetrahedralizations. The minimal and
simplest representation of a triangular grid is a list of coordinates of numbered
nodes (xi, yi) and a

list of numbered triangles, each of which is given by the indices of three nodes
(i1, i2, i3). In this case, the coordinates are stored in a real two-dimensional array
V rt(2, Nv), and the triangles are stored in an integer two-dimensional array Tri(3,
Nf).

Ch. 2. Basic concepts

Building or rebuilding a triangulation can lead to a non-conformal mesh. Under
the simple unraveling of the mesh, we mean the movement of its nodes, preserving
the edge connections between the nodes, in order to obtain a conformal
triangulation. Farey's theorem [47] guarantees the existence of such a displacement
of nodes for a grid defined by a planar triangulated graph.

§ 2.3. Data structures and fast algorithms

Theorem 2.2.2. Any planar graph has a planar representation in which all
edges are represented as line segments.

Another important concept in the theory of planar graphs is the concept of a
dual graph. For a planar graph G, the dual graph is Gdual with the following
properties: — each vertex of Gdual is

associated with a face of G; — each edge Gdual is
associated with the edge G; — if the edge G separates
two faces fi and fj , then the corresponding

edge of the dual graph Gdual connects the vertices Gdual associated with fi and
fj . The

concept of a dual graph is used both in some methods for constructing
triangular grids and Voronoi grids, and in methods for discretizing differential
equations [45, 74].

thirty

There are criteria for the planarity of graphs [63]; therefore, for triangular grids
that satisfy such criteria, there is a procedure for simply unraveling the grid into a
conformal triangulation.

Finite element methods can also use two-dimensional integer arrays of edges
Edge(2, Ne) and boundary edges Bnd(2, Neb) that store node indices. These
structures are auxiliary as they can be created automatically from the Tri array.

Unfortunately, the above analysis cannot be extended to the case of conformal
tetrahedrizations. For example, in the area with a given surface grid shown in Fig.
2.6, it is impossible to construct a conformal tetrahedralization without adding
additional internal nodes. Vgl. In Section 6, we consider more complex mesh
disentanglement algorithms that change its topology and are therefore applicable
to disentangle both triangulations and tetrahedrals.

Rice. 2.6. Schonhardt prism with triangular base v1 v2 v3

31

§ 2.3. Data structures and fast algorithms

allows conformal triangulation without adding new points. In terms of graph theory,
this statement looks as follows. Theorem 2.2.1. Any planar graph with straight
edges

can be triangulated. This assertion, like Rado's theorem, proves the existence

Machine Translated by Google

.

Algorithm 2. Iterating over the elements of an unstructured list iV T, nV T 1: Let n1 = 1 2: for i = 1,
Nv do

n2 = nV T(i) 3: for n
= n1, n2 do k = n ÿ n1 +

1 return iV T(n)
is the number of the kth triangle

containing node i

Rice. 2.8. An unstructured list for holding triangles that share a common vertex. Array nV T(Nv)
on top, array iV T(3Nf) on bottom

7: end for n1 = n2

+ 1 9: end for

.

nNv

...

The number of non-zero elements in each row of the VT array

Ch. 2. Basic concepts

In what follows, we will use the notation XY for an array, where a grid object x ÿ X contains

references to the nearest grid objects y ÿ Y such that x ÿ y = ÿ. For example, TV is another notation

for the two-dimensional array Tri(3, Nf), where T is a triangle and V is a grid point.

A number of applications need data that is reasonable to store as a flat list. For example,

data on the numbers of triangles containing a grid node (converging at a common vertex) are

characterized by the variability in the number of triangles assigned to each node. Of course, such

data can also be stored as a two-dimensional array VT(Kmax, Nv), where Kmax is the maximum

possible number of triangles converging at a common vertex. However, such a strategy can

significantly increase the amount of computer RAM reserved for data, since Kmax can significantly

exceed the grid average value, and most of the VT array will be filled with zeros.

33

.

1 i k1

x1

xNv yNv

2 i k2 ...

4:

The algorithm for iterating over the elements of an unstructured list consists of two nested loops,

presented in Algorithm 2.

32

x2 y2

All the listed arrays are structured lists or tables with a given row length (see Figure 2.7).

Structured lists also include information about the numbers of triangles adjacent to each triangle.

The construction of such a list is discussed in Chap. 4. The algorithm for iterating over the elements

of a structured list is very simple. It consists of two nested loops over the rows and columns of the

corresponding two-dimensional array,

as shown in Algorithm 1 for a Tri structured list.

Nv i
kNv

6:

,

§ 2.3. Data structures and fast algorithms

.

n1 n2 ...

.

...

8:

.

2
i 11 i 1 ...

The flat list is represented by two linear integer arrays. In the case under consideration, the

first linear array iV T(3Nf) contains only nonzero values from the array VT, sorted by rows. The

second linear array nV T(Nv) contains the indices of the elements of the array iV T, which are the

last in each row of the array VT (see Fig. 2.8). This format is similar to the sparse string format

commonly used for storing sparse matrices.

Algorithm 1. Enumeration of elements of the structured list Tri 1: for i = 1, Nf do for j = 1, 3

do return Tri(j, i) –
number of j-th vertex

of triangle i 3: 4: end for 5: end for

2:

is calculated as follows:

y1

Rice. 2.7. Structured list V rt(2, Nv) to store node coordinates

Nv i 1

5:

nV T(i) ÿ nV T(i ÿ 1), i > 1; nV T(1), i = 1.

Note that the number of elements in the iV T array is equal to the number of elements in the

TV array, and this is not accidental. The unstructured list iV T, nV T is the inverse of the structured

list TV and must therefore contain the same number of elements. Similarly, the structured list TV

can be viewed as the inverse of the unstructured list iV T, nV T.

Machine Translated by Google

Algorithm 3. Building an unstructured list iV T, nV T 1: Initialize nV T(1) = 2: for n = 1,

Nf do for i = 1,3 do i1 = TV (i,n) nV

T(i1) = nV T(i1) + 1 5:
6: end for 7: end

for 8: for n = 2,
Nv do 9: nV T(n) = nV T(n) +

nV T(n ÿ 1) 10:
end for 11:

store nLast = nV T(Nv)

12: for n = 1, Nf do for i = 1,3 do i1 = TV (i,n)
and k = nV

T(i1) iV T(k) = n nV T(i1) = k ÿ 1 end for
17: 18: end for 19: for

n = 1, Nv ÿ 1 do

20: nV T(n) = nV T(n + 1) 21: end for
22: restore nV
T(Nv) = nLast

4:

Q(i) Q(i + 1).

3:

14:

Recall the classical Algorithm 4 for searching for an interval containing the value x in an

ordered array of numbers Q(N). This algorithm is based on the bisection (or bisection, or
dichotomy) method. The arithmetic complexity of the bisection method is proportional to

log2 N.

§ 2.3. Data structures and fast algorithms34

if x Q(i) then r = i else l = i
5: 6: end if

7: end while
8: if Q(l) x Q(r)

then found=.TRUE. 9: else found=.FALSE. 10: end
if

16:

There are simple algorithms with linear complexity for creating reverse lists. For
example, the construction of the list iV T, nV T is described in Algorithm 3.

4:

1<i<N,

35

1: l = 1, r = N 2:
while r ÿ l = 1 do l + r 2

3:

The process of building or rebuilding a grid is associated with its constant modifications,
and, consequently, with constant changes in data structures. One of the important

problems that arise in the implementation of grid algorithms is the problem of fast search
within a dynamic data structure. Let us first consider the problem of maintaining an ordered
list of elements of some one-dimensional dynamic

array of real numbers Q(N). Suppose this array is sorted in ascending order of
elements:

Algorithm 4. Finding an interval in an ordered list using the bi

i =

13:

= nV T(Nv) = 0

(2.3.1)

In problems where the size of the array Q and the values of its elements are constantly

changing, maintaining its physical order is inefficient, so assumption (2.3.1) is no longer

valid. For example, inserting a new element in the second position requires a shift of (N ÿ

1) elements. To specify the order, a linked list is used, based on a two-dimensional array
Lst(2, N) such that

Q(Lst(1, i)) Q(i) Q(Lst(2, i)),

15:

Ch. 2. Basic concepts

Rice. 2.9. Implicitly ordered list: a - Lst(1, i) links, b - Lst(2, i) links

sections

...

where Q(Lst(1, i)) and Q(Lst(2, i)) are the nearest (in value) to Q(i) elements of the real
array Q. An array Q, for which the linked list Lst is known, will be called implicitly ordered

list. The beginning Q(ib) and the end Q(ie) of an implicitly ordered list are defined by the

equalities Lst(1, ib) = 0 and Lst(2, ie) = 0. The example shown in fig. 2.9 shows that the

beginning and end of the list can be located in adjacent cells of the array Q.

Machine Translated by Google

The procedure for adding an element i to a linked list is also simple and is
presented in Algorithm 6. The procedure for transferring an element of a linked
list from one position to another is obtained by successive application of
Algorithms 5 and 6.

1: p = Lst(1, i), n = Lst(2, i) 2: if
p = 0 then Lst(2, p) = n 3: end if
4: if n =

0 then Lst(1, n) = p 5: end if

2: i1 = P tr(i), i2 = Lst(2, i1) 3:
while x>Q(i1) and i2 = 0 do i1 =

i2, i2 = Lst(2, i1) 5: end
while 6:
return i1, i2

Ch. 2. Basic concepts

6: N = N ÿ 1

1: Lst(2, i) = Lst(2, p), n = Lst(2, i) 4:

§ 2.3. Data structures and fast algorithms

When an element of an implicitly ordered list is removed, the corresponding
memory location in the array Q remains in place. Since the linked list Lst no
longer refers to this memory location, it becomes a gap in the array Q. To avoid
an uncontrolled increase in the number of gaps, you need to constantly fill them
when new elements are added to the list Q, that is, you need to store the gap list
in an additional linear array.

Algorithm 5. Removing element i from the linked list Lst

Q(P tr(i)) x Q(P tr(i + 1))

Changes in the real array Q require periodic updating of the array of pointers
P tr to maintain a fixed block length. These pointers are shifted to the preceding
or following elements of the linked list Lst. Changing the i-th pointer may lead to
the need to change the (i ÿ 1)-th and (i + 1)-th pointers. In the worst case, the
total number of assignment operations at this step can reach M. Significant
reduction in calls to the pointer update procedure is achieved by introducing a
floating block length. As long as all block lengths are in the interval [0.75 log2 N,
1.25 log2 N], the P tr(i) pointer update procedure is not applied. Efficiency of the
proposed method

For convenience, we assume that P tr(1) = ib and P tr(M) = ie. Thus, the number
of pointers M is approximately equal to N/ log2 N. The array P tr specifies some
order in the implicitly ordered list Q. The array of elements Q(P tr(i)) is an
explicitly ordered subset of the array Q, so the bisection method can be applied
to it. The list of pointers P tr specifies a block ordering for Q. An array Q for which
P tr and Lst are known will be called a block ordered list. The fast search for an
interval containing the value x in a block-ordered list of real numbers Q is

performed in two steps, as shown in Algorithm 7. Step 1 of this algorithm is
a bisection method for an array of pointers Ptr, and its arithmetic cost is O(log2
M) = O(log2N). After that, all elements of the i-th block are sequentially traversed
until the desired interval is found. Therefore, the arithmetic cost of the second
stage is also O(log2 N).

Algorithm 6. Adding element i after the p-th element of the linked list Lst

Quickly finding the position where you want to insert or move an element of
an implicitly ordered list requires additional structure. Indeed, sequential
enumeration of the elements of the array Q using Lst(2, i) pointers to the next
element, until finding the desired position, requires O(N) assignment and
comparison operations, which is an unacceptably expensive procedure. The
bisection method is not applicable to the array Q because the array is not explicitly
ordered. The bisection method is also not applicable to the linked list Lst, since
the middle of the list is unknown.

36

Our fast search algorithm is based on the introduction of additional pointers
to the elements of the Lst(2, N) array. These pointers are stored in a one-
dimensional array P tr(M), where M is the number of pointers. The pointers P tr(i)
split the array Q into blocks with lengths approximately equal to log2 N, so that

Algorithm 7. Finding an interval in a block-ordered list

5: end if

Q(P tr(i)) Q(P tr(j)), 1 i<j M.

1: Apply Algorithm 4 to find the i-th block containing x, i.e.

6:N=N+1

2: Lst(1, i) = p

37

´

3: Lst(2, p) = i 4:
if n = 0 then Lst(1, n) = i

Changes in the array of numbers Q involve adding or removing an element
and, accordingly, increasing or decreasing N by one, as well as changing the
value of some element without changing N. These operations are easily
implemented using the linked list Lst, if you know what position you need place a
new element or move a modified element. For example, the procedure for
removing element i from a linked list is presented in Algorithm 5.

Machine Translated by Google

38

A quaternary tree is structured like a normal binary tree; the difference is that
each vertex does not have a pair of children, but four. Each vertex of such a tree
is responsible for some part of the unit square [0, 1] × [0, 1]. In this case, the root
of the tree is responsible for the entire square, and its descendants are each
responsible for their quarter of the parent square. When passing from the parent
to the children, the square cell of the parent is divided into 4 equal parts and
distributed among the children. The level of a vertex is the number of edges in
the path from this vertex to the root of the tree. Thus, the level of the root is 0,
and the level of its direct descendants is 1. At each vertex, we store the list of
triangulation elements assigned to it, which is assumed to belong to [0, 1] × [0,
1]. To select the vertex to which the element should be assigned, we apply
Algorithm 8.

Let us consider the advantages of such a structure when searching for an
element of a triangular grid that intersects with some given circle B lying inside
the unit square. For each triangle ÿi, we define the minimal circle Bi containing
it. Then if ÿi intersects B, then Bi intersects B. Obviously, B and Bi intersect if and
only if the distance between their centers ÿi is less than the sum of their radii R
and Ri. Note that Ri 2ÿni where ni is the level of the vertex of the quaternary tree
to which the triangle ÿi is assigned. The quaternary tree structure makes it
possible to very quickly find all triangles for which ÿiR + 2ÿni , since the cost of
finding one element of the grid is proportional to log4 Nf actions. Only for such
triangles does it make sense to check their intersection with the circle B. If the
considered triangulation does not belong to the unit square, then it can be
displayed by translating and scaling into the unit square before performing any
actions. Algorithms for fast localization of grid elements based on quaternary and
octal trees are effective for regular triangulations and tetrahedralizations. The
efficiency of using these data structures for operations with adaptive grids is
discussed

in Chap. 3.

Ch. 2. Basic concepts

Algorithm 8. Choice of vertex of a quaternary tree

Many operations with unstructured meshes are based on the rapid localization
of various mesh elements (edges, faces, cells) in a given neighborhood. The
most convenient auxiliary data structure for quickly searching for triangulation
(or tetrahedralization) elements is a quaternary (or octal) tree structure. Grid
analogues of quaternary and octal trees are shown in Figs. 2.10. Let's consider
a quaternary tree in more detail.

§ 2.3. Data structures and fast algorithms

1: Find the midpoint x and diameter d of the grid element 2:
Find the smallest number n such that d 2ÿn 3: Find the
vertex of the quaternary tree at level n that is responsible for the square

containing x

,

39

Rice. 2.10. Grid analogues of quaternary (a) and octal (b) trees

maintaining a dynamic block-ordered list of real numbers is discussed in Chap.
5 when constructing adaptive grids.

Machine Translated by Google

§ 3.1. Methods for defining a computational area

For automatic construction of a simplicial (triangular or tetrahedral) mesh,
information about the geometric model of the computational domain is required.
Currently, several approaches are used to represent geometric models in
computer memory. The most universal approach is used in design work
automation systems (CAD). A geometric model within a CAD system can be
represented in many ways. The model can be composed of simple shapes -
geometric primitives, such as a circle, a square, a ball, a cube, a cylinder. The
model can also be represented as a polygon or polyhedron, in which case only
the boundary of the object is specified as a broken line on the plane or a set of
triangles in space. The division of the boundary into segments or triangles is
called the discretization of the domain boundary. Curved lines can be used
instead of segments, and curved surfaces can be used instead of flat triangles.
To store geometric information about the curvilinear components of an object,
as a rule, parametrizations are used

GRID IN ARBITRARY AREAS

41

From the point of view of automating the meshing process, a universal
approach is to accurately preserve the trace of the mesh at the boundary of the
region. In this case, the quality of the resulting simplicial mesh can be limited by
the quality of the boundary discretization. For example, in the three-dimensional
case, prolate triangles at the boundary of the domain significantly limit the quality
of the adjacent tetrahedra. To obtain high quality tetrahedral meshes, high quality
surface triangulation is required. In the two-dimensional case, the boundary of
the region is a set of several lines, in the

general case, curves. The discretization of a curved line parametrized by a
function ÿ : t ÿ (x, y), t ÿ [t0, t1] is constructed using standard methods. Sample
step along the curve

The classical approach to the construction of simplicial grids is reduced to
the initial construction of a discrete boundary of the domain, followed by the
construction of a simplicial grid inside the domain based on the available boundary
discretization. Thus, the problem of constructing simplicial grids is reduced to two
separate problems: constructing a discrete boundary for a given geometric
model and constructing a simplicial grid inside a domain with a given discrete
boundary. The task of constructing boundary discretization can be solved in
different ways, depending on the form in which the geometric model is specified.
Generally speaking, at the second stage, information about the geometric model
may not be available. When solving the second problem, an important requirement
is the preservation of the trace of the simplicial grid on

the boundary of the domain. Failure to comply with this condition may lead
to the impossibility of performing calculations on the resulting grid or require
additional work on the processing of the resulting grid from the user. For example,
if the constructed mesh is later merged with another mesh, then keeping a trace
of the mesh on their common boundary will allow us to obtain a conformal
common mesh. When specifying the boundary conditions in the model problem,
keeping the trace of the grid will make it possible to avoid additional reinterpolation
of the boundary data. In some cases, it may be acceptable for the user to slightly
deviate from the specified trail at the boundary. The trace of the built grid on the
boundary can be smaller than

the one specified initially. In this case, refinement is allowed only by adding
new nodes on the boundary and splitting the elements into smaller ones. In this
case, if necessary, the user can restore conformity at the junction with a
neighboring mesh using an appropriate partition of the boundary elements of the
second mesh.

NURBS, the other part is given by the discretization of its boundary, and the
third part is defined by primitives. Through the operations of union, intersection,
addition and subtraction, the final geometric model is obtained.

ÿ : t ÿ (x, y, z), ÿ : (p, s) ÿ (x, y, z).

In this chapter, we describe two methods for constructing unstructured
simplicial meshes: the advancing front method and the Delaunay triangulation
method. When constructing tetrahedral meshes, each method has its own
advantages and disadvantages, so the most effective strategy for constructing
such meshes is to combine both methods. Particular attention will also be paid
to methods for improving a given surface mesh, since its quality strongly affects
the operation of methods for constructing a spatial mesh.

Chapter 3

A widely used way to specify parameterization in CAD is to use non-uniform
rational B-splines (NURBS - non-uniform rational B-spline). A combination of
three approaches is possible: part of the model can be parameterized using

§ 3.1. Methods for defining a computational domain

CONSTRUCTION OF UNSTRUCTURED

Machine Translated by Google

42

In the mentioned algorithm, the position of the new node relative to the existing
triangulation is first determined, and then, depending on the result, certain actions are
performed. If the new node hits some edge, then it is split into two edges and adjacent
triangles are split into two smaller ones. If a new node falls inside any triangle, then the
latter is split into three smaller triangles. If the node does not fall inside the triangulation,
then the boundary edges of the current triangulation are found, with which it can form new
triangles. The proposed algorithm can be simplified (see Algorithm 9) by adding several
auxiliary nodes in advance and constructing an initial Delaunay triangulation that completely
covers the set of nodes V. In this case, each new node will lie inside the Delaunay
triangulation. In all cases, the new triangles and their neighbors are tested for the Delaunay
condition. If this condition is violated, a local reconstruction of the triangulation is performed,
which consists in the following. When a new node is added, all triangles for which the
Delaunay condition is violated are found and removed, and

new triangles are constructed inside the resulting polygon with the participation of the
new node (see Fig. 3.1). The resulting triangulation will satisfy the Delaunay condition
[18]. When constructing a Delaunay triangulation for a given two-dimensional region, it is
necessary to determine the set of nodes V lying inside and on the boundary of this region;
for this set, the Delaunay triangulation is constructed. In this case, the following simple
algorithm can be used as an iterative algorithm for adding a new node inside the region:
we choose the longest edge in the current triangulation

§ 3.2. Construction of the Delaunay triangulation

Ch. 3. Construction of unstructured grids

based on what is available.

Consider the problem of constructing a triangulation on a given set of nodes V =
{v1, ..., vn}. We will say that a triangulation satisfies the Delaunay condition if for any
triangle inside the circle circumscribed around it there are no vertices of other triangles. By
a Delaunay triangulation we mean a convex triangulation satisfying the Delaunay condition.
A Delaunay triangulation is unique if no four nodes in V lie on the same circle.

The point is inside the model if ÿ(x, y, z) = 1. There are methods [64] for obtaining the
polyhedral boundary of the region specified using the indicator function. As a rule, to
improve the quality of the obtained discrete boundary, its additional processing is
necessary. The convex region can also be defined by a cloud of points in space. Often in

this case the user is interested in a simplicial mesh with nodes at given points. If the
initial data of the model problem are known and given at specific points, then a grid with
nodes at these points will allow one to avoid additional reinterpolation of the initial data. As
a rule, in this case, the algorithms for constructing the Delaunay triangulation are used,
which are considered in the next section.

§ 3.2. Construction of the Delaunay triangulation

As an alternative way of specifying the geometric model, the indicator or characteristic
function can be used

There are several methods for constructing the Delaunay triangulation. In addition to
direct methods for constructing a Delaunay triangulation, it can also be obtained from any
other triangulation by successively rearranging adjacent pairs of triangles that do not
satisfy the Delaunay condition into pairs of triangles that satisfy this condition.

43

ÿ : (x, y, z) ÿ {0, 1}.

In this section, a simple iterative algorithm for constructing a Delaunay triangulation
will be briefly considered. The triangulation problem can be formulated as follows: let there
be a partially constructed triangulation in the domain, to which a new node is added; it is
required to complete the triangulation in the entire area.

either selected by the user or calculated automatically, for example, based on an estimate
of the local curvature. In the 3D case, constructing a good

surface triangulation is a more difficult problem. In most cases, the entire surface of
an object can be divided into several parts, each of which is either a part of a plane or a
part of a parameterized surface ÿ: (p, s) ÿ (x, y, z). The boundaries of these parts are
generally curved lines in three-dimensional space that have their own parametrization ÿ :

t ÿ (x, y, z). At the first stage, discretization of curved boundaries (lines) in three-dimensional
space is constructed. Next, for each piece of the surface, three angulations are constructed

with a trace on the boundary coinciding with the constructed discretization. By preserving
the trace of surface meshes of different pieces of the surface on a common curvilinear
edge, the conformality of the common surface mesh is guaranteed. The method of
constructing a surface triangulation using the advancing front method will be discussed in
detail in § 3.4. In some cases, the geometric model of the area may already be defined as
a surface triangulation. The quality of elements in surface triangulation can be very low,
which is especially true for meshes obtained by exporting a CAD model. Further
construction of a tetrahedral mesh with poor surface triangulation will inevitably lead to the
appearance of bad

tetrahedra in the final mesh. In § 3.5 we will consider an approach that makes it
possible to reconstruct surface meshes while preserving the geometric features of the
region. The same approach can be used to obtain finer or coarser surface meshes.

Machine Translated by Google

and put a new node in its middle. To control the uniformity and density of nodes
in the area, more

5:

44

A distinctive feature of the Delaunay tetrahedrization is the presence of so-
called slivers —strongly degenerate tetrahedra whose vertices lie almost in the
same plane and almost on the same circle. For such tetrahedra, the Delaunay
condition can be satisfied, but the tetrahedra themselves will be of very poor
quality. To improve the quality of the mesh, local displacements of nodes are
used. In practice, when implementing the algorithms for constructing the Delaunay
triangulation, it is

necessary to pay special attention to data structures and algorithms for
quickly searching for triangles or tetrahedra near a given point. A good overview
of data structures and algorithms is given in the book [18] and in § 2.3. Special
attention also deserves the accuracy of calculations when checking the fulfillment
of the Delaunay condition. Some of these issues will be considered in the next
paragraph.

The positive half-plane with respect to the directed edge e12 = v2 ÿ v1 is the
set of points v for which the algebraic area is positive [see. formula (3.3.1)]. Using
the tensor product of vectors, it is convenient to write the algebraic area as a
vector product:

§ 3.3. Construction of a triangulation by the
advancing front method

Ch. 3. Construction of unstructured grids

Nicky

triangle of set V

The Delaunay condition naturally generalizes to tetrahedralization in three
dimensions. The Delaunay tetrahedrization for a finite set of knots V = {v1, ...,
vn} is such a conformal partition of the convex hull of the set V into tetrahedra
such that for any tetrahedron inside the sphere circumscribed around it there are
no other knots from V. A simple iterative algorithm for constructing a triangulation
Delaunay can also be used to construct Delaunay tetrahedra in three dimensions
[54]. In contrast to 2D triangular meshes, in the 3D case there are such polyhedral

1

Below, we consider the classical advancing front algorithm and study the
influence of computational errors on it, as well as the finiteness and running time
of the algorithm. We need the following concepts and notation.

2: for all nodes v ÿ V do Add
a node v to the triangulation ÿh 3: 4: Find

the set of triangles ÿ for which the Delaunay condition is violated and remove
them from ÿh Construct new triangles
connecting v with the edges of the boundary ÿ ÿ 6: end for 7: Delete
auxiliary

nodes and

their corresponding triangle

§ 3.3. Construction of a triangulation by the advancing front method 45

Rice. 3.1. Building a Delaunay triangulation by an iterative algorithm: a - adding a
new node, b - deleting triangles, c - building new triangles

Algorithm 9. Building a Delaunay triangulation 1: Add

three auxiliary nodes that form the enclosing

complex methods.

The proposed algorithm for constructing a Delaunay triangulation constructs
a triangulation for the convex hull of a set of nodes. If the desired region is
nonconvex, then it is necessary either to use the methods of constructing
Delaunay triangulations with restrictions [18] or artificially complete the triangulation
by adding new nodes to the boundary of the region and then deleting triangles
lying outside the desired region. When using the second approach, the trace of
the mesh for convex regions is preserved, while for non-convex regions it can be
refined.

Sÿ(v1,v2,v) ÿ

In this section, we will propose an algorithm that constructs conformal
triangular grids for two-dimensional domains given by discretizations of their
boundaries. When constructing the grid, the algorithm preserves the given trace
on the boundary. The proposed algorithm is applicable both to simple polygons
and to arbitrary multicomponent multiply connected polygonal regions whose
boundaries may not be one-dimensional manifolds. The question of constructing
a discrete boundary for an arbitrary region with curvilinear boundaries will not be
discussed here, but we will return to it in § 3.4.

domains for which it is impossible to construct a conformal tetrahedral mesh with
a given trace on the boundary without adding new nodes. An example of such a
region is given in § 2.2 in fig. 2.6. Several methods are known for preserving the
boundary of a nonconvex domain in 3D space: local modifications of the mesh
[34], mesh refinement [42], and construction of a constrained Delaunay
tetrahedralization [81].

(v1 ÿ v) × (v2 ÿ v) > 0. 2

Machine Translated by Google

A polygon on a plane is a bounded open part of the plane whose boundary
consists of one or more non-intersecting broken lines without self-intersections. A
simple polygon is a polygon bounded by one closed broken line. The vertices of the
polygon will be called the vertices of the broken lines, and its sides, the segments of
the broken lines. On fig. 3.2 illustrates several types of polygons.

3.3.1. Advance Front Algorithm

A front on a plane is a set of directed edges without self-intersections. Each
polygon P can be assigned a front F(P). To do this, on the outer sides of the polygon,
we introduce a counterclockwise direction of traversal, and assign to each inner side
v1v2 a pair of directed edges e12 and e21. The totality of all these directed edges
forms the front F(P). We will call a front F closed if there exists a polygon P such that
F = F(P).

Ch. 3. Construction of unstructured grids

e

b

§ 3.3. Construction of a triangulation by the advancing front method 47

A

A

e Fig. 3.2. Types of polygons: a - strictly convex, b - non-strictly convex, c - non-
convex, d - multiply connected, e - multicomponent, f - with internal cuts

The sides of a polygon can be divided into two types: external and internal. Let
v1v2 be a side of P, v the midpoint of v1v2, and ÿÿ(v) an ÿ-neighborhood of v. Consider
Pÿ = P ÿ ÿÿ(v). If for any ÿ > 0 the set Pÿ lies on both sides of the segment v1v2, then
we will call v1v2 the inner side, or cut. If, for some ÿ > 0, a part of the polygon Pÿ lies
only on one side of the segment v1v2, then v1v2 will be called the outer side of the
polygon P. In the latter case, a direction can be introduced on the edge e12 so that
the part of the polygon Pÿ is in the positive half-plane with respect to v1v2. We will call
this direction the counterclockwise direction of the polygon.

G

V

46

arrows. On fig. 3.3 shows the directions of bypassing the outer sides of several
polygons. Note that the totality of all external sides forms one or more closed broken
lines.

b Fig. 3.3. Bypassing the polygon counterclockwise: a - multiply connected polygon, b
- multicomponent polygon, c - polygon with internal cuts

In this subsection, we consider the advanced front algorithm for constructing in a
given polygonal domain P a conformal triangular mesh consistent with the boundary
P.

When Fk+1 = F(Pk+1) becomes the empty set, or equivalently, Pk+1 = ÿ, we can say
that the set of triangles T = T k+1 completely covers P.

By the current front Fk we mean some closed front, the boundary of the polygonal
region Pk, in which the triangular grid is to be constructed. The symbol T k will denote
the set of constructed triangles. We set the initial moment of time P0 = P, F0 = F(P0)
and T 0 = ÿ. Next, at the kth step, we will build a new triangle ÿ123 ÿ Pk, add it to the
triangular grid, and subtract it from the area where the grid has not yet been built:

Recall that, according to our notation, ÿ123 denotes a triangle with vertices v1,
v2, and v3, while e12 denotes an edge with vertices v1 and v2. The triangle ÿ123 will
be constructed in such a way that one of its sides will be one of the segments of the
current front Fk. Then after subtracting the new triangle from the polygonal area, the
current front will change

T k+1 k

V

Similarly, a negative half plane is a set of points for which Sÿ(v1,v2,v) < 0. A broken

line in the plane is a finite set of segments
connected in series by their ends. This does not exclude the location of two

consecutive segments of the broken line on one straight line. If the first and last
points of the polyline coincide, then such a polyline will be called closed. A broken line
whose segments do not intersect each other will be called a broken line without self-
intersections.

= T ÿ { ÿ123}, Pk+1 = Pk \ ÿ123.

Machine Translated by Google

Consider some directed edge e12 of the current front. For ÿ123 to lie inside Pk, it suffices

to fulfill two conditions: 1) the algebraic area of ÿ123 is positive, i.e., S ÿ123 > 0; 2) the triangle

ÿ123 does

not intersect the front Fk. In this case, it is allowed that the vertex v3 is the vertex of
the front, and the sides of the triangle coincide with the

segments Fk. We will call the triangle ÿ123 that satisfies these conditions suitable. This choice

of ÿ123 guarantees that after adding it to the grid, it will retain the

conformality property. In this case, the consistency of the final grid T with the initial domain

P will be ensured. For definiteness, we will choose at each step the directed edge e12 with the

smallest length and construct a new triangle ÿ123 on it. When constructing ÿ123, the choice of
the third vertex v3 is not unique. We can be guided both by the desired size of the triangle in

this area, and by some other heuristic criteria. The vertex v3 will be chosen only from

some finite set ÿ of candidate vertices. This set includes the point v0, equidistant from the

points v1 and v2 at some distance s, and also add all the front vertices lying in the positive half-

plane with respect to the directed edge e12. Since the set ÿ is finite, we can simply iterate over

all triangles ÿ123, where v3 ÿ ÿ, until the next one is suitable (see Fig. 3.4b). Vp. 3.3.3 it will be

proved that there is always at least one suitable triangle.

i

Ch. 3. Construction of unstructured grids

errors, its finiteness and complexity.

i

§ 3.3. Construction of a triangulation by the advancing front method 49

dots v.

When implementing Algorithm 10 on a computer, special attention should be paid to

computational errors that arise when working with real numbers. Using specialized libraries for

arbitrary precision calculations can solve the problem by increasing the program run time. In

this section, we will analyze the impact of computational errors on the work

which we will build with it. To do this, you need to introduce some
restrictions on the triangles themselves, on the edges and on the mesh
vertices. From a practical point of view, it is most convenient to have
a lower bound on the minimum pairwise distance between grid nodes.
To maintain this constraint, we will exclude the point v0 from ÿ if it lies
close to the front vertices or to the already constructed mesh. To do
this, we will introduce two parameters: h is a restriction on the minimum
distance to the current front; r is the limit on the distance to the tops of
the front (see Fig. 3.4, a). If the current front intersects the h-
neighbourhood of the point v0 or the vertices of the front lie in the r-
neighborhood of the point v0, then we exclude the point v0 from the
set of candidate vertices. Note that in Fig. 3.4 both conditions are
violated, so the third vertex v3 is the front vertex. More details about
working with these parameters will be

described in section 3.3.3. Taking into account all the previous
remarks, we compose Algorithm 10. We will use the following additional
notation. At the kth step of the algorithm, we denote the set of vertices
of the front Fk by {pk }, and the set of nodes of the constructed grid T
k by {vk }. For some R > 0 and a point v, we denote by ÿ R(v) the open convex R-neighbourhood

48

The complexity of such an algorithm is very large, and in practice it will not be effective.

Therefore, we consider some convex open neighborhood ÿ containing the points v1, v2 and v0

(see Fig. 3.4). As the region ÿ, one can choose a circle of radius R>s centered at v0. We select

from the current front only those segments that have at least one common point with ÿ. The

resulting front may not be closed. We call it a local front and denote it by Fÿ. Any subdomain ÿ

intersects with the current front if and only if it intersects with the local front. Let us construct the

set ÿ = ÿ ÿ ÿ. Since ÿ is convex, any triangle ÿ123, where v3 ÿ ÿ ÿ, will lie in ÿ. To check the

intersection of this triangle with the current front, it suffices to check its intersection with the

local front. Local enumeration will be faster, but will no longer guarantee

the existence of a suitable triangle. Therefore, it is necessary to provide for the possibility

to return to the full enumeration in the case when the local enumeration fails. To prove the

finiteness of the number of operations during the operation of the algorithm, it is necessary to

somehow estimate the maximum number of triangles,

b Fig. 3.4. Front advancement: (a) neighborhoods of the candidate vertex
corresponding to different values of R; b - adding a suitable triangle to the grid

3.3.2. Impact of computational errors

Next, we will study the stability of this algorithm to computational

insignificant: at least one segment from the front will be removed and no more than two new

ones will be added.

A

ÿ

Machine Translated by Google

10:

16:

v4

v5

v1

6:

Add triangle ÿ123 to the grid: T k+1

v3

v2

errors is to check the intersection of a triangle with a segment. Incorrect definition of the intersection

due to computational errors can lead to incorrect operation of the entire algorithm. Note that only two

situations of obtaining an incorrect result are possible: 1) a non-intersecting triangle and a segment

are incorrectly perceived as intersecting; 2) the intersecting triangle and the segment are incorrectly

perceived as

R

Algorithm 10. Advancing Front Method in 2D Space 1: Put T 0 = ÿ and F0 = F(P)

v 5

13:

R

9:

From the point of view of Algorithm 10, errors of the first type are not critical: a false intersection

of a triangle and a segment means that the new triangle will not pass the test of intersection with the

current front, and the corresponding candidate vertex will be rejected. On the other hand, errors of

the second type can distort the check of the intersection of the triangle with the current front, which

can lead to a self-intersecting front or to a nonconformal mesh. Thus, errors of the first type only

increase the enumeration of candidate vertices, slightly slowing down the work

15:

Ch. 3. Construction of unstructured grids

S ÿ123 > 0,

5:

v1

v3

Update edge: Pk+1 = Pk \ ÿ123, Fk+1 = F(Pk+1) If Fk+1 = ÿ, then go to step

20 Go to step 19 end if end for Put R = ÿ, go to 7 18 :

19: end for 20: Put T = T
k+1

R

v2

i

One of the main operations sensitive to computational

We will use an algorithm for checking the intersection of a triangle–segment pair, which excludes

the occurrence of errors of the second type, but allows the occurrence of errors of the first type. In

general, two planar convex objects do not intersect if and only if there is a line separating them. Under

the conditions of Algorithm 10, common vertices and common edges are also allowed: for example, a

segment and a triangle can have a common vertex, or a segment can be a side of a triangle. In these

cases, the conformality of the grid will not be violated, so they must be considered as non-intersecting.

Consider the triangle ÿ123 and the edge e45 (see Fig. 3.5). We will

2)

then

Rice. 3.5. Illustration of conditions 1), 2), 3) and 4) when a triangle and an edge do not intersect

v4

assume that

4:

v 5

4)

algorithm, and we will also propose several ideas that will make it possible to minimize this influence.

12:

v5

§ 3.3. Construction of a triangulation by the advancing front method 51

v4

since only such triangles will be tested in Algorithm 10. First, we determine how many vertices a

triangle and a segment have in common. Consider the case when there are no common vertices. The

triangle and

the sharp edges do not intersect if and only if either the triangle lies entirely in one of the half-

planes with respect to the straight line e45, or e45 lies on the other side of the triangle with respect to

one of its sides (see Fig. 3.5). Thus, if there are no intersections, then at least one of the following

conditions is satisfied: 1) S ÿ451 > 0, S ÿ452 > 0, S ÿ453 > 0, or S ÿ451 < 0, S ÿ452 < 0, S ÿ453 < 0;

2) S ÿ124 < 0, S ÿ125 < 0; 3) S ÿ234 < 0, S ÿ235 < 0; 4) S ÿ314 < 0, S ÿ315 < 0.

v1

8:

v2

1)

program, and errors of the second type can lead to an incorrect result of the program.

50

Choose e12 ÿ Fk with the minimum length Determine the

desired length s of the side of the triangle Construct the vertex v0: |e10| = |

e20| = s, S ÿ120 > 0 Choose some R>s, h > 0 and r > 0 Construct a

local front Fk R: Fk ÿ Fk ÿ ÿ R(v0) Determine the set of

candidate vertices ÿk = {pk } ÿ ÿ ÿ R(v0) If {pk } ÿ ÿr(v0) = ÿ and Fk ÿ

ÿh(v0) = ÿ, then add v0 to ÿk for all v3 ÿ ÿk if ÿ123 does not intersect Fk

v3

R

3)

7:

17:

eleven:

v 4

do

2: for k = 0, 1, ... do 3:

v1

= T k ÿ ÿ

{ÿ123}

v3

disjoint.

i

14:

The converse is also true: if one of these conditions is satisfied, then there are no intersections.

These conditions can be written in a more convenient form: 1) sign(S ÿ451) + sign(S ÿ452)

+ sign(S ÿ453) = ±3; 2) sgn(S ÿ124) + sgn(S ÿ125) = ÿ2; 3)

sgn(S ÿ234) + sgn(S ÿ235) = ÿ2; 4) sgn(S

ÿ314) + sgn(S ÿ315) = ÿ2.

v2

R

Machine Translated by Google

9:

= ad ÿ bc = D. (3.3.1)

In Algorithm 12, the value D is calculated with an absolute error not exceeding r. Therefore, if

d(v1, v2, v3) = 0, then we can be sure that the sign of D is calculated correctly and d(v1, v2, v3) =

= sign(S ÿ123). In practice, if the type of real numbers with single precision is used to store

coordinates in the

computer memory, and the calculations of the values a, b, c, d, D in Algorithm 12 are

performed with double precision, then the machine precision is sufficient for the exact calculation of

both all intermediate values , and the final value D. In this case, we can set ÿ = 0, and Algorithm 12

will calculate sgn(S ÿ123)

exactly.

§ 3.3. Construction of a triangulation by the advancing front method 53

cd

no

3.3.3. Finiteness of Algorithm 10

Let's move on to the case when the triangle and the segment have one common vertex. In this

case, the triangle and the segment do not intersect in our sense if and only if e45 lies in the negative

half-plane with respect to one of the sides of the triangle, while their common vertex lies on the line,

and the second falls into the negative half-plane. These conditions can be written as follows: 1)

sgn(S ÿ124) + sgn(S ÿ125) = ÿ1; 2) sgn(S ÿ234) + sgn(S ÿ235) = ÿ1; 3) sgn(S ÿ314) +

sgn(S ÿ315) = ÿ1. If at least one of these conditions is satisfied, then there is no intersection;

and vice versa, if there is no intersection,

then at least one of the conditions is satisfied.

In the latter case, when both vertices of the

segment coincide with two vertices of the triangle, the edge e45 is a side of the triangle, and by our

agreement, the triangle and the segment are considered to be non-peripheral. When calculating the elements of the matrix, we already introduce some relative error. In addition

to this, the relative error is again introduced in the expressions ad and bc, and at the end one more

error is introduced into D. The total absolute error can be estimated from above as ÿ(|a| + |b| + |c| + |

d| + 2| ad| + 2|bc|), where ÿ depends on machine precision. Taking this allowable error into account,

we write an algorithm for determining sgn(S ÿ123). Algorithm 12. Calculation d(v1, v2, v3)

4:

repent

ab

Suppose we have a function d(v1, v2, v3) that does not accurately calculate the sign of the

expression S ÿ123 . But at the same time, if d(v1, v2, v3) = 0, then d(v1, v2, v3) = sign(S ÿ123),

and in disputable situations d(v1, v2, v3) = 0. Then the intersection test can be performed using

algorithm 11.

If d(v1, v2, v4) + d(v1, v2, v5) = ÿ1, then there is no intersection If d(v2, v3, v4)

+ d(v2, v3, v5) = ÿ1, then there is no intersection If d(v3, v1, v4) + d(v3, v1, v5)

= ÿ1, then there is no intersection 11: 12: end if 13 : if two common vertices
then No

intersection 15: end if 16: that the triangle

and the segment
intersect

We note that the admissible inaccuracy in the calculation of d(v1, v2, v3) can only lead to

errors of the first type, while Algorithm 11 excludes errors of the second type.

2S ÿ123 = e31 × e32 =

1: Calculate a = x1 ÿ x3, b = y1 ÿ y3, c = x2 ÿ x3, d = y2 ÿ y3 2: Estimate the error r =

ÿ(|a| + |b| + |c| + |d| + 2|ad| + 2|bc|) 3: Calculate the determinant of the matrix D = ad ÿ bc

4: If D>r, then return 1 5: If D < ÿr, then return ÿ1, otherwise return
0

10:

52

ÿ

3:

14:

Ch. 3. Construction of unstructured grids

x2 ÿ x3 y2 ÿ y3

If d(v1, v2, v4) + d(v1, v2, v5) = ÿ2, then there is no intersection If d(v2, v3, v4)

+ d(v2, v3, v5) = ÿ2, then there is no intersection If d(v3, v1, v4) + d(v3, v1, v5)

= ÿ2, then there is no intersection 6: 7: end if 8: if one common vertex then

Let us show that the number of operations in Algorithm 10 is finite. In the proposed algorithm,

there are two explicit nested loops and one implicit one due to restarting the enumeration at step

18. The enumeration cycle at step 10 is always finite due to the finiteness of the set ÿk. will be

found, and also show that the outer loop in step 2 will be final.

The operation of determining the sign of the algebraic area S ÿ123 is the main operation used

in both Algorithm 10 and Algorithm 11. Let us propose a method for inexact determination of the

sign of d(v1, v2, v3) with the following property: if d(v1, v2, v3) = 0, then d(v1, v2, v3) = = sgn(S

ÿ123). The calculation of S ÿ123 is reduced to finding the determinant of the 2 × 2 matrix:

split ends.

5:

R.

x1 ÿ x3 y1 ÿ y3

Algorithm 11. Checking the intersection of a triangle with a segment 1:

Find the common vertices of the triangle ÿ123 and the edge e45 2:
if there are no common vertices

then If d(v4, v5, v1) + d(v4, v5, v2) + d(v4, v5 , v3) = ±3, then the intersection

Machine Translated by Google

(3.3.2)

Such a choice guarantees the existence of the point v0 and limits you to ÿ19 the

triangle cell from below: hc l, hc 18 for the rate of
increase in the size of triangles:

1

, s0 = 0, ÿ = 0.

2
2

ÿ19 s and s>smin, so for any k

Ch. 3. Construction of unstructured grids

s = ÿl,

ÿ19
10

2

Suppose we have some scalar function s(x, y):
P ÿ R + and we want the size of the elements in the

grid to change according to this function. In this case, we will say that the size of the
triangles

i .

Let the size of the triangles be set by the user. Let's put

s. By our assumption, s>smin, hence 2 smin. Then dk min d0,

54

1

ÿ19
ÿk min d0, smin . 20

5 l, s(x, y) . 9

1

,

ÿ2

l 4

r=

i

1

r>

1

Lemma 3.3.1. Let P be a polygon with vertices v1, v2, , vn and v1v2 the
side of P. Then there exists a third vertex of v3 such that the triangle ÿ(v1, v2, v3)
lies entirely inside P. If algorithm 10 reaches step 18, then the enumeration at step
10 becomes complete. From Lemma 3.3.1,

taking into account the previous remarks about the influence of computational
errors and the possibility of exact calculation in Algorithm 12, it follows that after
restarting the enumeration, a suitable triangle will always be found. In this case, we will say that the grid step is chosen automatically. Since ÿ > then

the point v0 always exists, and hc = ÿ 3 l.

where ÿ > 0, s0 0 and ÿ are some parameters. Note that for s>s0 the value r ÿs, and
for s<s0 the value r ÿs0. The parameter ÿ can be chosen so that r = s0 for s = s0.
The constraint r ÿs makes it possible in practice to avoid the appearance of sharp
differences in the sizes of neighboring segments in a new front, and the constraint r
ÿs0 allows us to limit the value of r from below. When implementing the algorithm on
a computer, the parameters introduced above

can be selected in one of two ways, depending on whether the size of the
triangles is specified by the user or automatic size selection is used. Let's consider
both cases.

§ 3.3. Construction of a triangulation by the advancing front method 55

h

2

s.

= ÿ2 ÿ

Let dk be the minimum of pairwise distances between points of the front pk i , ÿk
be the minimum of pairwise distances between nodes from vk i , ÿ0 = ÿ. When
adding a new triangle ÿ123 to T k, two situations are possible: v3 ÿ { pk } and v3 =
v0. In the first case, the minimum distance between the grid vertices will not
decrease more than to the minimum distance between the front vertices, then the
minimum distance between the front vertices will not decrease: ÿk+1 min(ÿk,dk),

dk+1 dk. Consider the case v3 = v0. Since ÿ120
does not intersect Fk, the distance from v0 to the
set {vk } is not less than the distance from v0 to Fk,
which, by construction, is not less than h chosen at
Step 6. The distance from v0 to {pk } is not less
than r. Accordingly, ÿk+1 min(ÿk, h), dk+1 min(dk,
r). Let us propose some heuristic method for
choosing the parameters s, r, and h. Denote by l = |
v1v2| the length of the segment v1v2, and through
hc the height ÿ120 lowered from the vertex v0 (see
Fig. 3.6).

smin for any k. By construction

Let us show that the outer loop at step 2 will be finite, i.e., the number of
constructed triangles is finite. To do this, we will estimate the number of triangles in
terms of the number of grid nodes, and we will limit the number of nodes from above
due to the boundedness of the polygon P and the lower limit on the distance between
nodes vk

s = max

s + s0 + (s ÿ s0)2 + ÿ2

ÿ =

1

20

i

is given by a user-defined function s(x, y). We require that the function s(x, y) be
separated from zero by P: s(x, y) > smin > 0. Take

1

Let's take the parameter h = hc, and calculate the parameter r using the formula 2

Then r =

Rice. 3.6. Triangle with
diameter s, base l and height

hc

ÿ 1.

Let us prove that when searching for the candidate vertex v3 at step 10, there
will always be at least one suitable triangle after restarting the search at step 18. It
follows from Rado's theorem [80] that any polygon can be divided into triangles by
diagonals. It follows from the existence of a triangulation without additional points
that at least one triangle can be constructed for each side of the polygon. Let's
formulate this statement.

2

,

i

Machine Translated by Google

2

node circle radius

R

+ K(P). +
ÿÿ2

1

i

how

4

Ch. 3. Construction of unstructured grids

ÿ

v

ÿ2 p(P) + ÿ

Nk

d0, i.e., dk > ÿ

3
d0. Therefore, for any k 8

+ 2K(P) ÿ 5. +
ÿÿ2 ÿÿ

1. Selecting a segment with the minimum length from Fk (line 3). 2.
Construction of the local front Fk (line 7). (line 8).

+ K(P). ÿÿ

ÿ =

Rice. 3.7. Polygon extension by

Pÿ = v3 : dist(v3,P) < circles.
Let us

estimate the area Pÿ. Each side of a polygon of length l has a rectangle, which gives
an increase in area no more than ÿ l. Thus, the increase in area due to rectangles 2

ÿ

4

This estimate limits the number of iterations in the outer loop of the algorithm to 10,
which in turn proves that the number of operations of the algorithm is finite.

3. Constructing a list of candidates ÿk 4.
Checking the intersection of a triangle with a local front (str

Nk

1

limited:

ÿ p(P), where p(P) is the perimeter of the polygon P. Circular 2 sectors at

the vertices with an internal angle ÿ give an increase in area

number of vertices:

Let now the size of the triangles is selected automatically. Let's take

2

4

K(P). From here, one can estimate the

(3.3.3)

d0 for any k. By construction h

i

ÿ2 is not greater than (ÿ ÿ ÿ) , and this estimate is also true for interior angles greater

than 8 ÿ; in this case, the gain becomes negative, but it is completely covered by the
overlap of the two rectangles that we considered earlier. From the formula for the sum
of the angles of a polygon, the contribution of all circular sectors can be estimated as

Note that a similar estimate is also true for the number of vertices in the front Fk:

2

From (2.2.5) it follows that the number of triangles in T k

(See Figure 3.7). Then Pÿ will completely cover

S(Pÿ) S(P) +

56

ÿ
3d0. 8

spare equal to Nk

ka 11).
5. Front update (line 13).

+

Then r

(3.3.4)

R

4S(P)
ÿÿ2

1

We have just shown that there exists ÿ > 0 such that ÿk > ÿ is true for any k. With
this condition, we can estimate the maximum number of mesh nodes. The set of mesh
nodes {vk } lies in the closure of P, and the pairwise distance between them is greater
than ÿ. Let Nk be the number of nodes in the set {vk }. Let's build in each

ÿ

Operation 4 is performed in Ne(Fk R) operations of checking the intersection of a triangle
with a segment (see Algorithm 11). Operation 3 can be performed in 2 Ne(Fk R)
operations to check whether vertices from Fk R belong to the neighborhood ÿ R(v0).
The complexity of operations 1,

2, and 5 depends on the data structures used. To store the front, we introduce an
ordered list with the minimum length element at the root. To quickly find a local front,
we will use a quaternary search tree. In this case, operation 1 becomes trivial, and the
complexity of operation 2 will, on average, be proportional to the sum log Ne(Fk) +
Ne(Fk R). Operation 5 consists of three operations of adding or removing a segment
from the front, the complexity

p

2

v

R

4S(P) 2p(P)

ÿ 3
l,

Nk f

3.3.4. Speed of the Advanced Front Algorithm Let us briefly analyze the

speed of Algorithm 10. Formula (3.3.4) estimates from above the number of
iterations of the outer loop at step 2. Denote by Ne(Fk) and Ne(Fk R) the numbers of
segments in Fk and Fk, respectively. Let us write down all non-trivial operations that are
used in Algorithm 10.

2

§ 3.3. Construction of a triangulation by the advancing front method 57

ÿk

ÿ

ÿ2 K(P), where K(P) is the number of connected components in P. We have

v

a l dk, so h

8S(P) 4p(P)

will be

2p(P)

, s0 = d0, ÿ = 2s0(1 ÿ ÿ)/ÿ.

ÿ. These circles do not intersect and cover the plane 2 ÿ2 .

We extend the original polygon P by ÿ/2,

2

ÿ
4

ÿÿ

Machine Translated by Google

19304 0.29 66566

In this section, we will illustrate the behavior of Algorithm 10 with several examples.
First, we experimentally estimate the average complexity of the algorithm, and then we
present the results of using different methods for setting the desired grid spacing. To
experimentally measure the speed of the advanced front algorithm,

we will take a unit square and build unstructured quasi uniform grids in it with step
h. Decreasing the grid step h, we will monitor the number of triangles in the grid Nf and
the grid construction time t. The results of the experiments are presented in table. 3.1.

4S(P)
ÿÿ2

In the rare worst case, it is proportional to

1.28
In conclusion, we present several areas for which the complexity of the algorithm is

much worse than the average estimate. Consider the area in the form of a comb, shown
in fig. 3.8. We will increase the number of teeth N in it so that the area will remain
approximately the same, and the perimeter will be proportional to N. The parameter ÿ
will decrease inversely proportional to N. The number of segments in the initial front will
be 2 N + 1. At each step local

Ch. 3. Construction of unstructured grids

front is on average proportional to Ne(Fk R) + log2

3.3.5. Experimental results

The overall complexity of the algorithm is on average proportional to

t, s Nf /t, sÿ1 t/(Nf log Nf), µs

1.33

.

58

2p (P)

the neighborhood will almost completely cover the entire area, so the complexity of one

iteration of the outer loop will be proportional to N2. In total, (2N ÿ 1) triangles will be
built. The total complexity of the work will be proportional to N3, which is much worse
than the average estimate of the order of N log N.

wbad=

The exhaustive search, when algorithm 10 goes to step 18, corresponds to the
worst estimate for the local search.

.+ K(P) log2 + ÿÿ

0.01

0.0025 512956 8.96 57250

3

ÿ

Let us summarize the available results on the computational complexity of Algorithm
10. Let the input be a polygon P completely covered by a square with side H. If the local
grid step is given by a custom function of the desired triangle size s(x, y), then assume
again that it is separated from zero: s(x, y) smin > 0. Vp. 3.3.3 it was shown that there
is a parameter ÿ, which can be used to estimate the maximum number of triangles in an
area using formula

(3.3.4). Let us estimate from above the computational complexity of one iteration of
the outer loop in Algorithm 10. We will be interested in the dependence of the complexity
of the algorithm on the grid step and, accordingly, on ÿ. Assume that a suitable triangle
has been found in a local enumeration. In practice, R is chosen in the range from s to
2s, and the lengths of the front segments in this neighborhood are comparable to s.
The

average estimate for the number of segments in the local front Ne(Fk R) turns out
to be independent of ÿ. However, in the worst case, it can be proportional to Ne(Fk),
which, in turn, worse

ÿ

128334 2.08 61699

§ 3.3. Construction of a triangulation by the advancing front method 59

h

H

2p (P)

1.52

It can be seen from the calculation results that the operating time is proportional to

the value of Nf log Nf . Note that the proportionality factor is close to 1. The table also
includes a column for the meshing speed (triangles per second).

T a b l e 3.1
Speed of the advanced edge algorithm

In our case, it reaches 4ÿÿ2 S(P) + 2ÿÿ p(P) + K(P). Search local

Nf

0.00125 2019486 37.67 53610

ÿÿ
1.38

Rice. 3.8. Worst edge configuration example

Further, for each vertex of the local front, it is required to check the intersection of
the candidate triangle with the local front. The complexity of this operation is on average

proportional to (Ne(Fk R))2, which is a quantity independent of ÿ. But in the worst case,
the complexity of the operation can reach a value proportional to (Ne(Fk))2.

Wavg=

+ K(P) +

.

each of them is on average proportional to log Ne(Fk). The structure of the search tree
is discussed in more detail in § 2.3.

H

0.0054S(P)
ÿÿ2

Machine Translated by Google

b

0.829 0.633 0.877

ÿ = 20

Rice. 3.9. Different ways to choose the grid step: a — non-trivial function s1(x, y); b is a
constant function s2(x, y); (c–f) automatic selection with ÿ = 1; 1.05; 1.25 and 20

232

A

60

V

Ch. 3. Construction of unstructured grids

Nf 3636

G

§ 3.3. Construction of a triangulation by the advancing edge method 61

T a b l e 3.2 The
number of triangles and the worst quality of triangles for different methods of

choosing the grid step

Q(ÿh) 0.732 0.778 0.641 10ÿ2

s1(x, y) s2(x, y) ÿ = 1 ÿ = 1.05 ÿ = 1.25

We now analyze how the choice of the local grid spacing, or parameter s, when
constructing a new triangle in Algorithm 10 affects the grid and its quality.

In addition to the considered grids with a uniform trace on the boundary, let us check
Algorithm 10 for nonuniform boundary discretization. As such a discretization, we
choose the trace of the triangulation obtained using the function s1(x, y) (see Fig. 3.9,
a). Boundary discretization has a non-constant, but smoothly varying step. Results of
automatic step selection with parameters ÿ = 1.05

d

Consider a unit square with a circle of radius 0.1 cut out in the center. The algorithms
proposed in this subsection make it possible to specify the desired size of grid elements
using the scalar function s(x, y). Using the same function, one can construct a discrete
boundary of a region given analytically. This will be discussed in more detail in the next
paragraph. When constructing the grids, two scalar functions were used: s1(x, y) and
s2(x, y), which are responsible for the desired

size of the triangles. The first function decreased near two semicircles resembling in
shape the graph of the function sin(2ÿx). The second function was identically equal to a
constant on the entire region. The grids obtained with their help are shown in Figs. 3.9,
a and b, respectively.

6212 5386 2596

Next, we will test the automatic selection of the grid size for a given discrete area
boundary. As a discrete boundary, we take the boundary obtained in the previous
experiment with a constant function s2(x, y). Let us test the operation of the algorithm
with automatic step increase for different values of ÿ = 1; 1.05; 1.25; 20. The resulting
grids are shown in fig. 3.9, c–e. The choice of a larger value of ÿ leads to a rapid
sparseness of the grid inside the domain. Therefore, for a very large value of ÿ, we
obtained an irregular grid with a minimum number of nodes inside the region (see Fig.
3.9, f).

Vtab. 3.2 contains information about the number of triangles in the constructed
grids. Recall that the quality of an isosceles right triangle [see formula (2.1.3)] is
approximately 0.89, and the quality of an equilateral triangle is 1. The quality of the mesh
Q(ÿh) is equal to the quality of the worst triangle in it. Note that in all the considered
examples, except for the last one, Q(ÿh) > 0.6, which is typical for high quality regular
grids.

1194

e

Machine Translated by Google

b Fig. 3.10. Automatic selection of the grid step for uneven discretization of the boundary:
ÿ = 1.05 (a), ÿ = 1.25 (b)

We will compose an algorithm of actions based on the idea described above. The
whole surface is divided into several simple surfaces ÿi, we will call them curvilinear faces.
Each curvilinear face is parametrized by a smooth vector function ÿi = (x, y, z): (x, y, z) =
Fi(p, s), (p, s) ÿ ÿi ÿ R2

1

Ch. 3. Construction of unstructured grids

v 1, 2,

The technology for constructing triangular surface meshes, i.e., meshes at the
boundary of three dimensional regions, is necessary for the further construction of
unstructured tetrahedral meshes. Surface triangular meshes can also be used to solve
quasi-2D problems on curved surfaces. Examples of such problems are the problems of
deformation of thin-walled structures or the solution of shallow water equations on the
surface of a sphere or geoid. In this section, we will show that the 2D advanced front
algorithm can be extended to the case of curved surfaces, and also discuss methods for

constructing discrete curvilinear boundaries and interacting with CAD to obtain the
necessary

and v2

A curve on a surface or in space is a one-dimensional manifold on a surface or in
space, respectively. A simple curve is a curve that is homeomorphic to a unit segment.
Whenever possible, we will use the notation from § 3.3.

The splitting of the boundary ÿ under a homeomorphism generates a splitting of the
boundary of a simple surface, which can be regarded as a discrete boundary of the
surface. Using this boundary as a front, one can apply the advanced front algorithm,
treating the surface locally as a plane. A complex surface can usually be cut into several
simple surfaces. Having fixed the

discretization on cuts, it is possible to construct a triangulation consistent with this
discretization for each simple surface, then the general triangular mesh for the entire
complex surface will be conformal.

border information. We examine the finiteness and complexity of the presented algorithms
and give several examples of their operation.

2

3.4.1. Surface representation

.

(e31 × e32) n3,

63

S ÿ123

§ 3.4. Construction of surface triangulation

§ 3.4. Construction of a surface triangulation by the advancing front

method

The area of a triangle ÿ123 on the surface is calculated as follows:

62

1

Consider first a simple surface. According to its definition, there must exist a
parametrizing function that takes a point from the unit square in the parametric space to
a point on the surface. The construction of such a homeomorphism for an arbitrary
surface is a difficult task. In practice, it is easier to construct a homeomorphism from some
bounded domain ÿ ÿ R2 that is homeomorphic to the unit square.

actually.

v3) in the plane tangent to v3, where v

Using geometric criteria for choosing the function s(x, y), we can construct grids
adapted to the features of the computational model. Decreasing the value of s in some
subdomain, for example, in the prefracture zone, we will refine the mesh there. A more
complicated approach to constructing the function s(x, y) is based on estimating the error
of the finite element solution of the differential problem—see the methods described in
the appendix. For example, s(x, y) can be adjusted to some error rate.

A surface is a two-dimensional manifold in a three-dimensional space. A simple
surface is a surface that is homeomorphic to the unit square.

where n3 is the outward unit normal to the surface at the point v3, and a · b is the scalar
product of two space vectors. We note that for the plane the new notation goes over into
the definition from § 2.1. We also note that such a quantity corresponds to the value Sÿ(v
are orthogonal

projections onto the plane of the points v1 and v2, respectively.

and ÿ = 1.25 are shown in Figs. 3.10. The number of triangles in the resulting grids was
2904 and 550, respectively. The worst triangle quality was Q(ÿh) = 0.334 and Q(ÿh) =
0.696 respectively

=

A

Machine Translated by Google

3.4.2. Interaction with the geometric CAD core

k].

When implementing this method on a computer, you can use a different
approach. Let us consider the parametrization of curvilinear edges in the parametric
space of the surface separately for each curvilinear face. Let the face ÿi be
parametrized by the function Fi(p, s), then the edge ÿk can be considered as a
curve in the parametric space (p, s). For example, if we use the mapping p ÿ
(p,sik(p)), then the curvilinear edge will be parametrized as follows:

Ch. 3. Construction of unstructured grids

0

0

Algorithm 13. Construction of a surface mesh 1: for all

curvilinear edges do Choose one of the
parametrizations of a simple curve Construct a
discretization of the curve using the bisection method

Consistency of surface meshes of faces with discretizations

After constructing the discretization of the boundary of the curvilinear face, we
can apply an analogue of the advanced front algorithm to construct a triangular
mesh. Since neighboring faces have the same discretization of their common edge,
and the triangular ones built on them

65

Let us write down the main stages of constructing a surface grid. Let us
suppose that the surface is divided into several non-intersecting simple surfaces—
curvilinear faces. The curvilinear boundary of each face is divided into several
simple curves—curvilinear edges. We will consider only conformal partitions, i.e.,
those in which two neighboring faces have common curvilinear edges. At the first
stage, discretization is constructed for all curvilinear edges. To do this, points are
placed

on the curved line, and the curve is approximated by a broken line. The length
of the segments is controlled by the desired size of the grid elements, while the
position of the points is calculated using the bisection method.

8: Apply the advanced front method to build the mesh 9: end for 10: Merge all
the meshes

built into one common mesh

At the second stage, for each curvilinear face, a discrete boundary is compiled
from the available edges. For points on edges, the values of parameters (p, s) are
restored in the parametric space of the face. Finally, using the advanced front
algorithm, a surface triangulation is constructed that is consistent with the discrete
boundary. We formalize these ideas in Algorithm 13.

2:

We will build points on it:

The values of the parameters ti ÿ [p0,p1] are chosen using the bisection method
in accordance with the desired distance between the points vi.

6:

Let us assume that the vector functions Fi have continuous first derivatives: Fi ÿ

(C1(ÿi))3. We divide the
boundary of a curvilinear face into several simple curves ÿk, which we will call

curvilinear edges. In we parametrize on curvilinear edges: ÿk = (x, y, z): (x, y, z) =
Gk(t), t ÿ [tk,t We will also need mappings pik,sik

from the parametric

Gk(t) = Fi(pik(t),sik(t)), t ÿ [tk]. k,t Therefore, in

practice, this approach is applicable for fairly simple domains.

n.

64

curve space into parametric surface space:

ÿk = {(x, y, z): (x, y, z) = Fi(p,sik(p)), p ÿ [p0 i ,p1 i]}.

(x, y, z) = F(p,s(p)) = G(p), p ÿ [p0,p1].

3: 4: end

for 5: for all curvilinear faces do Compose
the discretization of the boundary from the discretizations of the edges
Compute the parameterization of the nodes of the discrete boundary in
the parametric space of the face

1

curvilinear ribs, the conformality of the overall mesh is guaranteed.

Information about the region boundary can be obtained using the CAD
geometric kernel [4]. Most of the existing CAD systems offer an interface for
interacting with their internal geometric core, allowing you to obtain information
about the topology and geometry of the area. Each CAD uses its own interface for
this interaction, and there are no common standards in this area yet. Some open
source CAD is good

grids are consistent with this discretization, then the general grid composed of them
will be conformal.

´

7:

1

§ 3.4. Construction of surface triangulation

Such parametrizations of the curve ÿk may be different for different curvilinear
faces containing ÿk, but must provide mathematically equivalent representations
of the curve. In practice, it is possible to allow a slight discrepancy, within the
permissible error, of representations of the same curve by different parametrizations,
which simplifies the construction of parametrizations and expands the class of
domains for which this approach is applicable. To construct surface meshes on
curvilinear faces, a discretization of curvilinear edges is first

constructed. Consider a parametrized simple curve:

vi = G(ti), i = 0, 1, ... ,

Machine Translated by Google

2S ÿ123

CGMA offers a universal interface for communicating with geometric CAD kernels. In
this case, all information is divided into two

3. A loop is a connected and closed set of edges. It does not carry any geometric
information and is a purely topological object.

def hi _

parts.

4. A face is a part of a smooth parametrized surface bounded by a loop. The edges of
the loop must lie on the surface of the face. The face is given by the surface

parametrization (p, s) ÿ (x, y, z).

.

66

• Topological information about the model: component parts of the model

abc

The sign of the determinant D = aei ÿ ce g + bf g ÿ afh + cdh ÿ bdi of a 3 × 3 matrix is
calculated by an algorithm similar to Algorithm 12. The absolute error can be estimated
as r = ÿ(|a| + |b| + |c| + + |d| + |e| + |f| + | g| + |h| + |i| + |aei| + |ce g| + |bf g| + |afh| + |cdh| + +
| bdi|). Note that if single precision is used for the coordinates of the nodes of real numbers,
and for calculating the determinant

Ch. 3. Construction of unstructured grids

and their topological relations with each other.

xv1 ÿ xv3 yv1 ÿ yv3 zv1 ÿ zv3

3.4.3. Advance Front Algorithm

§ 3.4. Construction of surface triangulation

xv2 ÿ xv3 yv2 ÿ yv3 zv2 ÿ zv3

67

The advancing front algorithm 10 is extended to the case of curved surfaces. In this
subsection, we only note the main features of the advancing front algorithm for such
surfaces. Vp. 3.3.2, algorithm 11 was proposed for checking the intersection of a triangle

with a segment. This algorithm used only the function of determining the sign of the
expression S ÿ123 . Let us show how to get the sign of the expression S ÿ123 on the

surface. Let us construct the point v = v3 + n3 so that n3 = v ÿ v3 is the outward normal to
the surface at the point v3. By our definition

ÿ

documented. One example of such a CAD can be the open system Open CASCADE
Technology [19]. However, in most cases, the closed nature of the source code and the
lack of documentation on interfaces in the public domain complicate the development of
interfaces with CAD. A promising direction is the use of intermediate libraries that provide
a common

unified interface for the developer and support interaction with different CAD systems.
During the development of the commercial package CUBIT Tool Suite, which includes, in
particular, its own ACIS geometric kernel, developers began to add new interfaces to
other CAD systems. For this, a special layer was created that provides a common interface
for interacting with CAD. Later, this part of the code was removed from a commercial
project as a separate open library Common Geometry Module (CGM) [20, 82]. At that
time, interfaces to the geometric kernels of the ACIS and Pro/ENGINEER systems were
developed. The openness of the source code made it possible to use and improve this
library. The CGM project is currently being developed under the new name CGMA [21].
This version adds the ability to interact with the Open CASCADE geometric kernel.

• Geometric information: coordinates, dimensions, parameters and parametrizing
functions for curves and surfaces. Most CAD kernels use boundary

representation of models (B-Rep or BREP is short for boundary representation). This
representation method is also used in the CGMA library. The model consists of parts that
form a tree-like hierarchy. Let's look at these parts, moving from simple to more complex.
1. A point for which its coordinates in space are given

xv ÿ xv3 yv ÿ yv3 zv ÿ zv3

5. A shell is a connected and closed set of faces. Just like a loop, it is a purely
topological object. 6. The body is a part of space bounded by a

shell. 7. A set of bodies representing the model as a whole. As noted
earlier, in order to construct a three-dimensional triangular
surface mesh, each face has its own triangulation, and the triangulations of faces are

conformally connected on common edges. To do this, we first construct an edge
discretization. Edges are approximated by broken lines with a space step specified by the
user. After that, a triangulation is constructed for each face using the advanced front
algorithm [54]. The discretization of edges acts as the initial front.

(x, y, z).

= (e31 × e32) n3 =

Particular attention should be paid to curved surfaces. Geometric CAD kernels often
create faces with periodic parametrization, as well as with parametrization having singular
points. For example, Open CASCADE defines the lateral surface of a cylinder with one
face with periodic parametrization, and the lateral surface of a cone with a face with a
singular point at the vertex of the cone. Moreover, the surface of the ball is given by one
face with a periodic parametrization and two singular points at the poles; the face itself is
limited to only one edge connecting the two poles. The advancing front algorithm should
be modified accordingly to allow for such peculiarities. Examples of how the algorithm
works with geometric CAD models will be given in Section 3.4.4.

2. An edge is a part of a smooth parametrized curve bounded by points. For the edge,
a certain parametrization t ÿ (x, y, z) is defined, as well as the points limiting it and

the values of the parameter t at these points.

Machine Translated by Google

ÿ > 0, ÿ ÿ [0, 2 ÿ].

D(x, y)

ÿy
ÿs
ÿz

ÿs

are defined similarly, k is the normalizing set

D(x, y)
,

´

§ 3.4. Construction of surface triangulation

´

To calculate the value of S ÿ123, you need to be able to build a normal to the
surface. Let the surface be parametrized as follows: (p, s) ÿ (x, y, z), and in some
neighborhood of the point v3 the first derivatives of the components x, y, z with respect
to the parameters p and s exist and are continuous. Then the direction of the normal
can be calculated using the following formula:

D(z, x)

Where

D(x, y)

D(z, x)

The analysis of the complexity of the advancing front algorithm from Sec. 3.3.4 is
also applicable in the superficial case. Although the finiteness of the algorithm has not
been proven in the general case, in practice, when working with surfaces of limited
curvature and with a sufficiently fine mesh step, the complexity of the algorithm is on

average proportional to Nf log Nf , where Nf is the total number of triangles.

68

T

,

Algorithm 11, taking into account the previous remark about calculating S ÿ123,
can be used to check the intersection of a triangle and a segment on a surface. In fact,
we will check the intersection of the projection of the triangle and the projection of the
segment on the tangent plane, so this method is applicable only in local neighborhoods
in which the surface differs little from the tangent plane.

,
D(p, s)

n3 = k

D(p, s)

D(p, s)
inhabitant.

D(p , s)
n3 = k

T

space. Let the vertex v1 be parametrized by the point (pv1 , sv1). We will look for the
parametrization of the point v3 in the form

,

,

where, for example, p = p ÿ s and s = p + s. In the case where the point v3 is a singular
point of the parametrization, one can retreat a small distance from the point v3 and
calculate the normal at the neighboring point.

Ch. 3. Construction of unstructured grids

For a fixed ÿ, one can choose ÿ so that |v1v3| = l with some accuracy. The bisection
method will speed up the search for such a point. Depending on the result of the side
comparison |v2v3| with the desired length l, we will increase or decrease ÿ until we
achieve the equality |v2v3| = l with some accuracy. The bisection method will speed up
the search for an acceptable direction ÿ. The use of two nested bisection methods
results in a large amount of computation required to construct an isosceles triangle.

Therefore, in practice, the advancing front method on the surface is slower than
the analogous method on the plane. Next, we will briefly analyze the advanced front
algorithm for constructing surface meshes.

D(p, s)

D(y, z)

,

D(p , s)

(pv3 , sv3)=(pv1 + ÿ cos ÿ, sv1 + ÿ sin ÿ),

D(p, s)

ÿy

ÿp
ÿz

ÿp

D(p, s)

D(p , s)

Another important operation that is easily performed on the plane is the construction
of an isosceles triangle ÿ(v1, v2, v3) on a given edge e12 with sides of length l. To find
the position of the vertex v3, we will look for a point in the parametric space (pv3 ,
sv3) such that |v1v3| = |v2v3| = l in 3D

and intermediate values \u200b\u200b- double precision, then there may not be
enough margin of accuracy to obtain an exact answer. Accurate calculations require

triple or quadruple precision. Some modern computer architectures allow quadruple
precision calculations, and some compilers can use software implementation of
quadruple precision on conventional processors.

D(y, z)
,

D(z, x)

D(y, z)
,

69

When analyzing the advancing front algorithm, attention must be paid to two
points: the existence of a suitable triangle at each step and the finiteness of the number
of steps. Unfortunately, the conclusion about the existence of a suitable triangle,

obtained in Section 3.3.3, does not carry over to the case of a surface polygon.
Moreover, for sufficiently large surface curvature and large lengths from cuts in the
front, a suitable triangle may not exist on a given edge. In practice, provided that the
curvature of the surface is limited and the lengths of the front segments are sufficiently
small, a suitable

triangle is usually found. Moreover, it is among the candidates in some small
neighborhood of the considered edge. If the curvature of the surface is bounded and
the local neighborhood is sufficiently small, then the projection of the surface onto the
tangent plane will be a one-to-one mapping. In this case, an analog

of Algorithm 11 can be used to find intersections of a triangle with a local front.
Using Algorithm 10, we can maintain a lower bound on the minimum pairwise distance
between vertices of a surface mesh. The arguments from Sec. 3.3.3 are applicable in
this case up to the curvature of the surface and the Euler characteristic of the surface,
which for simple surfaces

is equal to the Euler characteristic of the plane [13].

(3.4.1)

=

In formula (3.4.1), all three components can simultaneously turn to 0. In this case,
to determine the normal, one can choose derivatives along other directions in the
parametric space. Let's conditionally write it like this:

Machine Translated by Google

Rice. 3.11. Model specified in CAD: a - BREP model; b - discretization of curvilinear
edges; c - surface quasi-uniform triangular mesh

121

2224

1.

3.4.4. Experimental results

A

1298 0.49

97

70

b

2367

0.1

5460 2.18

§ 3.5. Method for improving a given

surface mesh

First, a discretization of all curvilinear edges of the geometric model is constructed.
The constructed discretization is shown in fig. 3.11b . It consists of 461 nodes and 494
segments. Further, for each of the 36 curvilinear faces, the algorithm of the advancing
front on the surface is launched. Depending on the size of the curved face, the number
of constructed triangles ranges from 3 to 641. The final surface triangulation contains
2594 triangles and 1299 nodes. The resulting surface triangulation is shown in fig. 3.11, c.

71

Nf t, s Nf /t, sÿ1 t/(Nf log Nf), µs

107

It can be seen from the calculation results that the operating time is limited by Nf log

Nf . The proportionality coefficient (the last column in the table) is quite large. The table
also includes a column for meshing speed (triangles per second).

Ch. 3. Construction of unstructured grids

Note that the speed of the algorithm that uses the interface with the CAD kernel
strongly depends on the speed of calculating the parameterizing functions inside the
CAD system. In the example above, the face with the most triangles (641) was part of a
plane, and it took 2.11 seconds to triangulate, while the other curved face took 4.54
seconds to complete a triangular mesh consisting of only 25 triangles. . The total time for
constructing the surface grid was 14 s.

0.05

91

V

2649

0.0125 89730 40.34

In this section, we will carry out two numerical experiments. In the first experiment,
we estimate the complexity of the advanced front algorithm for curved surfaces given
analytically. In the second experiment, we will show the possibility of using the interface
with the CAD geometric kernel when constructing a surface mesh. Let us measure
experimentally the speed of the algorithm of the advancing front on the surface. Let us

take the upper hemisphere of the unit sphere as the surface. Let us specify the
parametrization of the hemisphere analytically using the map (p, s) ÿ (p, s, 1 ÿ p2 ÿ s2),
where p2 + s2. We will construct a quasi uniform grid with step h. Decreasing the grid

step, we will monitor the number of triangles in the grid Nf and the grid construction time
t. The

results of the experiments are presented in table. 3.3.

h

0.025 22152 9.36

Let's demonstrate the joint operation of the surface triangular mesh generator and
the geometric CAD kernel - OpenCASCADE. As an example, consider the 29_misc1
model from the Open CASCADE website [19]. The geometric model consists of 63
vertices, 96 curvilinear edges and 36 curvilinear faces (see Fig. 3.11, a).

§ 3.5. Method for improving a given surface mesh

T a b l e 3.3 The
speed of the advanced front algorithm on the surface

2505
Surface meshes obtained by export from many CAD systems have the property that

the number of triangles in flat areas is minimal, and the triangles themselves can have a
very elongated shape, which affects the regularity of triangulation of the initial front, the
quality of the resulting tetrahedral mesh, and even the possibility of its build. To construct
high quality tetrahedral meshes, the initial front must be regular. The proposed technology
for improving the surface mesh is based on identifying almost planar connected
subdomains in the original surface mesh and using the advanced front algorithm to cover
them with

a regular mesh. The main idea of the proposed method is the selection of flat (or
almost flat) pieces of the surface, which are called polygons below, and their repartition

into new triangles of a regular shape. In this case, an insignificant deviation from the initial
discrete surface is possible [7]. The input data

for this method are a conformal triangulation of the surface and a possible labeling of
triangles, which ensures the division of the surface into polygons. Each polygon will be
processed separately, and the geometric boundaries of the polygons will be preserved in
their original form. Several options are available to the user to control the result of the
repartition.

Machine Translated by Google

The algorithm for constructing a regular triangulation of a given discrete surface is
an iterative procedure (see Algorithm 14). First, the surface is divided into polygons, for
which the problem is reduced to a two dimensional one, and then the triangulation of
the entire surface is assembled from the resulting triangulations of the polygons. The
main operations with the polygon are shown in fig. 3.12.

A

Algorithm 14. Rebuilding the surface mesh 1: while the original

triangulation is not exhausted do Select a connected
subdomain (polygon), whose triangles 2: swarm lie in the same plane within

the specified accuracy Rotate the polygon plane to the Oxy plane and set the z-
coordinates to zero, map the polygon to plane Oxy Split the polygon boundaries
and apply the advanced front method to construct a 2D regular triangulation
of the area
with a given trace on the boundary Project (along the Oz axis) each node of
the new triangulation onto the rotated polygon. Since the latter slightly deviates
from the Oxy plane, the quality of the projected
triangles hardly deteriorates. Rotate the Oxy plane to the plane of the polygon
to complete the inverse change of coordinates

V

72

3:

Let us consider the procedure for selecting a polygonal subdomain in more detail.
A polygonal subdomain is a connected set of triangles that belong to the same plane
with a given accuracy. The accuracy is determined by the maximum allowable distance
h0 from the triangle to the plane and the maximum deviation ÿ between the normal to the
triangle and the normal to the given plane.

Ch. 3. Construction of unstructured grids

4:

The formation of a polygon begins with the selection of an initial triangle. For
definiteness, we choose the not yet considered

§ 3.5. Method for improving a given surface mesh

5:

73

6: Exclude selected polygon from initial triangulation 7: end while

Among them is the rate of coarsening of triangles when constructing a new surface mesh
using the advanced front algorithm. There is also a parameter responsible for the
permissible degree of deviation in terms of

Rice. 3.13. Intersection of two surface triangulations

the triangle with the largest area. Its plane is assumed to be the plane of the future
polygon, its marker specifies the polygon marker, and its boundary is assigned to the
current polygon boundary. We will call this plane the reference plane. Next, an iterative
algorithm for constructing a polygon works. One of the boundary edges of the polygon is
selected and all triangles

of the original mesh that border the polygon through this edge are checked. A triangle
is added to a polygon if its marker coincides with the polygon marker, the distance from
the reference plane to any of the triangle's vertices is less than h0, and the sine of the
angle between the reference plane normal and the normal to the candidate triangle is
less than ÿ. If the triangle satisfies all these conditions, then it is added to the polygon
and a new boundary is built; otherwise, the boundary edge is marked as checked and
the next one is considered. Only one triangle can be added through one edge. If there
are several suitable candidate triangles, then none of them is added, and the edge is
marked as checked. This situation is possible if the edge belongs simultaneously to
several surface triangulations (see Fig. 3.13). After all boundary edges are marked, the
polygon is considered to be built.

The discretization of the polygon boundary given by the initial triangulation may turn
out to be highly nonuniform, since the initial triangulation may be irregular (in the sense
of the shape of triangles). The inhomogeneity of the discretization of the boundary will
inevitably lead to the appearance of triangles with very sharp corners near the boundary.
Therefore, with a new division of the boundary, it is necessary to get rid of sharp drops
in the division step. One solution may be to use a constant uniform step to discretize the
polygon boundary. This approach

is convenient for constructing a quasi-uniform surface grid based on a given surface
triangulation. However, in this case, the sampling step must be no less than the minimum
length

ligons from the plane.

b Fig. 3.12. Selected polygon: a — original mesh in the polygon; b - new division of the
polygon boundary; c - new mesh in the polygon

Machine Translated by Google

Improvement of the surface mesh is the most important stage in the technological
chain of constructing high quality tetrahedral meshes. The quality of the volumetric mesh
strongly depends on the quality of the surface mesh. Another example of the application
of the method proposed here is the reduction in the number of triangles in too fine surface
meshes. Such grids can be obtained, for example, as a result of three-dimensional
scanning. They can have hundreds of thousands of triangles and are very inconvenient
for constructing tetrahedral meshes. The surface enhancement method can be used to
reduce the total number of triangles while maintaining the basic geometric features of the
model.

i, i = 1, ... , [Q] ÿ 1,

, Q =v1

Ch. 3. Construction of unstructured grids

Assuming that the local size of triangles in the original mesh is consistent with the
curvature of the surface, we will use the minimum sizes of existing triangles to construct
a regular three angulation. For each node v of the original triangulation, we define the step
parameter hv as the minimum height of all triangles converging at the node. The step
parameter specifies the size of the regular grid at the vertices of the selected polygon. For
each boundary edge of a polygon, we define a continuous function of the step parameter
as a linear interpolation of the values hv1 and hv2 given above at the vertices of the edge.
In this case, the location of the nodes of the new discretization along the edge e(v1, v2)

is given by the formula

Since the location of nodes on the edge of a polygon depends only on the values hv1

and hv2 at the vertices of the edge, and the mesh inside each polygon has a given trace
on the boundary, the resulting surface mesh is conformal.

ri = v1 +

[Q][Q]

75

When constructing a new grid, a uniform grid spacing can be used if the polygon
boundary has been subdivided with a constant grid spacing. In the case of an uneven
step on the boundary, a variant of the advanced front algorithm with automatic step
selection and coarsening when moving inside the region is convenient. In practice, it is
better to limit the grid spacing within a polygon to some maximum value. If it is possible to
calculate the local curvature of a surface given by its triangulation, the local grid step can
be matched to the local curvature of the surface.

Q = hv1

v2 ÿ v1
v1

h ,

boundary edge of each polygon. An example of improving the surface mesh is shown in
fig. 3.14.

In this section, we will study an extension of the advancing front algorithm to three
dimensions. The issues of its reliability from the point of view of inaccurate calculations
and from the point of view of the possibility of advancing the front, the finiteness of the
algorithm and the complexity of its work will be discussed. Let us introduce concepts and
notation

similar to those used in § 3.3. Recall that f(v1, v2, v3), or f123, denotes a triangle with

vertices v1, v2, and v3. Similarly, ÿ(v1, v2, v3, v4), or ÿ1234, denotes a tetrahedron with
vertices v1, v2, v3, and v4. By an oriented triangle in space we mean a triangle with some
fixed, up to an even permutation, order of

traversal of its vertices. The positive half-space with respect to the oriented triangle
f123 is the set of points v for which

h ÿ h v2 v1
,

74

Another approach can be used, in which the discretization step of the polygon
boundary is consistent with the local curvature of the surface. The calculation of the local
curvature of a surface given by its triangulation is a separate difficult task. In this
subsection, a method will be proposed that does not explicitly calculate the local curvature
of a surface.

|v1v2|

[Q] hv1 + hv2
v2

Rice. 3.14. Surface mesh exported from CAD (a) and improved surface mesh (b)

h

Q2|v1v2| = hv2

[Q] is the integer part of
Q. Note that after rotating the polygon and zeroing the z-coordinate of its vertices

(step 3 of algorithm 14), it is possible to cross the boundary of the flat polygon that needs
to be triangulated. This situation does not allow using the advanced front algorithm. In this
case, the algorithm returns and the polygon is built

again, and when adding another triangle to the polygon, the possibility of self-crossing of
the boundary is additionally checked.

i +
d2

d= ,

§ 3.6. Building a tetrahedral mesh

§ 3.6. Construction of a tetrahedral mesh by the advanced

front method

Where

h

Machine Translated by Google

Choose an unlabeled face f123 ÿ Fk with minimal plane

9:

do

14:

§ 3.6. Building a tetrahedral mesh

spare

Algorithm 15. Advanced Front Method in 3D Space 1: Set T 0 = ÿ, F0 = F(P) 2: for k = 0,
1, ... 3: If

there are no unlabeled faces, then go to
22

7:

A tetrahedral mesh ÿh for a polyhedral domain P is a partition of this domain into
disjoint tetrahedra. Recall that a mesh is conformal if any two of its elements either do not
have common points, or have one common vertex, or have one common integer edge, or
one common integral face. We say that a conformal mesh is consistent with the boundary
P if each face of P is a face of some tetrahedron in the mesh. In particular, the inner faces
of a polyhedron will have exactly two neighboring tetrahedra, and the outer faces will have
exactly one. The set of mesh tetrahedra will be denoted by T

= T k ÿ ÿ

{ ÿ1234}
Update edge: Pk+1 = Pk \ ÿ1234 and Fk+1 =

76

.

6:

Add tetrahedron ÿ1234 to mesh, T k+1

R

12:

16:

Algorithm 10 of the advancing front is generalized to the case of a three-dimensional
space. In this section, we note the main features of the 3D advanced front algorithm.

oriented volume Vÿ(v1, v2, v3, v) > 0. Similarly, a negative half space is the set of points
for which Vÿ(v1, v2, v3, v) < 0. A triangulation in space is a finite set of triangles conformally

connected through
common edges. Moreover, two neighboring triangles can lie in the same plane. If

each edge of a triangulation belongs to exactly two triangles, then such a triangulation will
be called closed. A triangulation whose triangles (as open sets) do not intersect each other
will be called a triangulation without self-intersections. By a polyhedron in space we mean
a bounded part of space whose boundary consists of one or more nonintersecting
triangulations without self-intersections. A simple polyhedron is a polyhedron bounded by
one closed triangulation. The vertices of the polyhedron will be

called the nodes of its triangulation, and the faces of the polyhedron will be called the
triangles of the triangulation. Note that the faces of the polyhedral domains considered in
§ 2.2 can be any flat polygons. As in § 3.3, the faces of a polyhedron are divided into
external and internal. In this case, on the outer faces, one can introduce an orientation so
that the polyhedron lies in a positive half-space with respect to each oriented triangle. Such
an orientation will be called positive. A front in space is a set of oriented triangles without
self-intersections. Each polyhedron P can be assigned a front F(P). To do this, we introduce
a positive orientation on the outer faces P, and assign to each inner

face f123 a pair of oppositely oriented triangles f123 and f321. The totality of all these
oriented triangles forms the front F(P). We call the front F closed if there exists a polytope
P such that F = F(P).

R

i

then

Ch. 3. Construction of unstructured grids

4:

10:

R

15:

do

8:

for all v4 ÿ ÿk if

ÿ1234 does not intersect Fk

= F(Pk+1) Go
to 21 end if end

for 18:
19: end

for Mark f123 and

go to 4 20: 21: end for 22: Put T = T
k, Pout = Pk

and Fout = Fk

A distinctive feature of three-dimensional space is the existence of such fronts for

which there are no suitable tetrahedra. For this reason, the algorithm adds the ability to

mark faces for which no suitable tetrahedra were found and skip them during further

enumeration. At the end of the algorithm, we obtain a set of tetrahedra T of the mesh

ÿmesh for the polyhedral subdomain Pmesh ÿ P and a

front for the unsplit polyhedral subdomain Pout = P\Pmesh. Note that if the advance
front algorithm fails, then the mesh will be built only in part of the area. In this case, Pout =

ÿ, and the second algorithm must be applied to complete the meshing. The general
sequence of actions is presented in Algorithm 15. Let us analyze in detail the main actions

that are performed when the front advances.

5:

eleven:

R

3.6.1. Advance Front Algorithm

77

Determine desired edge length s of the tetrahedron Construct

a vertex v0 given s and Vÿ1230 > 0 Choose some R0 > s,
h > 0 and r > 0 for R ÿ { R0,ÿ} do Construct a local
front Fk R: Fk ÿ Fk ÿ ÿ R

(v0) Determine the set of candidate vertices ÿk = {pk } ÿ ÿ ÿ R(v0)
If {pk } ÿ ÿr(v0) = ÿ and Fk ÿ ÿh(v0) = ÿ, then add v0 to ÿk R

13:

17:

h

i

Machine Translated by Google

Let us consider in more detail the rest of the differences between the advancing front

algorithm in three dimensions and its analogue in two dimensions from § 3.3.

Rice. 3.15. Tetrahedron with base f123 and vertex v0

=

2

For the candidate tetrahedron with vertex v4, we check its intersection with the local

front. If all candidates turned out to be unsuitable, then a complete enumeration of the entire

front is carried out. If no suitable tetrahedron was found in this case either, then the face

f123 is labeled

§ 3.6. Building a tetrahedral mesh

a2 + b

ka, then from vm along the normal to f123 at a distance l the 3rd vertex v0 is fixed (see Fig.

3.15). The l parameter is chosen based on a user-supplied function of the desired item size,

,

1

2

=

78

a2 + 4b

9

2

= |e1m|

Where

1

+ 2c
2

=

min{a2 , b2 , c2}.

At step 4, the unlabeled face f123 with the smallest area is selected from the front and

the vertex v0 is constructed in accordance with the chosen parameter l depending on s (see

step 5). When implementing the algorithm on a computer, it is proposed to use the following

heuristic method for choosing l and the position of the vertex v0. Let a, b, c be the lengths of

the sides of the triangle f123. First, the center of mass vm of this triangle is constructed.

2

2

2

Ch. 3. Construction of unstructured grids

Let us construct an algorithm for the intersection of a tetrahedron with a triangle similar

to Algorithm 11. As in Section 3.3.2, we will perform checks based on the sign of the

determinant of the 3 × 3 matrix.

Let us estimate the lengths of the edges e10, e20 and e30. For ÿ 1 the height of the

tetrahedron is ÿ 2a2 + 2b2 + 2c2. Consider the edge e10: |e10| + |em0| 2. l0 The

length e1m is expressed from the formula for the median of a triangle: |e1m| = ÿ 2b2 + 2c2 ÿ

a2. Thus, we get

22b
|e10|

or it is calculated automatically by the formula l = ÿ ÿ 1 - some

parameter responsible for the speed of automatic mesh coarsening.

In general, two convex objects do not intersect if and only if there is a plane separating

them. Under the conditions of Algorithm 15, a tetrahedron and a triangle can also have one

common vertex or one common edge, or the triangle can be one of the faces of the

tetrahedron. Let's single out from the problem of checking the intersection a separate subtask

of checking the intersection of a

triangle with a segment. Vp. 3.4.3 we have already considered the analog of this problem

for a surface. Now consider the general case: we will look for a plane that separates the

triangle and the segment, taking into account the previous remark about common vertices.

The enumeration of all possible planes is presented in Algorithm 16. Checking the

intersection of a triangle with a segment is used in Algorithm 17 for checking the intersection

of a tetrahedron with a triangle. We first check to see if there are intersections between the

tetrahedron's boundary and the triangle's boundary, and then we check for special

cases, such as a triangle lying entirely inside the tetrahedron. This order of checks is the

most efficient in practice, since in most cases at least one of the faces of the tetrahedron

intersects the edge of the triangle, less often the triangle intersects at least one of the edges

of the tetrahedron, and even more rarely the triangle lies inside the tetrahedron. The

proposed combination of Algorithms 16 and 17 uses the function d(v1, v2, v3, v4) to check

the intersection, which calculates the sign of the expression Vÿ1234 , which is similar to the

function d(v1, v2, v3) defined in Algorithm 12. Let the function d(v1 , v2, v3, v4) it is known

that for d(v1, v2, v3, v4) = 0 we have d(v1, v2,

v3, v4) = sgn(Vÿ1234). Then the proposed algorithms exclude the occurrence of errors

of the second type (see § 3.3), i.e., the actually intersecting tetrahedron and triangle will not

be erroneously perceived as non-intersecting. This guarantees closedness and the absence
of self-intersections as the front advances.

3

+ 2c

If the sides of the triangle ÿ123 were at least d, then |e10| will be at least d. Similar estimates
are true for e20 and e30.

as already considered, and the enumeration starts from the beginning for the next face.

Unlike

Algorithm 10, the section of Algorithm 15 with step numbers 4–20 can be executed

several times to construct one tetrahedron. Each time this section is executed, the

corresponding face is either removed from the front or marked. At the end of the algorithm,

all such faces become faces of the finite mesh ÿh. Therefore, the number of executions of

this section of the algorithm is limited from above not by the number of tetrahedra in the final

mesh, but by the number of faces.

2+c

2

ÿ a2 2a2 + 2b +

2 2 + 4c

79

3

3

9 9

Machine Translated by Google

6: end if 7:

if one common vertex then 8: If the two

remaining vertices f567 lie inside ÿ1234, i.e. intersection 9: end if 10: if two common vertices

then 11: If the
remaining

vertex f567 lies inside ÿ1234, i.e.

9:

repent

§ 3.6. Building a tetrahedral mesh

4:

1: Find the common vertices of the triangle ÿ123 and the segment e45 2: if there
are no common vertices then Determine

the position of the vertices v4 and v5 relative to the plane ÿ123 if v4 and v5 lie in
the same

half space then There are no intersections else if v4 and v5 lie in

different half spaces

then
7:

finite.

80

Algorithm 16. Checking the intersection of a triangle with a segment in three-dimensional space

Calculate k1 = d(v4, v5, v2, v3), k2 = d(v4, v5, v3, v1), k3 = d(v4, v5, v1, v2) If

among k1, k2, k3 there
are also 1 and ÿ1, then there is no intersection else if v4 and v5 lie in the plane

ÿ123 then Check that one of the lines given by the segments

v4v5, v1v2, v2v3 or v3v1 separates the triangle and the segment into different

half planes If such a line is found, then there is no intersection end if 12: 13:

end if 14: if one common

vertex then If the second vertex of the segment does not lie in
the

plane of the

triangle, then there is no intersection

Otherwise, check that one of the lines defined by the segments v1v2, v2v3, v3v1

separates the triangle and the

segment different half-planes If such a line is found, then there is no intersection 17:

18: end if 19: if two common vertices then

16:

intersection 12:
end if 13:

Otherwise, we assume that there is no intersection

Rice. 3.16. Examples of front configurations for which no further advance is possible: Schonhardt
prisms

nie

eleven:

1: For each face of the tetrahedron ÿ1234 and triangle edge f567

Ch. 3. Construction of unstructured grids

3:

10:

Let us analyze Algorithm 15 and show that the number of operations is finite. The proposed

algorithm contains three explicit nested loops and one implicit one due to restarting the

enumeration at step 20. The enumeration loop at step 12 is always finite due to the finiteness of

the set ÿkR. The loop at step 8 does at most two iterations. In the three-dimensional case, such
front configurations are possible for which there is no suitable

tetrahedron with a fourth vertex from the set of front candidate vertices. Examples of such

a front configuration, for which further advancement is impossible, are shown in Figs. 3.16: any

tetrahedron with vertices from the set {v1, v2, v3, v4, v5, v6} intersects one of the edges {e26,

e34, e15}. Precisely for this reason, at step 20 of algorithm 15, the faces that do not have

check their intersection 2: For f567

and each edge ÿ1234 check their intersection 3: Find the common vertices of the

tetrahedron ÿ1234 and the triangle f567 4: if there are no common vertices then 5: If

the three points v5, v6, v7 lie inside

ÿ1234, that is, the intersection

8:

No intersection 20:
21: end if

22: In other cases, we assume that the triangle and the segment intersect

81

6:

15:

Algorithm 17. Checking the intersection of a tetrahedron with a triangle

5:

suitable tetrahedra are marked and skipped during further meshing. Each face is labeled at most

once, and the number of faces in Fk is finite, so the implicit loop at step 20

Let us show that, with a certain choice of parameters in Algorithm 15, it is possible to limit

the maximum possible number of constructed tetrahedra. The arguments in § 3.3.3 carry over

completely to the three-dimensional case. We can limit the distance between grid nodes from

below: ÿk ÿ > 0 for any k. A similar estimate (3.3.3) is also true

Machine Translated by Google

Nk

At this stage, we have a tetrahedral mesh ÿh with a set of tetrahedra T and a set of
nodes V, and a given front F with vertices V. An example of a mesh and a front is shown
in Fig. 3a. 3.17. Note that they represent different areas.

§ 3.7. Reliable algorithm for constructing a tetrahedral mesh

v + K(P). + + ÿÿ3 ÿÿ2

The analysis of the complexity of the advancing front algorithm from Section 3.3.4 is
also applicable in the three-dimensional case. The upper estimate of the number of
operations in the worst case will be proportional to N3 where Nf is the number of faces
in the final mesh, which is limited according to (2.2.9) and the estimate of the number of
nodes (3.6.1). The average estimate of the number of operations is proportional to Nf
log Nf . This estimate of the average speed of work will be experimentally confirmed in
Section 3.7.6.

In this section, we present a method for constructing a tetrahedral mesh consistent
with a given front based on the Delaunay tetrahedralization. The general idea of this
method was proposed by George et al. in [55]. We will consider a simplified version of
this method applicable to splitting the gaps left by the advancing front algorithm [12].
This method is suitable for arbitrary closed fronts, but it does not allow one to control
either the size or the quality of the constructed tetrahedra. A third method is required to
improve the mesh quality. The grid construction is divided into three stages. At the first
stage, a grid is constructed for the convex hull of the set of points of a given front. At the
second stage,

the mesh is refined and the area geometry is restored. At the third stage, the
consistency of the grid with the given front is restored.

82

3P(P)

3.7.2. Region Geometry Restoration

We refine the mesh ÿh by adding new nodes on the edges and faces so that the
edges and faces of the front F are represented in the new mesh either as a whole or as
their partitions. Details are given in Algorithm 18 using recursive procedures.

f ,

Removing tetrahedra from T

the maximum number of nodes that can be placed in a domain P that has volume V
(P), surface area S(P), sum of edge lengths p(P), and consists of K(P) connectivity
components: 6V (P)

From (2.2.9) it follows that the number of tetrahedra and, consequently,

Ch. 3. Construction of unstructured grids

(3.6.1)

´

3.7.1. Delaunay tetrahedrization Recall

that the Delaunay tetrahedra for a finite set of points V = {v1, ..., vn} is such a
conformal partition

the convex hull of a set of points into tetrahedra such that for any tetrahedron inside the
sphere circumscribed around it there are no other points from V. There are many

methods for constructing the Delaunay tetrahedronization; we will not dwell on the
details, referring the reader to [18]. We only note that the simplest iterative method in
complexity is proportional to n2 in the worst case, and proportional to n3/2 on average.

We have shown that Algorithm 15 performs a finite number of operations. However,
it does not guarantee the construction of a conformal tetrahedral mesh for the entire
domain P. In practice, the advanced front algorithm splits more than 90% of the volume
of the domain, and Pout, the unbroken part of the domain, consists of a certain number
of isolated gaps—polyhedra with a small number of faces. The second method, which
will be discussed in the next section, is used to tetrahedrize the Pout region.

The first pass checks the intersections of the edges of the front F with the faces T .
For each edge from F, the tetrahedra from T intersecting it are partitioned in such a way
that the edge is represented in the grid, either as a whole or as a partition. The second
pass is similar; intersections of edges of tetrahedra from T with faces F are checked.
For each face from F, the tetrahedra from T intersecting it are partitioned in such a way
that the face is represented in the mesh either as a whole or as a partition. Each time
we split tetrahedra from the set T, we create an intersection point lying on F. In this case,
only elements from T

are split. At the end, F will remain unchanged, and the new set of tetrahedra T will
completely cover the faces of F with their faces lying outside the boundaries of the
polyhedron P, we will restore the geometry of the area. On fig. 3.18 shows a refined
mesh with a set of tetrahedra T before and after the removal of the tetrahedra.

3S(P)

the number of iterations of the outer loop in algorithm 15 is limited.

§ 3.7. Reliable algorithm for constructing

a tetrahedral mesh

83

2ÿ

b Fig. 3.17. Two meshes on one set of vertices: a — tetrahedral mesh for the convex
hull of points V, b — front F for a nonconvex gap

,

A

.

Machine Translated by Google

4:

15:

b Fig. 3.18. Restoring the geometry of the area: a - refined mesh, b - mesh with the correct geometry
of the area

Ch. 3. Construction of unstructured grids

At the final stage, extra nodes are removed from the grid boundary. This is achieved by shifting

them into the region and filling the resulting “dents” with conformal tetrahedral networks.

3.7.3. Restoring a trace of a grid on a boundary

13:

The first case, when the node lies on the edge F, is treated similarly; the only difference is that

instead of a pyramid, a “dent” will be the union of two cones with a vertex v and a polygonal base

85

3:

12:

b Fig. 3.19. Restoration of the trace of the grid on the boundary: a - grid with formed "dents", b - grid
with the correct trace on the boundary

17:

Algorithm 18. Restoring the region geometry 1: procedure

PROCESS_EDGE(v1, v2) 2: Find a tetrahedron with

vertex v1 intersecting the edge e(v1, v2) if tetrahedron is found then

´

10:

84

5:

16:

The resulting mesh ÿh will be a conformal mesh for the polyhedral domain P, but it will not be

compatible with its boundary F. The boundary of ÿh will contain new intersection points, which we

have just

Construct an intersection point v on a face of a tetrahedron Split the

corresponding tetrahedra into T PROCESS_EDGE(v, v2)
6: 7: end if 8: end procedure 9:

procedure

PROCESS_EDGE(v1,

v2) for all faces f ÿ F do if face f intersects edge e(v1,

v2) then Construct intersection

point v Split corresponding tetrahedra into T PROCESS _

FACES(v1, v) PROCESS _ FACES(v, v2)

Exit procedure end if end for 19: end procedure 20: for
all edges e (v1, v2) from F do 21:
PROCESS _ EDGE(v1, v2) 22: end

for 23: for all edges e(v1,
v2) from

T do 24:

PROCESS _ FACES(v1,

v2) 25: end for 26: Remove tetrahedra outside
of F

14:

A

built (cf. Fig. 3.17, b and Fig. 3.18, b). The algorithm for removing these points from the boundary

will be presented in the next paragraph.

eleven:

§ 3.7. Reliable algorithm for constructing a tetrahedral mesh

All extra points are divided into points lying on the edges of F, and into points lying on the faces

of F. The elimination of points in both cases occurs in the same way. Consider, for definiteness, the

second case. Let v be a node on a face in F that must be removed from the surface. Assume for

simplicity that the

front F is simple. With minor additions, the proposed algorithm is also applicable in the general

case. Consider the set ÿ(v) of tetrahedra from T with common vertex v. The boundary ÿv = ÿÿ(v) of

this set consists of triangles of two types: those lying on the boundary of P and those lying inside P.

When the vertex v is shifted inside P,

“dents” are formed on the boundary of the domain. Each of the "dents" is a pyramid with a

vertex v and a polygonal base. It can be conformally divided into tetrahedra; for this, polygonal bases

are divided by diagonals into triangles. It can be shown that inside ÿ(v) there is always a non-empty

open set of points where the node v can be shifted while maintaining the nondegeneracy of the

tetrahedra of the mesh T. 3.19 shows the mesh ÿh with four visible "dents" and with closed "dents".

18:

niami.

A

.

Machine Translated by Google

3: From ÿv = ÿÿ(v) select the faces lying on F; let ÿ = ÿv ÿ F Repartition ÿ Add to the set
T the

tetrahedra formed

by the triangle
nicknames from ÿ

Let us briefly analyze the finiteness of the number of operations in the proposed

§ 3.7. Reliable algorithm for constructing a tetrahedral mesh

v

Construct the set of neighboring tetrahedra ÿ(v)

5:

Note that in order to achieve a good mesh quality using only the first two algorithms, as a

rule, a good surface mesh, i.e., the initial front, is required. A regular initial front, a suitably

chosen function responsible for the desired size of the tetrahedra, or a correctly chosen

automatic coarsening parameter are the key factors for obtaining a high quality mesh.

Nevertheless, within the framework of a fully automatic and reliable technology for constructing

unstructured tetrahedral meshes, an additional improvement in the quality of the mesh using

a third algorithm is required. In this section, we will not discuss any particular algorithm for

improving the quality of tetrahedral meshes. We only mention the main ideas that can be used.

The simplest methods use the shift of grid nodes without changing its topological structure.

More sophisticated algorithms use local

modifications of the mesh topology, such as splitting an edge with a new node and

shrinking the edge into a single node, in addition to shifting the nodes. These methods, as a

rule, make it possible to significantly improve the mesh quality. They

will be described in Chap. 5. Their use is recommended as the final step in the chain of

constructing a tetrahedral mesh. Vp. 3.7.6 experiments will be given to measure the quality of

the mesh at different stages of its construction.

In this paragraph, several examples of the operation of the above algorithms will be

presented. We will be primarily interested in the quality of the mesh Q(ÿh) and the distribution

of the quality of tetrahedra over the entire mesh. The mesh quality is calculated by formulas
(2.1.7) and (2.1.8).

86

In practice, the proposed algorithm based on Delaunay tetrahedrization is used only for

localized gaps with a small number of vertices and faces. The number of tetrahedra constructed

with its help is small, and its operation time makes an insignificant contribution to the total

operation time of the entire tetrahedral mesh construction chain. Vp. 3.7.6 experiments will be

carried out to estimate the distribution of running time between the advancing edge algorithm

and the proposed algorithm.

v

grid properties.

v

At the first stage, we construct the Delaunay tetrahedrization ÿh. The number of nodes in

it coincides with the number of vertices in the front F. Given an estimate for the number of

nodes in the mesh ÿh, using (2.2.8)–(2.2.9), we obtain estimates for the number of edges,

faces, and tetrahedra.

3.7.6. Experimental results

The complete algorithm of actions at this stage is presented in Algorithm 19. First, nodes

on the edges of F are considered, and then on the faces of F.

6:

into triangles, excluding the node v

In line 24, for each edge of tetrahedra from T new nodes in ÿh, no more than the number

of faces in F are added. Note that new edges, when added to ÿh, will lie on F, and therefore

will not themselves generate new vertices.

Ch. 3. Construction of unstructured grids

=

and node v

method without going into computational complexity estimates.

2:

A combination of three algorithms is used to construct a tetrahedral mesh. The first

advanced front algorithm is used to build the majority of the mesh with the ability to control the

mesh spacing and the quality of the tetrahedra. The second algorithm, based on the Delaunay

tetrahedralization, is needed to partition the rest of the region. The third and final algorithm is

used to improve the quality

3.7.4. Finiteness of the algorithm

Algorithm 19. Restoring the trace of the mesh on the boundary 1: for all

nodes v on the edges F and faces F do

3.7.5. Improving the quality of the resulting mesh

The proposed method guarantees the construction of a grid that is consistent with a given

closed front, provided that all calculations are carried out accurately. The quality of the

constructed tetrahedra is in no way limited from below. In practice, due to the accumulation of

computational errors, the method can generate degenerate or inverted tetrahedra. For this

reason, as a final step, it is necessary to use algorithms that can significantly improve the

quality of the mesh and get rid of degenerate elements (see, for example, Table 3.5).

The remaining operations: removing outer tetrahedra in line 24 of Algorithm 18 and shifting

extra points from the boundary of the region in Algorithm 19, do not add new vertices to ÿh

and, therefore, will work in finite time.

87

4:

Move v inside ÿ(v), restoring the non-degeneracy of these tetrahedra 7: end for

Algorithm 18 uses three basic operations at the second stage to reconstruct the geometry.

In line 21, for each edge from F of new nodes in ÿh, at most the number of tetrahedra in T at

the time before line 21 is executed is added. The number of edges in F is finite, and therefore

the number of new nodes is limited.

Machine Translated by Google

A

t, s Nt/t, sÿ1 t/(Nt log Nt), µs

16.8

0.025 204734 43.35 4723

columns. The worst mesh quality is Q(ÿh) = 3.698 10ÿ7, which is due to the poor quality
of the triangles in the initial front. The resulting front is automatically divided into

disconnected gaps, and a stable method is run for each of them. Gaps are very
badly shaped, and so the stable method produces very bad elements. The quality
distribution of tetrahedra in the final mesh is given in the second row of Table 1. 3.5.
The worst mesh quality is now Q(ÿh) = 1.232 10ÿ14, i.e. the worst tetrahedron is

17.3

h

88

It can be seen from the calculation results that the operating time is proportional
to the value of Nt log Nt, with a relatively small coefficient. The table also includes a
column for meshing speed (tetrahedra per second).

We now consider an example of successive application of the advancing front
algorithm and the stable algorithm based on the Delaunay tetrahedralization. The first
algorithm is used to build most of the grid, the second one is used to split the remaining
gaps.

0.1

Ch. 3. Construction of unstructured grids

0.0125 1613980 406.75 3968

Consider the initial surface triangulation of the 3D scanned dragon model shown in
Fig. 3.20 a. It consists of 54,296 nodes and 108,582 triangles. All grid nodes lie in plane
slices parallel to the xy plane. In each cut, the vertices are connected by segments,
forming the contour of the section of the model by a plane. The contours of adjacent
slices are connected by triangles and form a conformal surface triangular grid. Note
that this initial mesh contains a sufficiently large number of triangles

3544 0.48 7383

§ 3.7. Reliable algorithm for constructing a tetrahedral mesh

16.6

17.6

Nt

0.05

89

b Fig. 3.20. Operation of the advanced front algorithm on the dragon model: a - initial
front, b - final front

with bad quality.

27988 4.81

To better display the results, we will use a logarithmic scale. The experiments were
carried out on different

computers under different conditions. However, test runs within the same
experiment were carried out under the same conditions.

First, we will experimentally measure the speed of the advanced edge algorithm.
Let's take a unit cube as an area. On the surface of the cube, using the advanced front
algorithm described in Section 3.4.3, we construct a quasi-uniform grid with step h. The
resulting surface triangulation is used as the initial front for the 3D advanced front
algorithm in constructing a quasi uniform mesh with step h. Decreasing the grid step h,
we will monitor the number of tetrahedra in the grid Nt and the construction time ee t.
The results of the experiments are presented in

table. 3.4.

T a b l e 3.4
The speed of the advancing edge algorithm in three dimensions

5819

At the first stage, we will apply the advancing front method with an automatic
increase in the grid step when moving inside the area. The parameter ÿ, which is
responsible for the rate of increase in the grid step, is chosen to be 1.3. The advanced
front algorithm built a grid in a part of the area that occupies 99.67% of the volume of
the entire area. In total, 250,461 tetrahedra were built, and 1718 triangles remained in
the final front, which are shown in Fig. 3.20 b. The distribution of the quality of the
tetrahedra of the resulting mesh is presented in the first row of Table 1. 3.5. The
columns of the table show the number of tetrahedra whose quality exceeds the
corresponding value and which were not included in the previous

Machine Translated by Google

drag3 99.67 250 461 101.70 0.33 4303 0.76

Nt

3

§ 3.7. Reliable algorithm for constructing a tetrahedral mesh

this is a sliver. The resulting tetrahedral mesh contains 71,241 nodes, 108,582
boundary faces that completely coincide with the given initial front, and 254,764
tetrahedra.

Q(ÿh)

6

rbox1 97.25

Rice. 3.21. Examples of areas used: a - rbox1 model obtained by export from CAD;
b - section of the initial front of the Lymph model; c - section of the constructed

mesh for the Lymph model

90

Q(ÿh) = 4.430 10 ÿ13. The second example is the drag3 model, the dragon model
discussed in this section. The third example is the Lymph model, a schematic
model of a lymph node created in the Open CASCADE CAD system. The lymph
node model consists of several components. The outer part consists of a marginal
sinus, a thick spherical shell, six cylindrical trabecular sinuses, and two Y-shaped
conduits. The diameter of the conduits is 1000 times smaller than the diameter of
the lymph node. The model includes 4 spherical follicles. The rest of the inside of
the spherical membrane of the lymph node represents the cortical and paracortical
regions. The geometric model of Lymph consists of 50 nodes, 62 curved edges
and 30 curved faces. The constructed triangular surface mesh consisted of 24,720
vertices and 95,732 triangles, while the volumetric tetrahedral mesh consisted of
103,891 vertices and 619,691 tetrahedra. The worst quality of the tetrahedra was
Q(ÿh) = 3.45 · 10 ÿ12. Vtab. 3.6 for each model shows the distribution of the volume
of the area for which the grids are constructed using the advancing front method
and the stable method. For each method, the number of

constructed tetrahedra and the time required for its operation are also given.

t, s % Nt t, s

1

T a b l e 3.6
Distribution of region volume, number of tetrahedra, and
running time between the advancing front algorithm and
the stable algorithm based on Delaunay tetrahedration

We note that the stable method is used only in a small part of the entire region
and therefore takes a small part of the time compared to the advancing front
algorithm.

V

Model

T a b l e 3.5
Distribution of the quality of tetrahedra at different stages of meshing for the
dragon model: ÿ is the advancing front algorithm; D is a stable algorithm based on
Delaunay tetrahedrization; PS - improving the grid by rebuilding it while maintaining

a given trace on the boundary

0

b

Ch. 3. Construction of unstructured grids

3.7 10ÿ7 250 461 248 359 1923 166 11 1.2

10ÿ14 254 764 249 674 3428 1020 340 138 71 93 F+D F+D+PS 1.9

10ÿ7 267 475 258 449 8269 718 30

To improve the quality of the resulting mesh, we used the mesh rebuilding
(GR) methods described in Chap. 5, while the boundary faces of the grid were
fixed. The quality distribution of tetrahedra in the new mesh is shown in the third
row of Table. 3.5. Tetrahedra with poor quality added to the mesh at the second
stage were removed. The quality of the tetrahedral mesh in this example is limited
by the poor quality of the initial surface triangulation. The new mesh has 75,665
nodes, 108,582 boundary faces, and 267,475 tetrahedra. Note that with a
preliminary improvement in the quality of the initial surface mesh, a tetrahedral
mesh with better quality can be obtained [40]. Similar experiments were carried out
for a large number of different areas, we will give here only a few illustrative
examples (see

Fig. 3.21). The first example is the rbox1 model, a CAD-exported triangulation
of a surface for a cuboid with rounded edges. The surface mesh consists of 104
nodes and 204 triangles. The quality of the triangles in it is very poor, there are
sharp differences in the size of the triangles. built

Lymph 99.96 617 691 168.93 0.04 2000 0.34

0

10ÿ1 10ÿ2 10ÿ3 10ÿ4 10ÿ5 10ÿ6 10ÿ7

265 0.18 2.75 171 0.03

A

for the rbox1 model, the tetrahedral mesh contains 138 nodes and 436 tetrahedra,
the minimum quality of tetrahedra is

1

%Nt

F

91

Promoted Front Steady Method

The tetrahedral meshes constructed for the rbox1 and Lymph models are of
poor quality; this is an expected result, since the algorithms presented in this
chapter are primarily aimed at constructing topologically correct meshes. The mesh
quality can be improved using the meshing methods described in Chap. 5: for
example, the quality of the new mesh for the rbox1 model increases to Q(ÿh) =
7.818 10 ÿ8, and for the Lymph model -

Machine Translated by Google

1

up to Q(ÿh) = 7.78 10ÿ2. With preliminary improvement of the surface mesh (see § 3.6)
and final smoothing of the spatial mesh (see Chap. 5), the quality of the final mesh for the
rbox1 model increases to Q(ÿh) = 2.18 · 10ÿ1.

F

0

93

74

The total running time was 5 min 53 s. The time distribution by stages is as follows:
surface mesh construction — 3 min 23 s, volume mesh building — 1 min 37 s, mesh
improvement — 8 s. The remaining time was spent on checking the correctness of the
resulting grid and various auxiliary operations.

0

Ch. 3. Construction of unstructured grids

0

P+D

P+D+PS 1.10 10ÿ2 176 764 177 690

10ÿ1 10ÿ2 10ÿ3 10ÿ4 10ÿ5 10ÿ6

The quality distribution of tetrahedra in the new mesh is presented in the third row of
Table 1. 3.7. On fig. 3.23 shows a cut of a tetrahedral

0

In conclusion, we will demonstrate the joint work of methods for constructing surface
triangular and volumetric tetrahedral meshes. As an example, consider model 62_shaver1
from the Open CASCADE website [19]. The geometric model consists of 266 nodes, 403
curvilinear edges and 153 curvilinear faces (see Fig. 3.22, a). Using the method of
advancing front on the surface, described in § 3.4, a quasi-uniform triangular mesh with
33,176 nodes and 66,348 triangles was constructed (see Fig. 3.22, b) .

A combination of three methods was used to construct the tetrahedral mesh: the
advancing front algorithm, the stable algorithm based on Delaunay tetrahedralization,
and the mesh improvement method described in Chap. 5. The first method was used to
construct a mesh with 158,548 tetrahedra for a part of the region that occupies 99.81%
of the total volume of the model. The distribution of the quality of the tetrahedra of the
resulting mesh is presented in the first row of Table 1. 3.7. There are 838 triangular faces
left in the front; they were passed to the input of the second method, which constructed
another 1280 tetrahedra. The detailed distribution of the quality of tetrahedra in the final
mesh is given in the second row of Table 1. 3.7. The minimum quality of the resulting
grid was Q(ÿh) = 1.117 10ÿ6. After the mesh was corrected using the third method, the
quality of the mesh improved significantly, and the minimum quality of one tetrahedron

b Fig. 3.22. Model specified in CAD: a - BREP model, b - surface quasi-uniform triangular
mesh

T a b l e 3.7
Distribution of the quality of tetrahedra at different stages of meshing for the
62_shaver1 model: ÿ is the advancing front algorithm; D is a stable algorithm based
on Delaunay tetrahedrization; PS - improving the grid by rebuilding it while maintaining

a given trace on the boundary

Nt

0

§ 3.7. Reliable algorithm for constructing a tetrahedral mesh

6

amounted to Q(ÿh) = 1.102 10ÿ2. The resulting mesh contains 48,999 nodes, 66,348
boundary faces that completely match the faces generated by the surface mesh
generator, and 176,764 tetrahedra.

grids.

26

0

92

Rice. 3.23. Section of a tetrahedral mesh for a region defined in CAD

Q(ÿh)

7.03 10ÿ4 158 548 157 091 1430 1.12

10ÿ6 159 828 157 693 1821 244 36 28

A

Machine Translated by Google

MULTILEVEL HIERARCHICAL

Principle 4) is especially important for the numerical solution of partial
differential equations by the finite element method.

n > 0 coinciding with some element ÿ0 is coarsened.
3) The

described algorithms make it possible to perform local refinements and
coarsenings, which makes it possible to construct grids that are condensed in a
subdomain.

h,

§ 4.1. Principles of multilevel grid construction

Chapter 4

Such grids are called hierarchical. Sections 4.2, 4.3, and 4.4 will be devoted to
the description and detailed analysis of algorithms for modifying hierarchical
triangulations and tetrahedrizations. In § 4.5 we consider an algorithm for
constructing grids that trace the features of dynamic processes. It is important to
note that the

operations of refinement and coarsening of the hierarchy

h

Rice. 4.1. Mesh Conformity Restoration

§ 4.2. Bisection Method for Refining Triangulations

5) Grinding and coarsening operations are performed quickly enough; the
number of actions performed grows linearly with the number of triangles or
tetrahedra in the mesh to which the operations in question are applied.

Noah conformal triangulation or tetrahedralization of the region.

4) The resulting grids have the property that the minimum angle of any
triangle cannot be less than half of the minimum angle of the triangles in the initial
grid. Similarly, the minimum dihedral angle of any tetrahedron cannot be less than
half the minimum of the dihedral angles of the tetrahedra of the initial mesh. The
same is true for the flat corners of tetrahedra.

In practice, there are often problems related to the study of non-stationary
processes with moving singularities. Such processes can be the movement of the
front of the contaminated zone, the propagation of a crack, and the formation of
a prefracture zone. Successful solutions to such problems require grids that can
be quickly rebuilt to reflect ongoing changes.

cal grids obey the following set of principles.

95

One of the ways is to construct in the domain under consideration a sequence
of simplicial (triangular or tetrahedral) grids ÿn n = 0, 1, ... satisfying the following
properties: — any grid ÿn is conformal; — the initial grid ÿ0 can be arbitrary; —

each grid for n 1 is obtained from the previous
one by means of operations of multilevel refinement or
coarsening of some grid elements. These operations generate a sequence of

hierarchical grids. The set of triangles or tetrahedra subjected to refinement
or coarsening is determined by the specifics of the problem, the wishes of
the user, and the requirement to maintain the conformity of the resulting
meshes.

h,

Before describing the triangular mesh refinement algorithm itself, let us dwell
in detail on the bisection of a particular mesh

1) The mesh refinement operation is applicable to an arbitrary initial

h,

Triangulation refinement is the process of successively repeatedly applying
the operation of splitting a certain triangle into two triangles. We will regard such
a partitioning operation as a basic one and call it a bisection of a triangle. A
bisection of one triangle often causes a violation of the conformity of the mesh on

an adjacent element. Because of this, the number of mesh elements
increases, which must be refined to build a mesh. As can be seen from fig. 4.1,
under the bisection of the triangle ÿ123, the triangle ÿ134 breaks the conformality
on the edge e13. Splitting the triangle ÿ134 helps to keep the grid conformity.

2) The mesh coarsening operation is applicable only to those mesh elements
that were previously refined. Thus, the grid element ÿn cannot be

This chapter will describe methods for constructing dynamic 2D and 3D
meshes based on multilevel hierarchical refinement and coarsening of triangles
and tetrahedra. The presented set of algorithms makes it possible to effectively
multiple local remeshing when simulating various dynamic processes.

GRINDING AND ROUGHING THE MESH

§ 4.2. Bisection Method for Refining Triangulations

h

Machine Translated by Google

v3

The Bansch splitting method not only splits a triangle into two, but also marks the edges of two

new triangles. According to this method, each triangle ÿ can be divided only by an edge connecting

the middle of the labeled edge with the opposite vertex. For two new triangles, the labeled edges are

the edges that coincide with the edges of the original triangle ÿ that have not changed during its

bisection. The principle of operation of the Bansh algorithm is shown in Fig. 4.3, where the dotted lines

in the triangles mark the marked edges.

v5

At first glance, it may seem that the two proposed algorithms perform the same partition. To

refute this assumption, we give an example of an initial grid consisting of a single triangle and the

results of the two described methods. In this case, we will bisection each of the available triangles

twice: first, by splitting along the largest edge, then along the labeled edge. Since the initial mesh

consists of only a single triangle, the conformality of the mesh will not be violated in the course of

bisections. Rice. 4.4 demonstrates the operation of the Rivara algorithm, and fig. 4.5 - Bansch's

algorithm. In this case, in the original triangle, the edge with the maximum length is selected as

marked. As we can see, the resulting grids turned out to be different.

Rice. 4.2. Rivara's triangle bisection algorithm

v4 v6

v5

The first method was proposed by Rivara in [78, 79] and is known as the largest edge partitioning

method. The method consists in the fact that if a triangle ÿ is included in the set of grid elements that

need to be refined, or if one of its edges does not satisfy the mesh conformity property after the

bisection of other triangles, then, first, this grid element is split by a segment connecting the middle of

the largest edge with opposite top. If, after making this bisection, the grid conformality property is still

violated at least on one edge of the original triangle, then the midpoint of this edge is connected to

the midpoint of the largest edge of the triangle ÿ. The principle of operation of the partitioning method

along the largest edge is illustrated in fig. 4.2. As a result of the bisection of the triangle ÿ123, the

conformality property of the triangle ÿ134 on the edge e13 is violated. Triangle ÿ134 must be refined

to maintain conformity. First, its partition is carried out by the edge e36. However, this does not restore

the mesh's conformity

property. Only the subsequent splitting of the triangle ÿ136 by the edge e56 leads to the desired

result.

B(ÿ) = (ÿ1, ÿ2).

V = {v1, v2, v3},

Rice. 4.4. Two steps of bisections of triangles by Rivara's method

v2

v1

97

v2

Another method, which was described in Bansh's paper [31], is called the labeled edge partitioning

method. In our opinion, it is more convenient and easy to implement when developing a complex

algorithm for constructing dynamic grids. Let us pay special attention to this method. Each triangle of

the grid is associated with one of its edges, which we will call labeled. The choice of such an edge for

the triangles of the initial grid is carried out arbitrarily, regardless of which edge of the neighboring

triangle turned out to be labeled. Often take the longest edge in the triangle.

v2

v1

96 Ch. 4. Multilevel hierarchical mesh refinement and coarsening

Rice. 4.3. Bansch's Triangle Bisection Algorithm

v5

v4

v3

element. There are various methods for splitting a triangle. We will focus on two of them.

v1

(4.2.1)

Let ÿh(V, T) denote a triangular grid, where V is a collection of grid nodes, each of which is

determined by two coordinates, and T is a set of triangles. Let V(ÿ) be the set of global indices of the

vertices of the triangle ÿ(v1, v2, v3), and r(ÿ) be the local number of the labeled edge in the triangle ÿ:

1 r(ÿ) 3.

§ 4.2. Bisection Method for Refining Triangulations

v3

v6

In what follows, speaking of the bisection of a certain triangle ÿ, we will assume that it is produced

by the Bansch method. We introduce the following convenient notation for the triangle bisection

operation:

v4

Machine Translated by Google

9:

Rice. 4.6. The set U(ÿ) for the boundary triangle

7:

a expression

where the subset ui(ÿ) contains the numbers of triangles that border ÿ along the ith edge

(see Fig. 4.6). For a conformal grid, ui(ÿ) contains only one triangle. If the ith edge lies on the
boundary of the domain, then we set ui(ÿ) equal to the label of the corresponding part of the

boundary with a minus sign. Let U(ÿh) denote the collection U(ÿ) for all ÿ belonging to the grid

ÿh. The set U(ÿh) for a conformal grid is best represented in the form described in Chap. 2

structured list TT(3,Nf), where Nf is the number of triangles in the current grid. When one
triangle is split, only the data about its nearest neighbors change. Therefore, the cost of

maintaining a structured list U(ÿh) does not actually affect the complexity of the entire mesh
refinement process.

However, before performing the bi section triangulation procedure, U(ÿ) must be

determined for each triangle. The complexity of the optimal algorithm for computing U(ÿh) is

linear with respect to the number of triangles in ÿh. When constructing U(ÿh), for each node
of the grid v, we will use the superelement ÿ(v) as a set of triangles with node v as one of

their vertices. The calculation of U(ÿh) is presented in Algorithm 20.

Rice. 4.5. Two steps of triangle bisections by the Bansch method

13:

1: For each node v put ÿ(v) = ÿ 2: loop over all triangles
ÿ ÿ ÿh 3: For all v ÿ V(ÿ) add ÿ to the set ÿ(v) 4: end
loop 5: loop over all triangles ÿ ÿ ÿh loop over all vertices vj ÿ V(ÿ) Find
vk,vm ÿ V(ÿ)

distinct from vj , vk = vm Find the set of triangles L

= ÿ(vk) ÿ(vm) if L contains triangle ÿ1 = ÿ
then Set uj (ÿ) = ÿ1

§ 4.2. Bisection Method for Refining Triangulations

eleven:

will mean that the mesh ÿ h is obtained from the triangulation ÿh by the obligatory bisection

of all triangles from the set M.

10:

Algorithm 20. Building a structured list U(ÿh) for three angulations

(4.2.3)

8:

D(ÿ) = (V(ÿ), r(ÿ)).

,

the value ci(ÿ) = 1 indicates problems with conformality on the edge opposite vertex i. Let M
be some given subset of T

For simplicity, we assume that the local number of the vertex opposite the labeled edge is

also equal to r(ÿ). Let us define a four of numbers

6:

12:

U(ÿ) = (u1(ÿ), u2(ÿ), u3(ÿ)),

99

To check the conformity of the grid or its violation on some grid element, it is enough for

each triangle to determine the binary array C(ÿ) of three numbers (c1(ÿ), c2(ÿ), c3(ÿ)). Let

An efficient implementation of the triangulation bisection algorithm requires information

about neighboring triangles for all grid elements. For each triangle ÿ we define the set

else

Determine uj (ÿ) from edge label information end if 14: end loop 15: end
loop

98 Ch. 4. Multilevel hierarchical mesh refinement and coarsening

T) = Bisection_method(ÿh(V, T),M) ÿ h(V ,

(4.2.2)

Machine Translated by Google

Bisection B(ÿ) = (ÿ1, ÿ2) Add ÿ1 and ÿ2 to T
Remove ÿ from M and T

1: Given U(ÿ), find ÿ3 and ÿ4 adjacent to ÿ along the edge r(ÿ) 2: if ÿ3 =
ÿ4 then 3: 4: else

Determine v as a common point of ÿ3 and ÿ4 lying on the edge r(ÿ)

6:

10:

labels.

4:

Algorithm 22

10:

loop over all triangles ÿ ÿ M

§ 4.2. Bisection Method for Refining Triangulations

8: end loop loop
over all triangles ÿ ÿ T 9:

Since the set of labeled triangles is again non-empty, the algorithm again
starts bisecting triangles from M, namely ÿ134. Now the role of ÿ3 and ÿ4 is
played by grid elements ÿ125 and ÿ235. Since they are different, after the
bisection ÿ134 we do not need to add the point v5 to the list of grid nodes (it is
already there), and there is no need to impose a conformality violation condition
through the edge e13. After the bisection ÿ134, we remove it from the set M,
which becomes empty. We obtain the required conformal grid.

7: Determine D(ÿ1) and D(ÿ2) from D(ÿ) 8:
Determine U(ÿ1) and U(ÿ2) and adjust U(ÿh) of neighbors

1: Run Algorithm 20 to initially determine U(ÿh) 2: Put V = V, T = T 3:
while set M is not empty do

in order to detect triangles on whose edges the conformality property is violated,
in M we write the triangle ÿ134.

7:

Algorithm 21. Bisection method of triangulation ÿh(V, T)

eleven:

if array C(ÿ) contains 1 then Add ÿ to
set M end if end loop 13: 14:

end

while

5:

When the mesh is refined, the sets of nodes and triangles are constantly changing.
The grinding procedure can be written in the form of Algorithm 21.

The process of multilevel refinement of triangulation consists in the sequential
application of the bisection algorithm. This process

Assign 1 to the array element C(ÿ3) corresponding to the edge shared
with ÿ. Add v to V 11: end if 12: Put

cr(ÿ1)(ÿ1)

= 1 and cr(ÿ2)(ÿ2) = 1 if cj (ÿ) = 1 on the corresponding edge ÿ

101

6: end if

Let's make some important remarks. As can be seen from Algorithm 22, the
bisection of one triangle can lead to violation of the mesh conformality only on
one mesh element. Therefore, if the set M contains a small number of elements
compared to the number of all triangles in the mesh to which the bisection
procedure is applied, then the mesh will be refined locally. The operation of
finding v, a common point of ÿ3 and ÿ4 lying on the labeled edge ÿ, can be carried
out taking into account information about neighbors ÿ3 and ÿ4. If the edge being
split belonged to the boundary, then during the bisection, new triangles on the
edges located on the boundary must retain the value ui(ÿ) previously assigned to
the split edge. This will save information about the various boundary

In this algorithm, the bisection operation B(ÿ) = (ÿ1, ÿ2) is a subroutine that,
given a quadruple of numbers D(ÿ) (4.2.2), builds D(ÿ1) and D(ÿ2) and
simultaneously updates auxiliary information about the grid (see Algorithm 22).
Note that during the operation of this algorithm, the conformality of the grid may
be violated and some triangles may border (through an edge) with two triangles,
denoted as ÿ3 and ÿ4. Let us illustrate the operation of this algorithm using the
example of Fig. 4.1, omitting the

stage of determining the neighbors for each grid element. Let the original
mesh ÿh consist of two triangles ÿ123 and ÿ134 that have a common labeled
edge e13. The set M contains only the triangle ÿ123. The presented algorithm
first determines for ÿ123 the neighbors ÿ3 and ÿ4 through the edge e13. In this
case, ÿ3 and ÿ4 coincide - this is the triangle ÿ134. Next, a bisection of the grid
element ÿ123 is performed, which leads to the appearance of two new triangles
ÿ125 and ÿ235. Since ÿ3 and ÿ4 coincide, the triangle ÿ134 on the edge e13 did
not violate the grid conformality. Therefore, after splitting ÿ123, we add the point
v5 to the list of grid nodes and impose on the edge e13 of the triangle ÿ134 the
mesh conformality violation condition. For triangles ÿ125 and ÿ235, we determine
the neighbors, and for ÿ134 we change the information about the neighbors
through the edge e13. It is important to note that at the moment this triangle has
two neighbors at once. Next, we add ÿ125 and ÿ235 to the set of grid triangles,
and remove the grid element ÿ123 from the grid and from the set M. As a result,
M becomes empty. After that, passing through all the elements of the grid

5:

ÿ9: if ÿ3 = ÿ4 then

100 Ch. 4. Multilevel hierarchical mesh refinement and coarsening

12:

Set v as the midpoint of the side r(ÿ)

Machine Translated by Google

a

Rice. 4.7. Similar triangles arising from one, two and three levels of uniform triangle
refinement

a

Theorem 4.2.1. With multilevel refinement of triangulation, the minimum angle
of any grid element for any number of grid partitions is not less than half of the
minimum angle of the triangles of the initial grid.

bc

Rice. 4.8. Several levels of uniform meshing

G

cb

bc

V

102 Chap. 4. Multilevel hierarchical mesh refinement and coarsening

implies the existence of a procedure for determining the set of labeled triangles.
Bansh's choice

of labeled sides ensures the regularity of the triangles in the refined mesh. This
follows from the following theorem [31].

dd

bc bc

Rice. 4.9. Various adaptive mesh refinements

103

b

a

§ 4.2. Bisection Method for Refining Triangulations

Proof. According to the description of the method of splitting a triangle along a
marked edge, the bisection line each time leaves the vertex that appeared during
the previous refinement and connects it to the midpoint of the opposite side.
Therefore, if we consider several levels of refinement of an arbitrary triangle, then
we obtain a set of triangles, each of which is similar to either

A

Machine Translated by Google

The bisection method for refining tetrahedral structures is based on the same approaches that

were described in the study of the procedure for refining a triangular mesh. The main basic

operation is the bisection of the tetrahedron, which splits it into two tetrahedra, as shown in Fig.

4.10. However, the third dimension brings its own characteristics to the process of meshing.

result of the bisection ÿ. Any admissible set of rules must guarantee that the minimum dihedral and

planar angles in the resulting mesh, when it is repeatedly refined, decrease by no more than a

factor of two compared to the corresponding minimum dihedral and planar angles of the initial

mesh. We will focus on the approach proposed by Arnold et al. in [28]. The presented method is

a generalization of the Bansh method of bisection of tetrahedra [31]. Let us introduce the following

notation. To each tetrahedron ÿ we assign one of its edges, which we will call the split edge r(ÿ),

and the two faces containing this edge, the split faces. For each of the two non-decomposable

faces, we single out

one of the edges, calling it labeled, and denote these edges by l1(ÿ) and l2(ÿ). The split and

labeled edges will be called singular. In contrast to the two-dimensional case, when the labeled

edge of the triangle was split, here the split and labeled edges are different. The tetrahedron ÿ will

be characterized by the binary flag s(ÿ) ÿ {0, 1} associated with the mutual arrangement of singular

edges. After a bisection, this flag determines the type of further splitting. The values s(ÿ) must be

determined for all elements of the initial grid. In this case, s(ÿ) can be set arbitrarily, taking into

account only one restriction: if the singular edges do not lie in the same plane, then s(ÿ) = 0. Below,

when formulating the bisection method, we indicate how, based on the singular edges of the

tetrahedron ra ÿ determine the edges to be partitioned and labeled and the binary flags of the

cells into which the tetrahedron ÿ is partitioned. The method of bisection of the tetrahedron ÿ is as

follows. First, ÿ is split into two tetrahedra ÿ1 and ÿ2 by a plane that passes through the middle of

the edge being split and two vertices of the tetrahedron ÿ that do not belong to this edge (see Fig.

4.10). Note that each of the tetrahedra ÿ1 and ÿ2 entirely contains one of the unbreakable faces

ÿ. The labeled edge of this face is defined as the edge to be split for the corresponding new

tetrahedron. As a result, for ÿ1 and ÿ2 it becomes known which of the faces are breakable. It

remains to determine the labeled edges for the indecomposable faces of the tetrahedra ÿ1 and

ÿ2. Let v be the midpoint of the splitting edge of the tetrahedron ÿ, which has become common for

ÿ1 and ÿ2. Consider any of the unbreakable faces of the

grid element ÿ1 or ÿ2. If this face is part of a face of the tetrahedron ÿ, then we mark in it an

edge opposite to v. In the case when a common face for ÿ1 or ÿ2 is considered, it is endowed

with the same labeled edge according to the following rule. If s(ÿ) = 1, then the labeled edge is the

one that connects the vertex of the already defined splitting edge ÿ1 or ÿ2 and the point v;

otherwise, the edge opposite v will be labeled. For two new tetrahedra, s(ÿ1) = s(ÿ2) = 1 only if the

subdivided and labeled edges of the grid element ÿ

v2

v1

v4

the original triangle itself, or triangles obtained from the one under consideration after one or two

levels of refinement (see Fig. 4.7, similar triangles are marked with the same letters). The minimum

angle during one or two refinements cannot be reduced by more than two times, and the maximum

reduction is achieved when the equilateral triangle is split. Consequently, even with a greater

number of refinements, a decrease in the angle of the triangle by more than two times cannot

occur.

Rice. 4.10. Bisection of a tetrahedron

v1

As in the two dimensional case, we first describe in detail the method of bisecting an

individual tetrahedron. In the three dimensional case, there are much more possibilities for

specifying the rules for the bisection of the tetrahedron ÿ and for determining methods for further
refinement of grid elements, which are

v2

It follows from Theorem 4.2.1 that if the minimum of the angles of triangles in the initial grid

is ÿ, then any angle in the resulting grid is bounded above by ÿ ÿ ÿ.

´

v3

105

v3

§ 4.3. Bisection Method for Refining

Tetrahedrals

In conclusion, we present two examples of how the algorithm works. On fig. 4.8 shows the

initial grid and the resulting triangulations after 4, 6 and 8 levels of uniform partitioning; rice. 4.9

illustrates different types of adaptive refinements: to a diagonal (a), to a point (b), to a circle (c) ,

and to a subdomain (d).

v5

§ 4.3. Bisection Method for Refining Tetrahedrals

v4v4

104 Ch. 4. Multilevel hierarchical mesh refinement and coarsening

v1

Machine Translated by Google

13:

For simplicity of working with a tetrahedral mesh, it is convenient to introduce a
correspondence between the vertices, edges, and faces of a particular mesh element.
Given a tetrahedron defined by four mesh nodes v1, v2, v3, and v4, we will order the six
edges as follows:

eleven:

D(ÿ) = (V(ÿ), r(ÿ), l1(ÿ), l2(ÿ), s(ÿ)), (4.3.1) where V(ÿ) = (v1, v2, v3,

v4) is a vector consisting of the global numbers of four grid nodes that are vertices ÿ, r(ÿ)
is the local number of the split edge, l1(ÿ), l2(ÿ) are the local numbers of labeled edges,
and s(ÿ) is the binary flag mutual arrangement of special edges. Note that

9:

Algorithm 23. Construction of a structured list U(ÿh) for tetrahedralization

end if

15: end loop 16:
end loop

7:

§ 4.3. Bisection Method for Refining Tetrahedrals

end if

ÿh(V, T) = Bisection_method(ÿh(V, T), M),

f(v1, v2, v3), f(v1, v2, v4), f(v1, v3, v4), f(v2, v3, v4). Now,

speaking about some local number of an edge or face of a tetrahedron, one can
unambiguously determine their vertices.

e(v1, v2), e(v1, v3), e(v1, v4), e(v2, v3), e(v2, v4), e(v3, v4),

The bisection process can be accelerated if information about neighboring tetrahedra
is available for any grid element. To each tetrahedron ÿ we associate the set U(ÿ) = =
(u1(ÿ), u2(ÿ), u3(ÿ), u4(ÿ)), where the subset ui(ÿ) contains the numbers of tetrahedra
that border on ÿ along face opposite to vertex i. For a conformal mesh, ui(ÿ) contains the
number of only one tetrahedron. For boundary faces, as ui(ÿ) we can take the label of the
boundary with a minus sign, by analogy with how it was proposed in the two-dimensional
case. Let U(ÿh) denote the collection U(ÿ) for all ÿ belonging to the grid ÿh. When
constructing U(ÿh), for each node v of the grid ÿh, we will use the superelement ÿ(v) as a
set of tetrahedra having the point v as one of their vertices. The procedure for determining
U(ÿh) can be implemented with complexity linearly dependent on the number of
tetrahedra in ÿh (see Algorithm 23).

12:

1: For each node v put ÿ(v) = ÿ 2: loop over all
tetrahedra ÿ ÿ ÿh 3: For each v ÿ V(ÿ) add ÿ
to ÿ(v) 4: end loop 5: loop over all tetrahedra ÿ ÿ ÿh 6:

tetrahedron often entails violation of the grid conformity on several grid elements at once.
For each tetrahedron, we introduce an integer array C(ÿ) of six numbers (ci(ÿ), i = 1, ...,

6) corresponding to the edges of the given grid element. If ci(ÿ) = 0, then this means a
violation of the conformality on the edge i, i.e., the appearance of a new grid node v0 in
the middle of the edge of the tetrahedron ÿ. This edge may belong to a whole set of grid
elements W at once. To preserve conformality, all tetrahedra in W must be reduced by
bisections that split the edge under consideration. Therefore, all grid elements from W
need information about the node v0. The condition that the bisection of some tetrahedron
and the appearance of a new node v0 lead to violation of conformality on the edge j of
the tetrahedron ÿ will be given in the form cj (ÿ) = v0. Initial moment for each grid element,
all ci(ÿ) are zero. For each element ÿ, we determine the depth, or level of refinement z(ÿ).
As noted in § 4.1, there is a sequence of grids, each of which is obtained from the

previous one by refinement or coarsening. We will assume that any element of the initial
grid has z(ÿ) = 0. When a tetrahedron with level z1 is partitioned, we obtain two grid
elements with level z1 + 1. Denote the procedure for refining the tetrahedralization ÿh as
follows:

14:

lie in the same plane and the condition s(ÿ) = 0 is satisfied. Thus, the method of bisection
of a particular tetrahedron is completely described. This operation, by analogy with the
two dimensional case, will also be denoted by the formula B(ÿ) = (ÿ1, ÿ2).

10:

if L = {ÿ} then
Determine uj (ÿ) from boundary information

8:

107

(4.3.2)

As in the bisection of a triangular mesh, in the three-dimensional case, the mesh
conformality check operation is necessary. Conformity violation is easier to track on the
ribs, since the refinement of one

and four edges like this:

Let ÿh(V, T) denote the tetrahedral mesh ÿh, where V is the set of mesh nodes, each
of which is defined by three coordinates, and T is the set of tetrahedra. Each tetrahedron
ÿ ÿ T is assigned a data set of eight numbers

106 Ch. 4. Multilevel hierarchical mesh refinement and coarsening

1 r(ÿ), l1(ÿ), l2(ÿ) 6.

loop over all vertices vj ÿ V(ÿ) Find distinct
vertices vk, vm, vn ÿ V(ÿ) other than vj Find the intersection L = ÿ(vk)
ÿ(vm) ÿ(vn)
if ÿ1 ÿ L and ÿ1 = ÿ then Put uj (ÿ) = ÿ1

Machine Translated by Google

5:

In this algorithm, the bisection operation B(ÿ) = (ÿ1, ÿ2) is a subroutine that is
much more complicated in the three dimensional case due to the fact that one
edge can belong to a whole set of grid elements at once (see Algorithm 25).

14:

where M is some given subset T assumes that the

mesh ÿh is obtained from the tetrahedralization of ÿh by the obligatory bisection
of all mesh elements from the set M. Algorithm 24 for refining a tetrahedral mesh
is similar to its two-dimensional counterpart (algorithm 21). As in the bisection of
triangles, the set of mesh tetrahedra is constantly changing, and the set of nodes
is increasing.

1: Run Algorithm 23 of the initial determination of U(ÿh) 2: Put V =
V and T = T 3: while the set M

is not empty do 4: Find the smallest value
of zmin from z(ÿ) over all ÿ ÿ M Form M = {ÿ ÿM| z(ÿ) = zmin} loop over

all tetrahedra ÿ ÿ M Bisection B(ÿ) = (ÿ1, ÿ2) Add
ÿ1 and ÿ2 to set T Remove ÿ from

sets M and T end loop loop over all
tetrahedra ÿ ÿ T if array C(ÿ) contains
nonzero value then Add ÿ to set M

end if
end loop 15: 16: end while

9:

12:

Algorithm 24. Bisection method of tetrahedralization ÿh(V, T)

Algorithm 25

7:

v = cr(ÿ)(ÿ)

§ 4.3. Bisection Method for Refining Tetrahedrals

12:

unbreakable edge i of the tetrahedron ÿ

The refinement of one tetrahedron can lead to violation of the grid conformity
only on a small number of neighboring grid elements. If the set M is small
compared to the number of all elements in the grid, then the grid will be refined
locally.

Set cj (ÿ) = v0 for edge j with vertices vk1 and vk2 13: end loop

3:

unbreakable edge i of the tetrahedron ÿ

eleven:

.

10:

For the initial mesh, we will define a list of its edges, each of which is given
by the global numbers of its vertices. We arrange the edges in ascending order
of length and assign to each edge a serial number in the new list, which will be
called its weight in what follows. Next, for each tetrahedron, we choose an edge
with the largest weight and mark it as splittable. Then, for each unsplitted face,
we find the edge of this face that has the largest weight and consider it labeled.
Thanks to this algorithm, any face belonging to two tetrahedra will have the same
special edge for each of them, since each face has three edges with different
weights. In the initial grid, the values of the binary flags s(ÿ) can be chosen, for
example, to be zero. Similarly to the algorithm of multilevel bisection of
triangulation, we can also speak of multilevel bisection of tetrahedralization. With
multiple

mesh refinement, the bisection algorithm with the introduction of special
edges ensures that the dihedral and flat angles of the grid elements are bounded
from below by half of the minimum dihedral and flat angles of the tetrahedra of
the initial mesh. This is achieved by dividing the faces into breakable and non-
breakable ones and by a special choice of labeled edges that determine the
further course of the bisection, as justified in [28]. Parallelization of multilevel
bisection algorithms is discussed in [37, 38].

8:

Equality (4.3.2)

7: Determine D(ÿ1) and D(ÿ2) from D(ÿ) 8:
Determine U(ÿ1) and U(ÿ2) and change U(ÿh) of neighbors ÿ 9: if cr(ÿ)
(ÿ) = 0 then 10: Find

vertices vk1 and vk2 of the edge r(ÿ) loop over
all tetrahedra ÿ ÿ ÿ(vk1) ÿ(vk2) except ÿ

13:

6:

5: 6: end if

109

eleven:

17: Set cj (ÿ2) = ci(ÿ) if ci(ÿ) = 0 on the corresponding

4: else

Add v0 to set V 14: 15: end if

108 Ch. 4. Multilevel hierarchical mesh refinement and coarsening

The bisection algorithm for a tetrahedral mesh is constructed taking into
account that the conformity preservation process does not lead to an infinite cycle,
in which the restoration of conformity on one tetrahedron leads to its violation on
other mesh elements. The correctness of this assertion is substantiated in [28].
The bisection process will be successful only if the split and labeled edges are
correctly determined for all elements of the initial mesh. In contrast to the initial
conditions for refinement of triangulation, the consistency of singular edges is
required here. Therefore, we will dwell in detail on the method of specifying split
and labeled edges for an arbitrary initial tetrahedralization.

16: Put cj (ÿ1) = ci(ÿ) if ci(ÿ) = 0 on the corresponding

1: Determine edge r(ÿ) from D(ÿ) 2: if
cr(ÿ)(ÿ) = 0 then Place

new node v at the middle of edge r(ÿ) of tetrahedron ÿ

Machine Translated by Google

111

Rice. 4.11. Several levels of uniform mesh refinement

In conclusion, we will demonstrate two examples of the operation of the
bisection algorithm in the three-dimensional case. On fig. Figure 4.11 shows the
resulting tetrahedrizations after (a) three , (b) six , and (c) nine levels of uniform
partitioning of the initial mesh consisting of two canonical tetrahedra. Rice. 4.12
illustrates various types of local condensations: to a subdomain (a), to a line (b) ,
and to a point (c).

110 Ch. 4. Multilevel hierarchical mesh refinement and coarsening

An algorithm for coarsening grids obtained by bisecting triangles by the Rivara
method can be found in [79]. Here we present a description of the coarsenings
for triangulations and tetrahedrizations obtained by the refinements presented in
§ 4.2 and 4.3. The purpose of coarsening

is to enlarge some of the selected grid elements by combining two adjacent
ones. Note that the union can be done in different ways. On fig. 4.13 shows the
union of two pairs of triangles on the same horizontal line. Rice. 4.14 illustrates
another kind of coarsening. As a result, we get two different grids.

Rice. 4.12. Various local mesh refinements

§ 4.4. Multilevel Coarseness Algorithm

In the study of dynamic processes, an important factor is the fast rebuilding
of the grid. Having only algorithms for hierarchical refinement, one would have
to build many times very little different grids that take into account small changes
in the dynamic process and are connected to each other only through the coarsest
grid. Connecting grid coarsening algorithms provides a close connection between
slightly different grids. In this section, coarsening algorithms for both 2D and 3D
meshes will be described, however, all the problems encountered and methods
for solving them will be illustrated using triangular meshes as an example.

The coarsening process will be applied only to meshes obtained as a result
of the bisection method. Therefore, the main goal of merging grid elements is to
restore grids to which refinement has been applied. This can be done by keeping
the history of mesh transformations. During hierarchical mesh refinement, its
elements are subjected to a

different number of bisection operations. Therefore, simply joining an arbitrary
triangle with any of its neighbors can result in mesh elements other than triangles,
as shown in Fig. 4.15.

§ 4.4. Multilevel Coarseness Algorithm

Rice. 4.13. Merging Triangles Horizontally

Machine Translated by Google

Rice. 4.14. Merging Triangles Vertically

Two triangles ÿ1 and ÿ2 can be combined into one under three conditions: 1)
z(ÿ1) = z(ÿ2) = z; 2) if k = h

ÿ1 (z), then uk(ÿ1)=ÿ2;
3) if m = h ÿ2 (z), then um(ÿ2)=ÿ1.

it will be due to the coarsening of the grid elements whose vertex is v, and the
subsequent removal of the node v itself. Therefore, we will say that the conformity
is violated at the knot. Let us proceed to the

formalization of the coarsening algorithm. Let ÿh denote a triangular or
tetrahedral mesh. Recall that each element ÿ ÿ ÿh has a refinement level z(ÿ).
Two elements can be combined into one only if they have the same level, say,
z1, then the resulting coarsened grid element will have the level z1 ÿ 1. According
to the basic principles of meshing, it is impossible to enlarge the elements of the
initial grid. This can be formulated as a prohibition on enlargement of elements
with level zero: the level of any triangle or tetrahedron must be nonnegative. In
addition to the refinement level, each element ÿ will be assigned an array h ÿ(z),
which will contain the history of modification of this grid element. In the two
dimensional case,

for each level z0, the only element h ÿ(z0) is defined as follows. If the
bisection of triangle ÿ produces grid elements ÿ1 and ÿ2, then h ÿ1 (z0) contains
the local number of the vertex of triangle ÿ1 opposite the edge along which ÿ1
borders ÿ2. As can be seen from the description of the bisection of an arbitrary
triangle, h ÿ1 (z0) can never coincide with the vertex opposite to the side being
split.

Let us first consider the process of combining two neighboring triangles ÿ1
and ÿ2 into a single grid element ÿ. In doing so, we again need the structured list
U(ÿh) of neighbors of triangles defined in § 4.2.

Rice. 4.16. Restoring conformity when coarsening the mesh

In the three dimensional case, h ÿ(z0)=(h(1) (z0), h(2) (z0)) is a pair of local
vertices of the grid element ÿ. When the tetrahedron ÿ is split into ÿ1 and ÿ2, the
common face of two new grid elements passes through the midpoint v of the
split edge ÿ. Let us agree that h(1) (z0) is the local number of the vertex ÿ1
corresponding to the point v, and h(2) (z0) is the local number of the vertex ÿ1

opposite to the face along which ÿ1 borders ÿ2.

Rice. 4.15. Union of a triangle with an arbitrary neighbor, leading to the
appearance of a quadrilateral

In this case, the global number of the grid vertex corresponding to the local
number of the triangle vertex ÿ1 opposite to the labeled edge coincides with the
equivalently defined number for the same triangle vertex ÿ2. When coarsening,
this common vertex v will be removed. Since ÿ1 and ÿ2 had a common edge,
they had two common mesh vertices. After deleting node v, another

§ 4.4. Multilevel Coarseness Algorithm

ÿThe grid coarsening algorithm described below will help to solve this and
other problems. Its main goal is that, starting with a conformal mesh resulting
from the bisection procedure, the coarsening algorithm coarsens the given mesh
elements and some others to maintain conformality and produces a mesh in such
a form that either refinement or refinement can be applied to it again. coarsening.
It was assumed in the bisection algorithm that the conformity is broken on the
edge of the grid

element and can be restored by additional partitioning of adjacent elements.
Similarly, when the mesh is coarsened, conformality can also be violated on the
edge due to the presence of a node v in its middle, as shown in Fig. 4.16 but
recover

113

ÿ1

ÿ1

112 Ch. 4. Multilevel hierarchical mesh refinement and coarsening

ÿ

Machine Translated by Google

1: Put V = V and T = T 2: loop until

set M is empty

ÿ2

Algorithm 26. Method for coarsening the triangulation ÿh(V, T)

7:

eleven:

already defined.

The mesh coarsening process can be written in the form of Algorithm 26. In this algorithm,

the operation of removing a vertex from the set of mesh nodes is best done as follows. Let's

introduce some auxiliary binary array of grid node labels. In this array, the number of elements

is equal to the number of nodes in the initial triangulation ÿh specified for coarsening. Initially, all

elements of this array are equal to 1. Deleting a node from the grid means zeroing the

corresponding component of the labels array. This approach makes it possible to use data about

the remote node v with further coarsening

(4.4.2)

Let us demonstrate the operation of Algorithm 26 using the example of Fig. 4.18. Let a grid

ÿh consisting of five triangles be given, and the set M contains only the triangle ÿ346. In this

case, we assume that the level of refinement for all grid elements is 2, except for ÿ346, for

which it is equal to 1. The constructed set M coincides with M. We start with the grid element

ÿ346. First, we look for a triangle with which it could be combined. Triangle ÿ356 is not suitable

for this role, as it has a different level of refinement: z(ÿ356) = z(ÿ346). Therefore, we can only

impose the conformality violation condition on all grid elements containing the point v6.

the common vertex ÿ1 and ÿ2 and their other two vertices form a new grid element ÿ. To correctly

define the coarsening operation, it remains to show which edge in ÿ will be marked. As r(ÿ) one

should take the edge opposite to the non-removed common vertex of ÿ1 and ÿ2. Rice. 4.17

illustrates the coarsening process. Comparison with fig. 4.3 shows that this process is the
reverse of the Bansch method. For simplicity, the coarsening operation will be denoted

5:

10:

Remove ÿ from the set M if z(ÿ) = 0 4: Find zm — the

largest value from z(ÿ) over all ÿ ÿ M Form a subset M = {ÿ ÿM| z(ÿ) = zm} loop over all

triangles ÿ1 ÿ M Find a ÿ2 that can be combined with ÿ1 Determine the grid

node v corresponding to the vertex k of the triangle

ÿ1 opposite to the labeled side if ck(ÿ1) = 0 then Using the

set U(ÿh), impose a conformity violation condition on all ÿ ÿ ÿ(v) Remove v from

the set V end if ÿ2 is found then Coarse ÿ = G(ÿ1, ÿ2) Add ÿ to the set T

and remove ÿ1 and ÿ2

from M and T end if 17: end loop loop over all triangles ÿ ÿ T : 18: if array

c(ÿ) contains 1 then

Rice. 4.17. Triangle coarsening method

16:

115

´ Add ÿ to set M end if 22: end loop 23:
end

loop

ÿ = G(ÿ1, ÿ2).

ÿ

14:

ÿ1

12:

.

chat like this:

grid elements for which v is still a vertex. At the end of Algorithm 26, the array of labels gives

information about the vertices of the resulting mesh. As a basic operation, Algorithm 26 uses the

coarsening procedure ÿ = G(ÿ1, ÿ2) of triangles ÿ1 and ÿ2, which is described in detail in

Algorithm 27.

6:

By analogy with the process of bisection during coarsening, we need to check the mesh

conformality. We again assign this role to the binary array C(ÿ) of three numbers (c1(ÿ), c2(ÿ),

c3(ÿ)). The value ci(ÿ) = 1 indicates problems with conformality at vertex i, i.e., the presence of

a triangle ÿ whose vertex corresponding to the i-th vertex of triangle ÿ lies in the middle of the

edge. Initial moment for each grid element, all ci(ÿ) are zero. We denote the procedure for

coarsening the triangulation ÿh as follows:

where M is some given subset of T Equality (4.4.2) means that the grid ÿh is obtained from the

grid ÿh by the obligatory coarsening of all elements from the set M. The coarsening algorithm is

applicable only to the grid in which there are elements that differ from the triangles of the initial

meshes, i.e., obtained as a result of the bisection method. Thus, at the start of the algorithm,

we can assume that for each grid element ÿ, the set of its neighbors U(ÿ)

9:

ÿh(V, T) = Coarse_method(ÿh(V, T), M),

21:

114 Ch. 4. Multilevel hierarchical mesh refinement and coarsening

3:

8:

15:

(4.4.1)

§ 4.4. Multilevel Coarseness Algorithm

20:

13:

19:

Machine Translated by Google

Tetrahedra ÿ1 and ÿ2 can be combined into one if four conditions are met: 1)
z(ÿ1) = z(ÿ2) = z;

2) if k = h(2) (z), then
uk(ÿ1)=ÿ2; 3) if m = h(2) (z), then

um(ÿ2)=ÿ1; h(1) 4) the vertex ÿ1 with index
(z) coincides with the vertex ÿ2 with index h(1) (z).

ÿ2

ÿ2

The mesh coarsening process can be represented by a modified algorithm
26. It uses a different basic procedure ÿ = G(ÿ1, ÿ2) for combining tetrahedra ÿ1
and ÿ2 and modifying auxiliary information (see Algorithm 28). Another difference
of the modified algorithm 26 is that in the three-dimensional case, for each vertex
v, it is necessary to constantly maintain and correct information about the set
ÿ(v).

Algorithm 27. Coarseness of triangles ÿ = G(ÿ1, ÿ2) and modification of auxiliary
information about the mesh

current v1

Rice. 4.18. Coarse algorithm illustration

There are two such triangles: ÿ156 and ÿ356. The v6 point itself is removed from
the list of grid vertices. Triangles ÿ156 and ÿ356 have the same grinding level.
They can be united into one triangle ÿ136 and remove ÿ156 and ÿ356 from the
set M, simultaneously declaring the vertex v5 deleted. Under this coarsening
operation, the conformity of the grid begins to be violated at the point v5; therefore,
triangles ÿ125 and ÿ235 are added to the set M. Combining them into a grid
element ÿ123 leads to the preservation of grid conformity. All triangles now have
the same level of refinement, but the set M still contains the triangle ÿ346. Now it
can be combined with the grid element ÿ136 and get a triangle ÿ134. As a result,
we have a coarsened conformal grid.

ÿ1

Now we describe the process of combining two neighboring tetrahedra ÿ1
and ÿ2 into a single grid element ÿ. We again use the structured list U(ÿh) of
neighbors described in § 4.3 and the vector C(ÿ) of four numbers c1(ÿ), c2(ÿ),
c3(ÿ) and c4(ÿ), showing the violation of conformality at the vertex i.

ru r(ÿ1)
1: Using D(ÿ1), determine the vertex v corresponding to the reb

5: Determine U(ÿ) and correct U(ÿh) for neighbors ÿ1 and ÿ2

The described coarsening algorithms have one common feature. If some grid
element ÿ needs to be coarsened, and there is no candidate for combining with ÿ
due to the fact that the neighbors have a higher level of refinement, then the
algorithm imposes a requirement on the neighbors to be coarsened and, after
waiting for the required candidate for ÿ, performs its coarsening. Since the
coarsening of one grid element

often leads to pairing of a small number of grid elements, the presented
algorithms lead to a local change in the grid.

§ 4.4. Multilevel Coarseness Algorithm

ÿ2

ÿ1

ÿ1

ÿ2

117

rom
In contrast to the two-dimensional case, when the tetrahedron ÿ1 is coarsened,

there is not enough information about which grid element ÿ2 it can be combined
with. It is also necessary to know the number of the vertex v, which will be
removed when a new tetrahedron is formed, see condition 4. It cannot be
determined from D(ÿ1) and D(ÿ2). Therefore, during the bisection, this number is

stored as the value of the elements h(1) (z) and h(1) (z). When coarsening, the
common vertex v is removed from the grid. The segment connecting h(2) (z) with
h(2) h(1) (z) and passing through (z) becomes a split edge in the tetrahedron ÿ. The labeled edges of ÿ will be
those that were decomposable for ÿ1 and ÿ2. If for ÿ1 and for ÿ2 the split and
labeled edges lie in different planes, while the singular edges of ÿ lie in the same
plane, then we define s(ÿ) = 1; otherwise, s(ÿ) = 0. The operation of combining
two tetrahedra will again be denoted by (4.4.1), and the

procedure for coarsening the tetrahedralization of ÿh by (4.4.2). The
coarsening algorithm is applied only to tetrahedralization, in which there are
elements that differ from the tetrahedra of the initial mesh, i.e., obtained as a
result of bisection. Initially, we can assume that for each grid element ÿ the list of
its nearest neighbors U(ÿ) is already defined and the set ÿ(v) is known for each
node.

ÿ1

ÿ1

116 Ch. 4. Multilevel hierarchical mesh refinement and coarsening

2: Find a common vertex v1 for ÿ1 and ÿ2 other than v 3: Determine
V(ÿ) from V(ÿ1) and V(ÿ2) 4: Set r(ÿ) equal to
the local number of vertex ÿ, respectively

Machine Translated by Google

3: loop over n = 1, ..., K 4:
Calculate the function s(xÿ, tn) for each element 5: Set V = Vnÿ1 and T =
T nÿ1

h(1) (z) 1: Find the mesh vertex v corresponding to 2: Determine
V(ÿ) from V(ÿ1) and V(ÿ2) from v 3: Assign number r(ÿ) to the
edge connecting the nodes corresponding to h (2) (z) and h(2) (z) 4: Determine l1(ÿ),

l2(ÿ) and s(ÿ) from

D(ÿ1) and D(ÿ2) 5: Determine U(ÿ) and adjust U(ÿ h) at neighbors

ÿ1 and ÿ2 6: Remove ÿ1 and ÿ2 from sets ÿ(v), where v ÿ V(ÿ1) V(ÿ2) 7: Add ÿ to
sets ÿ(v), where v ÿ V(ÿ1) V(ÿ2) and v = v

7:

eleven:

Algorithm 28. Coarseness of tetrahedra ÿ = G(ÿ1, ÿ2) and modification of auxiliary
information about the mesh

1: Given a quasi-uniform mesh ÿ0h(V0,T 0) with step d0 2: Determine labeled
edges in triangles or binary flags, split and labeled edges in tetrahedra

9:

10:

Form a set M ÿ T from elements ÿ satisfying the condition diam(ÿ) > s(xÿ, tn)
if set M is not empty then ÿnh(Vn, T n) =
Bisection_method ÿnh(V, T), M Set V =

Vn and T = Tn. Go to step 6 end if Output V and T Generate a

set M ÿ T from elements ÿ satisfying diam(ÿ) < s(xÿ, tn) if
set M

is not empty then

ÿnh(Vn, T n) = Coarse_method ÿnh(V, T), M Put V = Vn and T = T n. Go to
step 12 end if 17: end loop

13:

16:

ing

ÿ1

Rice. 4.19. Circular front movement centered at the bottom left

12:

§ 4.5. Algorithms for constructing dynamic grids

ÿ2

6:

14:

15:

ÿ1

Let us consider the construction in the domain ÿ of a set of grids ÿnh, in which the
local size of the grid element is determined by the grid step function s(x, tn). The function

s(x, t) can be piecewise constant, for example, to track the motion of a shock wave in a
liquid or the propagation of a crack in a solid. In general, s(x, t) is determined in terms of

a posteriori error estimates. Let ÿ0h be a given initial quasi-uniform triangulation or
tetrahedralization of the domain ÿ with step d0. The process of

creating dynamic grids can be schematically represented in the form of Algorithm 29.
The membership of a grid element ÿ in the set M depends on the value s(xÿ, tn) at its

geometric center xÿ. The process of constructing a dynamic mesh is a repeated

application of refinement and coarsening procedures. The essence of the process is that,

having first constructed a grid that condenses to a certain subdomain, then we can

119

The described algorithms for multilevel hierarchical refinement and coarsening of
triangular and tetrahedral meshes are convenient tools for constructing dynamic meshes.
They make it possible to quickly rebuild the grid when modeling nonstationary processes,
adapting it to the features of a changing solution.

Algorithm 29. Building a dynamic mesh

8:

118 Ch. 4. Multilevel hierarchical mesh refinement and coarsening

§ 4.5. Algorithms for building dynamic grids

Machine Translated by Google

§ 5.1. Principles of organizing algorithms

places.

Chapter 5

Let ÿh(V, T) denote the computational grid with the set of nodes V and the set of
elements (simplices) T . Let N(ÿh) be the number of simplices ÿ in this grid. Recall that
we use the term "element" or "simplex" as a generic term for triangle and tetrahedron.
The first important principle of organizing algorithms for rebuilding the grid ÿh is the
locality of basic

operations. Each mesh modification affects only a few simplices, opening up the
possibility of using efficient parallelization techniques. The grid can be modified
independently and simultaneously in several

Rice. 4.20. Motion of a point feature

Locality is also the key to developing robust and efficient algorithms. First, you
can analyze several options for changing the mesh topology and choose the best one.
Secondly, our experience shows that consistent change

REBUILDING SIMPLICIAL GRIDGES VIA LOCAL MODIFICATIONS

coarsen it in the region of condensation, and then refine it again in another subregion
without rebuilding the entire mesh. Acting in this way, one

can model both the movement of an entire front (Figure 4.19) and the movement
of some local feature (Figure 4.20). The use of hierarchically nested grids provides
efficient reinterpolation of grid functions in the finite element solution of nonstationary
partial differential equations on dynamic grids.

This chapter will describe methods for rebuilding triangular and tetrahedral meshes.
The algorithms described in the previous chapters are mainly focused on the
construction of regular grids. In some applied problems, it becomes necessary to
construct grids with special properties, for example, anisotropic grids, in which the
simplices are strongly elongated along the boundary of the region, the shock wave
front, or grids that thicken towards the destruction zone. The presented set of algorithms
makes it possible to build such grids by locally modifying the elements of the original
grid. In addition to this, the technology of local modifications can be used to unravel
the mesh, build a mesh with desired properties, and adapt the mesh to a given mesh
solution.

Since the computational complexity of re-meshing is proportional to the number
of local modifications, the distribution of work among several processors is greatly
simplified. For example, synchronization of processors is possible after each local
modification, i.e., almost immediately after the processor receives this command.

120 Ch. 4. Multilevel hierarchical mesh refinement and coarsening

Machine Translated by Google

§ 5.2. Rebuilding triangulations

3

then to the third, and so on (see § 5.2). This approach requires ordering the
simplices in ascending order of quality using the methods described in § 2.3.

Q(ÿ).

i=1

fictions. The principle of monotonic increase in mesh quality says:

Recall that, according to the notation introduced in § 2.1, normal font (v) is used
to designate a vertex as a mesh object, and bold font (v) is used for the vertex
spatial coordinate vector v.

123

The quality of a simplex is close to 1 if its shape and size in the vicinity of a
particular point x ÿ ÿ in the computational domain are close to the parameters
specified by the user. For example, for a regular grid, it is natural to require that
Q(ÿ) = 1 for an equilateral (regular) simplex of diameter h(x ÿ), where the function
h(x) is given by users and x ÿ denotes the geometric center of the simplex. The
mesh quality is calculated in the same way as before:

Similarly, the quality of an arbitrary set of simplex

0 < Q(ÿ) 1.

ÿ(vi).

The first basic algorithm puts a point in the middle of an edge of the triangle
ÿ, splitting ÿ and the adjacent triangle in half. Rice. 5.1 illustrates the operation of
this algorithm for the internal mesh edge e12, common to triangles ÿ and ÿ.
Algorithm 30 describes the first basic algorithm for triangle ÿ. Algorithm 30 is
easily generalized to the case of a triangle ÿ

with boundary edges. If e is a boundary edge, then the neighboring triangle
ÿ does not exist and Q0 = Q(ÿ). Splitting a boundary edge may also require
updating the list of boundary edges. It is possible that algorithm 30 will never
perform step 5. In this case, we move on to the next

basic operation to improve the quality of ÿ. The computational domain model
can be specified using curvilinear boundaries. In this case, an additional grid
validation

check must be included in the basic algorithm 30 . Assume that the edge
e12 with vertices v1 and v2 lies on some curvilinear boundary (internal or
external), and suppose

Ch. 5. Rearrangement of simplicial grids

If

The minimum set of data structures that define a triangular mesh includes
three structured lists for triangles, boundary edges, and node coordinates.
Rebuilding the grid will require several auxiliary data structures, which will be
described

Thus, the quality of the mesh is the same as the quality of the worst case

Q(ÿ(v)) = min

ÿÿÿh

Basic operations change the grid inside the superelement ÿ(ÿ123). The grid at
the boundary ÿ(ÿ123) and in the remaining computational domain does not
change. Based on this property, one can construct a reliable parallel algorithm
for rebuilding a triangular mesh.

Q(i)(ÿh) Q(j)(ÿh),

The second important principle of organizing mesh rebuilding algorithms is
the monotonic increase in mesh quality. Recall that the concepts of the quality
of a grid Q(ÿh) and the quality of a simplex Q(ÿ) were introduced in § 2.1 for
regular grids. In § 6.2 these concepts will be generalized to the case of anisotropic
meshes. Since we do not use the exact formula for Q(ÿ) in this chapter, we will
simply assume that the procedure for calculating the quality of a simplex is
known, and that

meshing in spatially unrelated places ultimately requires fewer local modifications
than sequential meshing around neighboring elements.

Q(ÿh) = min

cos coincides with the quality of the worst simplex in this set.

Denote by Q(i)(ÿh) the mesh quality after i local modi

simplex in the grid.

ÿÿÿ(v)

§ 5.2. Rebuilding triangulations

Reliable reconstruction of a triangular grid requires the use of both algorithms
that change the topology of the grid and algorithms that change the shape of
triangles. Consider a triangle ÿ(v1, v2, v3) (or ÿ123 for simplicity of notation) with
vertices v1, v2 and v3 and five basic local algorithms to improve its quality. We
describe the basic algorithms for a triangle ÿ located strictly inside the region.
The generalization of these algorithms to the boundary triangle is discussed in
the comments to the algorithms. Let ÿ(ÿ123) denote the set of triangles including
ÿ123 and those of its neighbors that have at least one point

in common with ÿ123:

ÿ(ÿ123) =

Q(ÿ).

below.

122

Note that the last formula does not guarantee that the mesh quality will tend to 1
with an increase in the number of local modifications, since the mesh quality can
only be increased by increasing the quality of the worst mesh element.
Unfortunately, there are cases when local algorithms for modifying the mesh
around the worst simplex cannot improve its quality. In these cases, local
algorithms are applied to the second worst mesh simplex,

For example, for a superelement ÿ(v) formed by simplices with a common vertex
v, we have

i < j.

Machine Translated by Google

v5

v2

v3

Algorithm 30. Putting a node on an edge of a triangle

(5.2.1)

and intermediate values of t define a point on a curvilinear edge. The parameters
t1 and t2 can be stored in an additional structured array of boundary edges. The
coordinates of the midpoint of the edge e12 and the point projected onto the
curvilinear boundary are calculated as follows:

v1 = F(t1),

§ 5.2. Rebuilding triangulations

v 5

1: loop over all edges e of triangle ÿ 2: Find
neighboring triangle ÿ with vertices v1, v2 and v4 as shown in fig. 5.1.

Determine Q0 = min{Q(ÿ), Q(ÿ)} Put a test node v5 in the middle of
the edge e and calculate the qualities of triangles ÿ315, ÿ235, ÿ145 and
ÿ425. Define Q1 = min{Q(ÿ315), Q(ÿ235), Q(ÿ145), Q(ÿ425)} if Q1 >
Q0 then Add node v5 to the grid and replace triangles
ÿ and ÿ with

triangles ÿ315, ÿ235, ÿ145 and ÿ425. Finish algorithm 6: end if 7:
end loop

v1

Let Sÿ315 denote the algebraic area of the triangle ÿ315:

that each point of this edge is mapped to a single point of the curvilinear
boundary. In practice, for each curvilinear boundary, it is convenient to use a one-
parameter function F(t) such that

124

divided as a set of points

v 5

v5

Rice. 5.2. Two cases of v5 node projection onto an external curvilinear boundary
(a, b) and an admissible set of v5 node positions (c, shaded area)

where det() denotes the determinant of the 2 × 2 matrix composed of the vectors
v1 ÿ v3 and v5 ÿ v3. Geometric interpretation of this determinant through the
vector product

v2

4:

= (v1 + v2)/2,

v3abc v3

Rice. 5.1. Local modification of mesh topology after v5 node addition

3:

v2 = F(t2),

Sÿ315 = 12 det{v1 ÿ v3, v5 ÿ v3},

shows that the algebraic area differs from the ordinary area of a triangle only in
sign. Both definitions of area are the same when the vertices of the triangle are
ordered counterclockwise (when looking at the triangle from above). Consider
auxiliary triangles constructed using v5

instead of v5. The grid remains correct if the algebraic areas of the
constructed triangles (ÿ315 and ÿ235) have the same sign as the algebraic
areas of the corresponding auxiliary triangles. A more detailed analysis shows
why the algebraic area method leads to correct mesh verification. Consider first
the case when the

neighboring triangle ÿ does not exist. The straight line given by the edge e23
splits the plane into two half-planes. Let ÿ1 be the half-plane containing the vertex
v1. This half-plane

ÿ1 = x ÿ R2 : det{x ÿ v2, x ÿ v3} > 0 .

Ch. 5. Rearrangement of simplicial grids

v 5

A curvilinear boundary can lead to both a regular grid (a) and an inverted grid (b).

det{v1 ÿ v3,v5 ÿ v3} = (v1 ÿ v3) × (v5 ÿ v3)

v1

125

For a linear function F(t), the points v5 and v5 coincide. For a smooth function
F(t), the second formula gives a node located close to v 5. Otherwise, various
methods of projecting the midpoint v5 onto a given curve can be used. Once the
v5 node is defined, the correctness of the mesh needs to be

verified. As shown in fig. 5.2, the projection of node v5 on the outside

5:

v5 = F((t1 + t2)/2).

Machine Translated by Google

We construct the set D as the intersection of these half-planes:

= F((t1 + t2)/2) leads to a regular grid if v5 ÿ D.

sign when v5 lies in the half-plane ÿ2. Thus, the preservation of the sign of the algebraic
areas is equivalent to the fulfillment of both conditions, i.e., the node v5 belongs to the set
D. According to Lemma 5.2.1, we conclude that the grid is correct.

v5

v4

D = ÿ1 ÿ ÿ2 ÿ ÿ3 ÿ ÿ4.

ÿ4 = x ÿ R2 : det{x ÿ v4, x ÿ v2} > 0 .

127

The set D is shown in fig. 5.2, c. Note that this set is not limited. Lemma 5.2.1. Under the
conditions of exact

arithmetic, the projection v5 =

To determine the correct sign of the algebraic area, we apply the algorithms described
in § 3.3. These algorithms use the function d(v1, v2, v3) which returns either the correct
sign of the algebraic area S ÿ123 or zero if rounding errors could lead to an incorrect
result. For example, a triangle and a line segment that do not intersect may be
misinterpreted as intersecting. Errors of this type are acceptable in re-meshing, since
they only narrow the set D. Therefore, in the worst case, this basic operation will not be
performed. The use of the d(v1, v2, v3) function is also recommended for other basic
operations involving the algebraic areas of triangles.

v1

v2

Consider the case where the edge e12 is part of an internal curvilinear boundary (see
Fig. 5.3). We define two additional half-planes associated with the edges e14 and e42: ÿ3
= x ÿ R2 : det{x ÿ v1, x ÿ v4} > 0

Ch. 5. Rearrangement of simplicial grids

Proof. According to the definition of the half-plane ÿ1, the algebraic area S ÿ235
does not change sign when the node v5 lies in this half-plane. Similarly, the algebraic
area S ÿ315 does not change

Lemma 5.2.1 remains valid, but only with a new definition of the set D. Lemma 5.2.2
will also be true if we compare the signs of the algebraic areas of four auxiliary triangles
with a common vertex v5 and four triangles with a common vertex v5. The second basic
algorithm is applied to a pair of triangles that share an edge. If the union of these

triangles forms a strictly convex quadrilateral, then there exists a second partition of
this quadrilateral into two triangles. Algorithm 31 determines which of the partitions
improves the quality of the mesh.

D = ÿ1 ÿ ÿ2.

v5

v3

v5

v3

The set D is shown in fig. 5.3, c. Note that this set is bounded, in contrast to the previous
case. As shown in the figure, if the union of triangles ÿ and ÿ is not convex, then the set
D includes only a part of these triangles. Otherwise, the set D coincides with the interior
of the convex quadrilateral ÿ ÿ ÿ

ÿ2 = x ÿ R2 : det{x ÿ v3, x ÿ v1} > 0 .

v5

Now consider the partition of the plane into two half-planes of the straight line defined by
the edge e31. Let ÿ2 be the half plane containing the vertex v2:

Lemma 5.2.1 gives a sufficient condition for the location of v5. The same condition
becomes necessary when both neighboring triangles exist. Otherwise, the analysis of
the necessary condition becomes nontrivial. Lemma 5.2.2. Let ÿ315 and ÿ235 be auxiliary
triangles constructed using v5

instead of v5. Then the grid remains correct if the algebraic areas of the triangles
ÿ315 and ÿ235 have the same sign as the algebraic areas of the corresponding auxiliary
triangles.

We construct the set D as the intersection of four half-planes:

Proof. Consider Fig. 5.2 and the line defined by the edge e23. This line divides the
plane into two half-planes. If the nodes v5 and v1 are in different half planes, then the
triangle ÿ153 will intersect the edge e32. Thus, the first sufficient condition is that the
node v5 must be in the half plane ÿ1. Consider the line given by the edge e31 and the
triangle ÿ325. Similar reasoning leads to the conclusion that the node v5 must be in the
half-plane ÿ2. Thus, if

the node v5 belongs to the set D, then the interiors of no two triangles intersect.
Therefore, the grid is correct.

And

§ 5.2. Rebuilding triangulations

v1

v2

Rice. 5.3. Two cases of v5 node projection onto an internal curvilinear boundary (a, b)
and an admissible set of v5 node positions (c)

v1

126

Algorithm 31 can be easily generalized to the case of a triangle ÿ with edges on the
interior boundaries. Since such edges cannot be removed from the mesh, they are not
considered in the algorithm.

v4

.

Machine Translated by Google

4:

ÿQÿ
ÿx

1: loop over all edges e of triangle ÿ 2: Find neighboring

triangle ÿ with vertices v2, v3, and v4 as shown in fig. 5.4. If triangles ÿ and ÿ do not form a

strictly convex quadrangle, then go to the next edge Determine Q0 = min{Q(ÿ), Q(ÿ)}

Calculate the qualities of triangles ÿ124 and ÿ134. Determine Q1 = min{Q(ÿ124),

Q(ÿ134)} if Q1 > Q0 then Replace triangles ÿ and
ÿ with triangles ÿ124 and ÿ134. End algorithm 7: end if 8: end loop

Qÿ(x1 + ÿx, y1) .

(5.2.3)

The node v1 is shifted in the direction of the approximate gradient until the maximum Qÿ is

reached:

§ 5.2. Rebuilding triangulations

ÿ(v1). As a rule, the quality Q(ÿ(v1)) is a non-linear function of the coordinates of the vertex v1.

In this case, the search for the optimal position v1 will require the use of fairly complex

computational methods.

ÿ

Rice. 5.5. Local modification of the mesh by moving node v1

(5.2.2)

|vi ÿ vj|/100}.

Ch. 5. Rearrangement of simplicial grids

5:

ÿQÿ

ÿy

The edge change operation is sometimes called a flip and has another interesting

application. Flip can be used to build a Delaunay triangulation based on an existing mesh. To

do this, we check the Delaunay condition for a pair of neighboring triangles ÿ and ÿ, and if the

condition is not met, then we replace them with triangles ÿ124 and ÿ134 (Fig. 5.4). The

theoretical substantiation of this approach is based on the following theorem [18]. Theorem

5.2.1. A Delaunay triangulation can be obtained from any conformal triangulation by successively

applying the edge replacement algorithm to a pair of

triangles that do not satisfy the Delaunay condition. The third basic algorithm changes the

position of the mesh vertex. Let v1 be one of the vertices of the triangle ÿ. Consider a

superelement ÿ(v1) formed by triangles with a common vertex v1, as shown in Fig. 5.5, a. On
fig. 5.5b ,

the node v1 is placed at the center of mass of the superelement ÿ(v1). This approach is

used in methods for improving the shape of triangles. In general, the optimal position of node

v1

Qÿ(x1, y1 + ÿy) ÿy
ÿx

To search for this maximum, various methods can be used, for example, the bisection method

or various modifications of the Levenberg–Marquardt method [65]. Note that the node v1 cannot

go beyond the superelement, since the quality Qÿ tends to zero as v1 approaches the boundary.

3:

129

Since the position of neighboring nodes can be changed in the process of constructing the

optimal mesh, there is no need to use exact optimization methods. Algorithm 32 solves the

problem of the optimal vertex position approximately. Let v1 = (x1, y1) and, for simplicity, Qÿ =

Q(ÿ(v1)). Denote the approximate gradient of the quality function Qÿ by ÿhQÿ. The components

ÿhQÿ are calculated based on finite differences:

,

v1 := v1 + ÿ ÿhQÿ, ÿ 0.

ÿ

vi,vjÿÿ(v1)

should increase the quality of the worst triangle in superelement

Algorithm 31. Edge replacement

Rice. 5.4. Local modification of the mesh topology after replacing edge e23 with edge e14

ÿx = ÿy = min{ ÿ, min

6:

128

A reasonable value for increments ÿx and ÿy is the square root of machine precision: ÿx = ÿy =

ÿ. For the reliability of the algorithm, it is necessary to check that the calculated increment is
significantly less than the diameter of the superelement, for example, less than 1% of the length

of the minimum edge:

Machine Translated by Google

However, moving a node even within a superelement can confuse the mesh.

4:

The maximum possible displacement of the vertex v1 in the direction ÿhQÿ that
does not violate the topology of the superelement ÿ(v1) (see step 4 of Algorithm 32)
requires finding the intersection of the line defined by this direction with the set D.
Another method is based on comparing the signs of the algebraic areas of triangles ÿi
and ÿi. They have the same sign if v1 is inside D. Removing the boundary edge of the mesh is also wise to avoid when the only

edge that represents an important part of the mesh is removed.

131

3:

telny.

The generalization of Algorithm 33 to the case of a triangle with boundary edge
e12 requires additional analysis. Removing this edge from the mesh can lead to a
significant change in the boundary. Even a slight local change in the boundary can
accumulate from operation to operation. This should be kept in mind when developing
numerical methods, in which the preservation of the area of the computational domain
or its subdomain is especially important.

The edge removal algorithm is the most complex of the basic algorithms
discussed, since it modifies a larger number of triangles. Nevertheless, there is a
simple method for checking the correctness of the modified grid. Not surprisingly, it
is again based on checking the algebraic areas of modified triangles. The modified
grid remains correct if the algebraic areas of the triangles retain their sign. Consider,
for example, the triangle ÿ263 (Fig. 5.6, a), which goes into the triangle ÿ163 (Fig.
5.6, b). Let the algebraic areas of these triangles be

The fourth basic algorithm removes an edge from the mesh. Algorythm 33 can
be interpreted as follows. Let us start moving the vertices of the edge towards each
other, possibly with different speeds. When vertices merge into one, the topology of
the mesh changes. As shown in fig. 5.6, two pairs of edges merge, each into one
edge, and the two triangles disappear from the grid.

Algorithm 32 can be easily generalized to the case of a triangle with vertices lying
on the inner and outer boundaries. Such mesh nodes can only move along boundary
edges. Movement along curvilinear edges should be accompanied by checking the
correctness of the grid. As before, for this it suffices to control the conservation of the
sign of the algebraic area of the triangles ÿ1, ..., ÿn.

Rice. 5.6. Local mesh modification by removing edge e12

130

D = ÿ1 ÿ ÿ2 ÿ ... ÿ ÿn,

Note that such configurations of the superelement ÿ(v1) are possible, when the
motion along the approximate gradient does not increase the quality of Qÿ. In this
case, ÿ = 0, and the algorithm proceeds to the next vertex of the triangle ÿ. If ÿ = 0 for
all vertices of ÿ, then we apply the following basic operation to this triangle.

Consider the case where v1 is an internal mesh node with the initial position v1
and the final position v1. Let ÿi be triangles with a common vertex v1, ÿi be triangles
with a common vertex v1, and ei be a boundary edge of the superelement ÿ(v1)
belonging to the triangle ÿi. This edge defines a line that divides the plane into two
half-planes. Let ÿi be the half-plane containing the point v1. We define the set D as
follows:

which maximizes the quality Qÿ If ÿ >
0, then store the new position of the node v1 in the grid and finish Algorithm
7: end loop

§ 5.2. Rebuilding triangulations

1: loop over all nodes v1 of the triangle ÿ 2: Find
the triangles ÿ1, ÿ2, ..., ÿn that form the superelement ÿ(v1). Let ÿ=ÿ1, as shown

in fig. 5.5, where n = 5 Calculate the approximate gradient ÿhQÿ using
formulas

(5.2.2) Calculate the maximum possible displacement of the node v1 in the
direction ÿhQÿ that does not violate the topology of the superelement. Let
ÿ = ÿmax for this extreme position 5: Find the value of ÿ in the half-open
interval [0, ÿmax) that

Algorithm 32. Node shift

6:

Ch. 5. Rearrangement of simplicial grids

where n is the number of triangles in the superelement. If the point v1 ÿ D, then the
interior of one of the triangles ÿi will intersect the interior of the triangle located on the
other side of the edge ei. Note that the admissible set D coincides with the
superelement ÿ(v1) when it is convex. Otherwise, D is a subset of ÿ(v1), similar to
the configuration shown in Fig. 5.3.

Machine Translated by Google

133

Rice. 5.7. First local modification of the mesh by deleting node v1

9:

The fifth basic algorithm removes a node from the grid along with the triangles

containing it. The void created in the mesh is filled with a smaller number of triangles, which
are constructed using only existing mesh nodes. On fig. Figure 5.7 shows that removing
the inner vertex v1 reduces the number of triangles by exactly two.

§ 5.2. Rebuilding triangulations

new

Rice. 5.8. Second local modification of the mesh by deleting node v1

the point of view is presented in [35] and allows one to significantly simplify the software
implementation of this algorithm. We distinguish Algorithms 34 and 33 because the new

superelement triangulation ÿ(v1) at step 4 of Algorithm 34 is not unique. An alternative new
triangulation is shown in fig. 5.8 and corresponds to the offset of node v1 to node v3. Note
that this basic operation is faster than the edge removal operation. Let us dwell in more
detail on the preservation of the topology of boundaries between different materials. Let in
Fig. 5.7 triangles ÿ,

ÿ2 and ÿ3 belong to one material, and triangles ÿ4 and ÿ5 belong to another. This
means that the edges e23, e34 and e45 must remain the boundary of the first material after
the operation of deleting node v1, i.e. this node can only be moved to node v5 or to node
v2.

6:

First, it is necessary to maintain a list of triangles ordered in ascending order of their
quality. Basic algorithms change the positions of triangles in this list, remove triangles from
the list

4:

1: loop over all edges e of triangle ÿ 2: Find
neighboring triangle ÿ with vertices v1, v2 and v4 as shown in fig. 5.6 3: Find triangles

ÿ1, ÿ2, ..., ÿn that are: (a)

different from triangles ÿ, ÿ; (b) are included in the superelement ÿ(v1) or ÿ(v2) Determine

a new common (virtual) position v1 of the vertices (v1 + v2)

n,

The combination of basic algorithms opens up wide possibilities for rebuilding
computational grids using various criteria described in Chap. 6. Consider what data
structures are required for the efficient implementation of basic algorithms.

132

2

8:

Algorithm 34 is a special case of algorithm 33, where the edge e15 is removed by
moving node v1 to node v5. Such

1

7:

Algorithm 33. Removing an edge

5:

borders. Such situations often arise when using coarse grid approximations of a given

boundary and when constructing grids that are strongly elongated in one direction. The
fourth step of Algorithm 33 requires choosing a

common vertex v1 for v1 and v2. On the one hand, it is natural to consider the problem
of the optimal position of the vertex v1. On the other hand, since a similar problem is
considered in the basic vertex shift algorithm, the complication of Algorithm 33 is not

required. The optimal position of the v1 vertex can be achieved by sequentially applying
two basic algorithms. Therefore, we propose to consider 1 (v1 + v2). only one possible
position of this vertex: v1 = 2

10:

Ch. 5. Rearrangement of simplicial grids

v1 and v2: v1 =

Determine (virtual) triangles ÿ1, ÿ2, ..., ÿ by shifting the vertices v1 and v2 of the

original triangles in v1 If the algebraic areas of the triangles ÿi and ÿi have
different signs for at

least one i, then remove all virtual objects and go to the next edge Determine
the qualities Q0 = min{Q(ÿ1), Q(ÿ2), ..., Q(ÿn)} and Q1 = min{Q(ÿ1), Q(ÿ2), ..., Q
(ÿ n)} if Q1 > Q0 then Delete vertex v2 and triangles ÿ, ÿ from the

grid; change vertex v1 to v1 and triangles ÿi to ÿi. End algorithm end if 11: end

loop

Machine Translated by Google

7:

§ 5.2. Rebuilding triangulations

eleven:

Second, for each triangle ÿ, it is necessary to quickly find triangles in the superelement
ÿ(ÿ). To do this, several optimal methods with arithmetic complexity O(1) are used. The
simplest method is to build a structured nearest neighbor list U(ÿh) for each grid triangle
and modify it after each basic algorithm. The initial construction of such a list requires
O(Nf) arithmetic operations. A detailed description of the algorithm for filling the list U(ÿh)
is presented in § 4.2. Each basic operation changes only a few triangles, so updating

this list has optimal complexity. Search

Algorithm 34. Deleting a node

6:

Algorithm 35 requires four parameters Q0, N1, N2 and N3 to be chosen. By definition,
the desired final mesh quality Q0 1. Int. In Section 6, we consider several examples with
different definitions of the quality Q(ÿ) and formulate the criteria for choosing Q0. The
maximum allowable number of basic operations, N1, controls the computational complexity
of the algorithm and plays an important role in the development of parallel meshing
methods (see § 5.4). For a sequential algorithm, it suffices to choose a number N1,
which is several times greater than the expected number of triangles in the final mesh.
The maximum allowable size N2 of the basket of stored triangles depends on the number
of triangles in the initial and final grids. The recommended value for N2 is approximately
5–10% of the average number of triangles in the grid. Maximum allowable

list.

9:

1: loop over all vertices v of triangle ÿ Let triangles ÿ1,
ÿ2, ..., ÿnÿ1 form a superelement 2: ÿ(v) with vertices v2, v3, ..., vn, as shown

in Fig. 5.7, where ÿ=ÿ1 and n = 6 loop i = 2, ... , Split the superelement ÿ(v) into virtual
triangles ÿ ÿ n are

not connected with
vi edges If the signs of the algebraic areas of triangles ÿk and ÿ with the
same boundary edge of the superelement l are different for at least one k, then
go to the next boundary vertex If the edges of virtual triangles do not
approximate
the original boundaries, then go to the next vertex Calculate local qualities
Q0 = min{Q(ÿ1), ...

triangles included in the superelement ÿ(ÿ) begins with the triangle ÿ. After that, we add
their nearest neighbors from the list U(ÿh) to the already existing nonempty list of
triangles, and then the neighbors of neighbors that have a common vertex with ÿ. This
process is repeated as long as such neighbors exist. It is easy to see that this method
has an optimal order of computational complexity if the number of triangles in the
superelement ÿ(ÿ) is limited. Thirdly, the basic algorithms change the number of basic
mesh objects: nodes, triangles, and boundary edges. These objects are represented by
structured lists

(see § 2.3). Adding a new object to a structured list is the same as adding a new row
to a two-dimensional array. Deleting an object involves shifting all objects below the
deleted object by one line. This is a very time consuming operation and should be
avoided. Instead, we will store an additional list of deleted objects, i.e. the numbers of the
corresponding rows in a structured array. When adding a new object, we first check for
free places in the structured list, and then fill them. If there are no free places, the new
object is added to the end of the list. After the grid is rebuilt, empty places in the structured
list are filled, for example, by renumbering all grid objects. The main stages of mesh
rebuilding are presented in Algorithm 35. Let us pay attention to step 10 of this algorithm,
which is performed when none of the basic algorithms could increase the quality of the
triangle ÿ. The shift of the pointer by one position means that this triangle is temporarily
excluded from the analysis (it is put aside for storage in the trash). During this time, the
triangles in its vicinity may change. Moreover, their change can also affect the triangle ÿ
itself. If this does not happen, then the algorithm will return to the triangle ÿ when the
pointer is set

again to the worst triangle in the grid, i.e. k = 1.

8:

135

3:

10:

..., Q(ÿnÿ1)} and Q1 = min{Q(ÿ 1), ..., Q(ÿ nÿ3)} if Q1 > Q0
then Delete vertex

v from the grid. Replace triangles ÿ1, ÿ2, ..., ÿnÿ1 with triangles ÿ ÿ ÿ
2, ..., nÿ3. End algorithm end if end loop 12: end loop1,

Ch. 5. Rearrangement of simplicial grids

n

5:

and add new triangles. These elementary operations require the fast search algorithms
within a dynamic list, described in § 2.3. For a list of Nf triangles, each elementary

operation requires O(log2 Nf) arithmetic operations. The mesh quality is a monotonic
function of the number of successfully implemented basic algorithms. Unfortunately, the
quality of a particular triangle can fluctuate greatly. This is the main reason for the lack of
more efficient search methods inside a dynamic

134

4:

Machine Translated by Google

5:

137

until the first successful algorithm if a

successful algorithm is found then Modify the

mesh and update the list of triangle qualities and other auxiliary lists else Move

the pointer k := k + 1. If k>N2 or k is greater
than

the number of triangles in the mesh, put k = 1 and m := m + 1 If m>N3, go to

step 14 end if 13: end loop 14: Update structured lists of vertices, triangles,
and boundary

edges

the grid shown in fig. 5.9, b, was built from the grid in fig. 5.9a, containing only 20 triangles.

The initial mesh is a minimal representation of a square model with two round holes. Note a

very rough initial approximation of the holes. Each of them is represented by four curvilinear

ribs.

grids

§ 5.2. Rebuilding triangulations

9:

Note that reliable rebuilding of computational grids requires all five basic algorithms. We

will illustrate this statement with the example of the model shown in Fig. 5.9b . The initial quasi

uniform mesh contains 1827 triangles. Let's try to rebuild it into a calculated regular grid with

the same number of triangles,

10:

which thickens to two holes. The quality of the triangle Q(ÿ) is determined in such a way that

its diameter increases in direct proportion to the minimum distance from the centers of the

holes. It would seem that this can be achieved by placing several additional nodes on the

boundaries of the holes and shifting the rest of the grid vertices using the basic algorithm 32.

Nevertheless, after 13,000 iterations of algorithm 35, the initial grid remained virtually

unchanged. The final mesh is shown in fig. 5.10, a. If we add the basic algorithms 30, 33 and

34, which add a node and remove an edge or node, we get a mesh very similar to the mesh

shown in Fig. 5.10, b. Algorithm 35 took 47,287 iterations to build this grid. As we expected,

97% of the iterations involved shifting the grid nodes. The quality of this mesh is Q(ÿh) = 0.73,

and the average quality of the triangles is 0.88.

2: loop from 1 to N1

Take the k-th worst triangle ÿ from the list If k = 1 and Q(ÿ) Q0,

then terminate the algorithm Calculate the superelement ÿ(ÿ)

12:

1: Calculate the qualities of the triangles and create a block-ordered list of them. Initialize

helper structures. Choose the desired quality Q0 for the final mesh, the maximum

allowable number of basic operations N1, the maximum allowable basket size N2, the

maximum allowable number of baskets N3, set the pointer k = 1 and the counter m = 1

the number of bins N3 allows the algorithm to terminate quickly when a further increase in

mesh quality is impossible. For example, the geometric features of the computational domain

(sharp corners, narrow sections, etc.) may impose restrictions on the quality of triangles. In this

case, the baskets of triangles will contain the same triangles. We assume that the number of

singular triangles is small and use the constant value N3. Note that N2N3 must be greater than

the average number of triangles in the grid. At first glance, it seems strange that Algorithm 35

does not require, as an input, the desired number of triangles in the final mesh. In fact, we

assume that this information is contained in the definition of the quality of the grid and the

quality of the triangle, which imposes certain requirements on the formation of Q(ÿ). In

other words, Q(ÿh) = 1 only if the mesh ÿh contains the desired number of triangles. Algorithm

35 is applicable for constructing computational grids based on a very coarse initial grid. For

example, quasi-uniform

eleven:

136

8:

4:

´

3:

7:

Rice. 5.9. Construction of a quasi-uniform grid based on a coarse initial

Algorithm 35. Mesh rebuilding

6: Apply basic algorithms to ÿ (in no particular order)

Ch. 5. Rearrangement of simplicial grids

The parameter Q0 was chosen so that the quality of an isosceles right triangle was less

than Q0. In a number of finite element methods, triangles with angles not exceeding 90ÿ make

it possible to construct numerical schemes with additional properties, such as the discrete

maximum principle.

Machine Translated by Google

Quasi-uniform grids Regular grids

1.00

Determination of specific node properties, in addition to the data already given, can

be automated if additional information about the model is available. For example, if the

region boundary is represented by several curves, then it is reasonable to fix the grid

nodes corresponding to the start and end points of these curves. If the boundary is defined

as a set of edges, then the common vertex of two edges forming an acute angle can be

marked as fixed. Special properties can also be introduced for boundary edges and

triangles. Additional information about mesh objects allows you to effectively control the

mesh rebuilding process. We will return to this issue in § 5.4. The estimation of the

computational complexity of the algorithm 35 is made up of the estimations of the

complexity of executing the basic operations (W1), the support of various data structures

(W2), and searching

in dynamic unstructured lists (W3). The computational complexity of a single basic

operation and the associated data structure update is independent of the grid size.

Unfortunately, fast searching in unstructured lists depends on the size of the grid.

Therefore, on very fine grids, one should expect that W3 W1 + W2. Consider a sequence

of grids with an increasing number of triangles. Tab. Figure 5.1 shows the relative cost of

one iteration of Algorithm 35 in constructing quasi-uniform meshes ÿh, starting from the

very coarse mesh shown in fig. 5.9, a, as well as when these grids are rebuilt into regular

grids ÿh, condensing to holes and similar to the

grid shown in Fig. 5.10. Recall that the dynamic list of triangle qualities is divided into

blocks of length O(log2 Nf), and that an increase in the number of such blocks leads to an

increase in the time of one operation with this list. The data presented in the table shows

that W3 begins to noticeably dominate when the number of triangles exceeds 105.

108 357 1.11

time

139

3.36

438,003 3.53

1,066,444 9.05

0.88

Adding the last basic algorithm results in the grid shown in fig. 5.10, b. A detailed
analysis of Algorithm 35 shows that the number of iterations has been approximately
halved: to 22682, the mesh quality has increased to Q(ÿh) = 0.78, and the average quality

of triangles has increased slightly: to 0.89.

11 916

Rice. 5.10. Reconstruction of a quasi-uniform grid into a regular grid that thickens towards
holes

986 1.00930

138

0.80

Table 5.1
Relative average cost of one iteration of the algorithm

35

466 742

116 726

Thus, the minimal ability to change the mesh topology allows it to be rebuilt in a
reasonable number of operations. Extending the set of topological operations leads to
faster convergence of the algorithm. Note also that a complete re-meshing requires several
iterations per mesh element (12 in this example). The optimal order of the basic algorithms
at step 6 of Algorithm 35 depends not only on the properties of the initial and final grids,
but also on

the dynamics of the process. For example, rebuilding an anisotropic grid with triangles
stretched in the horizontal direction into an anisotropic grid with triangles stretched in the

vertical direction can occur through an intermediate quasi-uniform grid. At the beginning of
the re-meshing process, the first basic algorithm will be executed much more often than
other algorithms. Then the fourth and fifth basic algorithms will begin to dominate.
Therefore, the optimal order of the underlying algorithms is practically impossible to
determine in advance. The vertices of the square in fig. 5.10 are the singular points of the
model. The grid nodes at the vertices of a square are usually set once and for all, and the
underlying algorithms must preserve their position. One possible solution is to create an
additional list of special mesh node properties and slightly modify the underlying
algorithms. For example, Algorithm

32 should not move a grid node marked as fixed.

9934 1.00

§ 5.2. Rebuilding triangulations

Nf (ÿ h) timeNf (ÿh)

Ch. 5. Rearrangement of simplicial grids

1.84

904 210

Machine Translated by Google

Algorithm 36. Placement of a node on an edge of a tetrahedron

141

All basic operations change the mesh inside the superelement ÿ(ÿ1234)
formed by tetrahedra that have at least one point in common with ÿ1234:

The minimum set of data structures that define a tetrahedral mesh includes
three structured lists for tetrahedra, boundary faces, and vertex coordinates.
Building additional data structures based on this minimum information is discussed

1: loop over all edges e of the tetrahedron
ÿ 2: Find tetrahedra ÿ1, ..., ÿn with a common edge e, as shown in fig. 5.1

and put ÿ1 ÿ ÿ. Determine Q0 = min{Q(ÿ1), ..., Q(ÿn)} Put a test node
v7 in the middle of the edge e
and split and ÿb each tetrahedron ÿi into two virtual tetrahedra ÿa),

Q(ÿb 1), .. ., Q(ÿa n), Q(ÿb n)} Define Q1 = min{Q(ÿa if Q1 > Q0 then

Add node v7 to the mesh and replace each of the tetrahedrons
and ÿb ditch ÿi

with two tetrahedra ÿa i . Finish Algorithm 6: end if 7: end loop

4

i .

Rice. 5.11. Placement of node v7 on edge e12

The algorithm can be easily generalized to the case of a tetrahedron with one
or more edges lying on the boundary of the region. Additional analysis is required
only for edges lying on curvilinear boundaries. We will call such edges curvilinear
edges. Note that additional information about curvilinear boundaries

Most of the existing approaches to improve the properties of a tetrahedral
mesh use a combination of different methods such as mesh smoothing, mesh
topology modification, and mesh refinement.

4:

The grid at the boundary ÿ(ÿ1234) does not change. As noted in § 5.1, this
property is the key to developing parallel rebuilding methods.

Ch. 5. Rearrangement of simplicial grids

i

§ 5.3. Rearrangement of tetrahedrizations

In § 5.2 we showed that expanding the set of basic operations has a positive
effect on the convergence of the meshing method. For tetrahedral meshes, seven
basic algorithms can be distinguished that change the mesh topology and the
shape of tetrahedra. Consider a tetrahedron ÿ(v1, v2, v3, v4) (or ÿ1234 for
simplicity of notation) with vertices v1, v2, v3, and v4, whose quality is to be
increased. We present the structure of basic algorithms for a tetrahedron located
inside a region. Extensions of the algorithms to the boundary tetrahedron will be
discussed in the comments to the algorithms.

5:

grids.

below.

3:

ÿ(ÿ1234) =

140

Reliable rebuilding of tetrahedral meshes is a much more difficult problem
than rebuilding triangular meshes. And the reason is not just the extra dimension.
The set of fundamental results for triangulations does not extend to
tetrahedralizations. For example, it is widely known that regular triangles of the
same size cover the plane without intersections and voids. A similar statement
for regular tetrahedra is false, although there are identically shaped tetrahedra
for which the statement is true. There is also no simple local modification of the
tetrahedral mesh for which an analogue of Theorem 5.2.1 on the construction of
the Delaunay triangulation would be true. Even the Delaunay tetrahedrization
can contain slivers (i.e., tetrahedra with dihedral angles close to 180°), which
lead to various problems in the numerical solution of partial differential equations.

i

ÿ(vi).

§ 5.3. Rearrangement of tetrahedrizations

These methods lead to various local modifications of the mesh, which we will
call basic operations.

i=1

The first basic algorithm puts the node in the middle of the edge of the
tetrahedron ÿ and splits the tetrahedra adjacent to the edge in half. The algorithm
is similar to algorithm 30 for a triangle. Since the dihedral angle of a tetrahedron
is less than 180°, the number of tetrahedra with a common edge is greater than
or equal to three. Rice. 5.11 illustrates the operation of this algorithm for an
internal mesh edge that is common to the four tetrahedra ÿ1234, ÿ1245, ÿ1256,
and ÿ1263.

1

Machine Translated by Google

Vÿ1347 = 6

det{v3 ÿ v1,v4 ÿ v1,v7 ÿ v1},

143

i

Many algebraic volumes are calculated for two positions of the tetrahedron
vertex. For example, for the vertex v7, an efficient implementation of these
calculations is based on the selection of the vector a, which does not depend on
the position of this vertex and can be calculated only once.

In computer calculations, the determination of the sign of the algebraic
volume depends on roundoff errors. Vgl. 3, we proposed two methods for solving
this problem: (a) computing the determinant (5.3.1) with extra precision, and (b)
introducing a function d(v1, v2, v3, v4) that returns zero when the sign of the
determinant cannot be defined exactly. We recommend using one of these
methods whenever you need to find the sign of an algebraic volume. Note that
the zero value of the function d(v1, v2, v3, v4) leads to errors of the first kind,
which are not critical for rebuilding the grid and only limit the number of allowed
basic operations. The second basic algorithm is applied to a pair of tetrahedra
that have a common face. If the union of these tetrahedra

forms a convex polyhedron in which no four points lie in the same plane, then
there is another partition of this polyhedron into three tetrahedra (see Fig. 5.12).
Algorithm 37 determines which of the beats improves the quality of the mesh.
Unlike the 2D flip algorithm, the number of elements in the grid is increased by 1.

(5.3.1)

Algorithm 37 can be easily generalized to the case of a tetrahedron ÿ
with faces lying on the inner boundaries. Since such faces cannot be
removed from the mesh, the algorithm does not need to consider them.

i

v7 = (v1 + v2)/2,

i

As with triangular meshes, node projection can lead to mesh entanglement. To
check the correctness of the mesh, we use an analogue of Lemma 5.2.1. Let us
consider the superelement ÿ(e12) formed by tetrahedra with a common edge e12
and select those faces that lie on the surface of this superelement and do not
contain the vertex v7. Each of these faces defines a plane that divides the space
into two half-spaces. Let ÿi be half-spaces containing the vertex v7. We define the
set D as the intersection of the half-spaces ÿi. Lemma 5.3.1. The projection v7 =
F(v7) leads to a regular grid if v7 ÿ D. The proof of this lemma repeats the
arguments of Lemma

5.2.1 and is therefore not given. An important consequence of the proof
concerns the

sign of the algebraic volume of the tetrahedron with vertex v7. The algebraic
volume of a tetrahedron ÿ1347 is calculated by the formula

are auxiliary tetrahedra built using v7
instead of v7. The grid remains correct if the algebraic volumes of the tetrahedra
ÿa and ÿa (similarly for the tetrahedra ÿb and ÿb) have the same sign. Let us
give another interpretation of formula (5.3.1):

The third basic algorithm is applied to a triple of tetrahedra that have a
common edge. This algorithm is the inverse of the second basic algorithm, i.e.,
successive application of these algorithms returns the grid to its original position.
If the union of three tetrahedra forms a convex polyhedron, then there is another
partition of this polyhedron into two tetrahedra (see Fig. 5.12).

Ch. 5. Rearrangement of simplicial grids

i

can be available if the computational domain model is specified using CAD. CAD
libraries allow you to work effectively and reliably with curved boundaries and
should be used whenever possible.

Vÿ1347 =

Rice. 5.12. Replacing face f234 with edge e15

1
((v3 ÿ v1) × (v4 ÿ v1)) (v7 ÿ v1) = a (v7 ÿ v1).

use.

6

i

Note that this algorithm is also an analogue of the two-dimensional
algorithm 31, but reduces the number of elements in the grid by one. So

142

Let us assume that each point of a curvilinear edge is mapped to
a single point of the curvilinear boundary, and the function F(x)
describes this mapping. The coordinates of the midpoint of the edge
e12 and the point projected onto the curvilinear boundary are
calculated as follows:

where det is the determinant of a 3 × 3 matrix with columns v3 ÿ v1, v4 ÿ v1, and
v7 ÿ v1. Consider auxiliary (virtual) tetrahedra constructed using v7 instead of
v7. Following the notation introduced by ÿb in Algorithm 36, we denote these
tetrahedra by ÿ a The following analog of Lemma 5.2.2 is correct. and ÿb Lemma
5.3.2. Let ÿ a

i

§ 5.3. Rearrangement of tetrahedrizations

1

v7 = F(v7).

i .

i

Machine Translated by Google

Algorithm 38 considers only (n ÿ 2) partitions of the polygon P into triangles fk, although the

number of possible partitions can reach (n ÿ 2)! for a convex polygon. Such a large number of possible

partitions makes their exhaustive enumeration impractical for n > 8. In the numerical experiments

presented below, Algorithm 38 is always executed, but the number of partitions considered is limited

to three hundred. There is no unequivocal opinion among specialists about the need for a fourth basic

algorithm for the completeness of the set of topological operations with a grid. We note the works [49,

60, 72], where,

based on the analysis of a large set of meshes, it was shown that the addition of operations with

polygonal faces can significantly improve the quality of tunable meshes. The experiment at the end

of this section confirms the results of these works, although the additional increase in mesh quality is

negligible. The fifth basic algorithm changes the position of the grid node. Let v1 be one of the

vertices of the tetrahedron ÿ. Consider a superelement ÿ(v1) formed by tetrahedra with a common

vertex v1. On fig. 5.14 the node v1 is shifted to the geometric center of the superelement ÿ(v1). This

approach is used in methods for improving the shape of tetrahedra. Unlike its two-dimensional

counterpart, it often results in poorly shaped tetrahedra. In

general, the optimal position of the vertex v1 should increase the quality of the worst tetrahedron

in the superelement ÿ(v1). Quality

§ 5.3. Rearrangement of tetrahedrizations

4:

k

3:

Algorithm 37. Replacing a face with an edge

36:

7:

5:

1: loop over all faces f of tetrahedron ÿ 2: Find

neighboring tetrahedron ÿ with face f and vertices v2, v3, v4, v5, as shown in fig. 5.12. If the

tetrahedra ÿ and ÿ do not form a strictly convex polyhedron, then go to the next face

Determine Q0 = min{Q(ÿ), Q(ÿ)} Calculate the qualities of tetrahedra ÿ1425, ÿ1235 and

ÿ1345. Determine Q1 =

min{Q(ÿ1425), Q(ÿ1235), Q(ÿ1345)} if Q1 > Q0 then

Replace ÿ and ÿ tetrahedra with ÿ1425, ÿ1235 and ÿ1345 tetrahedra. End algorithm 7:

end if 8: end loop

k

Algorithm 38. Replacing an edge with a polygonal face

4:

8:

145

5:

1: loop over all edges e of the tetrahedron ÿ 2: Find

tetrahedra ÿ1, ..., ÿnÿ2 with a common edge e, as shown in fig. 5.13 where e ÿ e12; put ÿ1 ÿ ÿ.

Determine Q0 = min{Q(ÿ1), ..., Q(ÿnÿ2)} loop i = 3, ... , Split polygon P with vertices v3,

v4, ..., vn (n = 7 in Fig. 5.13) into triangles f3, f4, ..., fnÿ2,

connecting vertex vi

with other vertices not connected to vi by an edge and ÿb Construct tetrahedra ÿa

with a common base fk and distinct vertices v1 and v2, where k = 3, ... , n ÿ 2), Q(ÿb

3), ..., Q(ÿa nÿ2), Determine Q1 = min{Q(ÿa Q(ÿb nÿ2)} if Q1 > Q0 then Replace

tetrahedra

ÿ1, ..., ÿnÿ2 tetrahedra ÿa and ÿb k, where k = 3, ... , n ÿ 2. End the algorithm end if 10: end loop 11: end loop

Rice. 5.13. Replacing the edge e12 with a triangulated polygonal face f34567

9:

Thus, there are two flip operations in space . We do not present the formal structure of the third basic

algorithm due to its obviousness. In what follows, referring to Algorithm 37, we will mean both flip

operations. The fourth basic algorithm is a generalization of the third basic algorithm for the case of a

larger number of tetrahedra with a common edge.

To illustrate, we will use the configuration shown in Fig. 5.13. The edge e12 is replaced by a

triangulated polygonal face P with vertices v3, v4, v5, v6 and v7. We note that the vertices of this

polygon usually do not lie in the same plane, and one can speak of its convexity only in the sense of

the convexity of its projection onto the plane that deviates least from its vertices.

6:

Ch. 5. Rearrangement of simplicial grids

n3:

144

k

Machine Translated by Google

Note that a simple replacement of Qÿ by 1 ÿ Qÿ makes it possible to apply standard
methods for minimizing functionals without modifying them. Since Qÿ is not a

quadratic functional, the gradient descent method (in our case, the gradient
ascent method) usually does not lead to the calculation, even approximate, of the
local maximum of the functional on the superelement ÿ(v1). We do not recommend

Let v1 = (x1, y1, z1) and, for simplicity, Qÿ = Q(ÿ(v1)). The approximate gradient
Qÿ is calculated using finite difference discretization:

147

.

cyclic repetition of the procedure described above, as is done in standard methods
for minimizing (or maximizing) functionals. Rebuilding the grid can repeatedly
change any of the tetrahedra, so there is a high probability that the configuration of
the superelement ÿ(v1) will change rapidly. Algorithm 39 is used to find the parameter
ÿ, which can use the bisection method or various versions

of the Levenberg–Marquard method.

T

ÿz
Qÿ(x1, y1, z1 + ÿz)

3:

|vi ÿ vj|/100}. vi,
vjÿÿ(v1)

Rice. 5.14. Local modification of the mesh by moving node v1

,

Another method for checking the correctness of the mesh is to calculate the
algebraic volumes of tetrahedra ÿ1, ..., ÿn for each new position of their vertex v1.
The mesh remains correct if these volumes retain their sign when the v1 vertex is
shifted.

Ch. 5. Rearrangement of simplicial grids

ÿx

Q(ÿ(v1)) is the nonlinear functional of the coordinates of the vertex v1; therefore, as
in the case of triangular grids, the search for the optimal position of this vertex
requires the use of minimization (or maximization) methods for nonconvex functionals.

Note that the node v1 cannot go beyond the superelement, since the quality Qÿ
tends to zero when v1 approaches its boundary. However, moving a node even
inside a superelement can confuse the grid when that superelement is not convex.
The analysis of sufficient conditions for mesh correctness is similar to the analysis
developed for triangular meshes. For an internal grid node v1, the admissible set D
of its positions is defined as the intersection of the half-spaces ÿ1, ..., ÿn. The half-
space is defined by one of the boundary faces of the superelement ÿ(v1) and contains
the initial node v1. Note that the set D coincides with the superelement ÿ(v1) only
when it is convex.

,

v1 := v1 + ÿ ÿhQÿ, ÿ 0.

Algorithm 39 can be easily generalized to the case of a tetrahedron with vertices
lying on the inner and outer boundaries. Such vertices can only move along boundary
faces. Movement along curvilinear faces must be accompanied by checking the
correctness of the grid. As before, for this it suffices to control the conservation of the
sign of the algebraic volumes of the tetrahedra ÿ1, ..., ÿn. Likewise,

Algorithm 39. Node shift

Qÿ(x1 + ÿx, y1, z1)

A reasonable value for the increments ÿx, ÿy, and ÿz is the square root of machine
precision. For the reliability of the algorithm, it is necessary to check that the
calculated increment is significantly less than the diameter of the superelement, for
example, less than 1% of the length of the minimum edge:

146

1: loop over all vertices v1 of the tetrahedron ÿ 2:
Find the tetrahedra ÿ1, ÿ2, ..., ÿn that form the super element ÿ(v1); put ÿ=ÿ1, as

shown in fig. 5.14, where n = 8 Calculate the approximate gradient ÿhQÿ
Calculate

the maximum possible displacement of the vertex
v1 in the direction ÿhQÿ that does not violate the topology of the
superelement. Let ÿ = ÿmax for this extreme position 5: Find the value of
ÿ in the half-open interval [0, ÿmax) that maximizes Qÿ 6: If ÿ > 0, then

store the new position of v1

Qÿ(x1, y1 + ÿy, z1)
ÿy

ÿx = ÿy = ÿz = min{ ÿ, min

in the grid and finish algorithm 7:
end loop

§ 5.3. Rearrangement of tetrahedrizations

The node v1 is shifted along the approximate gradient until the maximum Qÿ is
reached:

4:

ÿhQÿ =

Machine Translated by Google

v3

8:

v2

v7

The generalization of Algorithm 40 for curvilinear boundaries requires the projection of the vertex v1

obtained at step 4 of the algorithm onto the curvilinear boundary. Like any other vertex displacement, the

projection must fall within the allowable set of shifts for which the mesh does not get tangled. A sufficient

condition for maintaining the correctness of the grid is to check the signs of the algebraic volumes at step 6

of the algorithm. An estimate of the local curvature of the boundary can also be used to determine if a

curvilinear edge can be removed. The seventh basic algorithm removes a node from the grid along with all

tetrahedra containing it. The void created in the grid is filled with fewer tetrahedra. To construct these

tetrahedra, Algorithm 41 uses only existing mesh nodes.

(v1 + v8)

Define new (virtual) tetrahedra ÿ by shifting vertices v1 and v8 of the

original tetrahedra into v1 and ÿ

Algorithm 40. Removing an edge

6: If the algebraic volumes of tetrahedra ÿ

Step 4 of algorithm 40 requires choosing a common vertex v1 for vertices v1 and v8. On the one hand,

it is natural to consider the problem of the optimal position of the vertex v1. On the other hand, since a similar

optimization problem is considered in the basic vertex shift algorithm, the complication of algorithm 40 is not

required. The optimal position of the v1 vertex can be achieved by sequentially applying two basic algorithms.

That's why we

v1

the movement of a node lying on an edge that separates the boundary faces, or an edge of a CAD model,

must occur only along this edge. The sixth basic algorithm removes an edge from the mesh. The algorithm

can be

interpreted as follows. We begin to move the vertices of the edge towards each other, possibly at

different speeds. When vertices merge into one, the topology of the mesh changes. As shown in fig. 5.15,

when vertices v1 and v8 merge, each of the four pairs of edges merges into one edge, and four tetrahedra

with a common edge e18 disappear from the grid. In Valgorithm 40, we use the notation shown in Fig. 5.15.

2

i

1,

1,

v8

v6

v1

2

i

m,

v4

v5

v7

Ch. 5. Rearrangement of simplicial grids

have

149

v1 and v8:v1=

v4

v5

9:

1: loop over all edges e of the tetrahedron ÿ 2: Find the

tetrahedra ÿ1, ÿ2, ..., ÿn that form the super element ÿ(e), and set ÿ=ÿ1 as shown in fig. 5.15 where n =

4 3: Find the tetrahedra ÿ ÿ that are: (a) different from the tetrahedra in the superelement ÿ(e),

(b) are

included in the superelement ÿ(v1) or ÿ(v8) Determine the new common (virtual) position v1 vertices 1

i.

we propose to consider only one possible position of the nova (v1 + v8). The exception is the cases when

one vertex: v1 = from the vertices of the edge e18 lies on the boundary of the region. In this case,

the vertex lying inside the region is shifted to the boundary vertex.

ÿÿ2, ...,

i

v6

v2

Rice. 5.15. Local mesh modification by merging v1 and v8 vertices

Algorithm 40 can be easily generalized to the case of a boundary edge lying inside a flat section of the

model boundary. An edge from one of the vertices lying on the model edge is removed from the mesh by

shifting the opposite vertex to this vertex. Removing a mesh edge that lies completely on a model edge, i.e.,

at the intersection of two flat sections of the boundary, requires checking that this is not the only edge that

represents an important part of the geometric model.

Note that checking the signs of algebraic volumes is sufficient for a node v lying inside the domain ÿh

and outside the internal boundaries

148

ÿ

5:

different signs for at least one i, then delete all virtual objects and go to the next edge Determine

the qualities Q0 = min{Q(ÿ1), Q(ÿ2), ..., Q(ÿn)} and Q1 =

min{Q(ÿ 1), Q(ÿ 2), ..., Q(ÿ m)} if Q1 > Q0 then Delete vertex v8 and tetrahedra ÿ1, ..., ÿn from

the grid; replace vertex v1 with v1 and tetrahedra ÿ with ÿ End

algorithm 10: end if 11:

end loop
v3

1

§ 5.3. Rearrangement of tetrahedrizations

4:

7:

2, ...,

m,

Machine Translated by Google

with a common boundary face of the superelement ÿ(v) are different for at least one

k, then go to the next boundary vertex If the faces of virtual tetrahedra do not

approximate

the interior and boundary surfaces, go to the next vertex Determine the local

qualities ...

151

ÿ

1: loop over all vertices v of the tetrahedron ÿ 2: Find the

tetrahedra ÿ1, ÿ2, ..., ÿn that form the superelement ÿ(v) and put ÿ=ÿ1. Count the number of

vertices Mv

6:

m.

a complex algorithm whose generalization to an arbitrary quality Q(ÿ) is not obvious. The operation

inverse to the basic algorithm 40 is considered in [49]. It can be shown that it reduces to a combination

of flip algorithms if none of them reduces the mesh quality. The operation of rebuilding the

triangulation of the polygonal face f34567 (see Fig. 5.13) is considered in [72] and is a combination of

the basic algorithm 38 and its inverse if none of these operations reduces the mesh quality. The

combination of basic algorithms opens up wide possibilities for constructing or rebuilding computational

grids. Let's consider what data structures are required for efficient implementation of basic algorithms.

Note that these structures will be similar to the data structures used

to rebuild triangular meshes.

4:

(e.g. material boundaries). In this case, the superelement ÿ(v) is j

5:

8:

Otherwise, several additional checks are required for the approximation of the outer and inner

boundaries by the faces of virtual tetrahedra. For flat boundaries, it suffices to check that all these

boundaries are preserved with machine accuracy. For curved boundaries, you need to make sure that

the topology of the new discrete boundaries matches the topology of the original boundaries. For

example, suppose that the faces f124, f145, f157, and f172 in Fig. 5.16, a, approximate part of the

curvilinear boundary of the geometric model. The topology of this boundary is preserved for one of

two pairs of new faces: f245, f257 or f247, f457. As in two dimensions, analysis of the topology of a

boundary is made easier by treating the basic node removal operation as a special case of the more

general edge removal operation.

Ch. 5. Rearrangement of simplicial grids

1, ...,

§ 5.3. Rearrangement of tetrahedrizations

..., Q(ÿn)} and Q1 = min{Q(ÿ 1), ..., Q(ÿ m)} if Q1 > Q0 then
Delete node v from the

grid, replace tetrahedra ÿ1, ..., ÿn tetrahedra ÿ Finish the algorithm end if end

loop 12: end loop

9:

The seven basic algorithms described above are most often used in methods for improving

mesh quality [86]. We also note a few additional mesh operations that appear in the literature. To

improve the shape of tetrahedra, the authors of [60] propose to add Steiner nodes to the mesh using

enough

on the boundary of the superelement

loop i = 1, ... , Mv Split the

superelement ÿ(v) into virtual tetrahedra ÿ ÿ connecting the boundary vertex vi with
the other 1, ..., boundary vertices not connected to vi by edges If the signs of the algebraic

volumes of the tetrahedra ÿk and ÿ

Rice. 5.16. Local modification of the mesh by deleting a node v1

10:

150

3:

7:

eleven:

l

Algorithm 41. Deleting a node

is a polyhedron.

m,

First, as in the case of triangular meshes, it is necessary to maintain a list of tetrahedra ordered

in ascending order of their quality. As in the two-dimensional case (see § 5.2), we will use a block

structured list and the algorithms for modifying it, described in § 2.3. Second, for each vertex v of the

tetrahedron ÿ, it is necessary to quickly find tetrahedra in the superelement ÿ(ÿ). To do this, several

optimal

methods with arithmetic complexity O(1) are used. The simplest method is to build a structured

list of nearest neighbors for each tetrahedron of the grid U(ÿh) and modify it after each basic algorithm.

The number of such neighbors is at most four. The initial construction of such an ordered list requires

O(Nt) arithmetic, where Nt is the number of tetrahedra in the grid, and is discussed in detail in § 4.3.

Each basic operation modifies only a few tetrahedra, so updating this list

Machine Translated by Google

grids

has optimal difficulty. The construction of the superelement ÿ(ÿ) is based on the
list U(ÿh) and begins with ÿ. After that, we add to the list its nearest neighbors,
and then the neighbors of neighbors that have a common vertex with ÿ. This
process is repeated as long as such neighbors exist.

Note that Algorithm 35 does not guarantee meshing with high quality Q(ÿh),
since Q(ÿh) is always equal to the quality of the worst tetrahedron. The geometry
of the model, in particular the presence of sharp dihedral angles, imposes a
limitation on the maximum quality of near-boundary tetrahedra and hence on the
mesh quality that can be achieved. Nevertheless, the average quality of tetrahedra
can be rather high. Note also that the given set of basic algorithms does not
guarantee that any original mesh can be rebuilt into any other mesh of higher
quality.

0.7

Algorithm 35 is applicable for constructing computational grids based on a
very coarse initial grid. For example, the mesh shown in Fig. 5.17a contains 24
nodes and 36 tetrahedra. Note that the initial mesh contains only four more nodes
than is required for the minimal representation of a parallelepiped model with a
hole in the form of a regular hexagonal prism. The parameter Q0 = 0.81 was
chosen so that the quality of the canonical

tetrahedron was less than Q0. In a number of finite element methods,
tetrahedra with dihedral angles not exceeding 90° make it possible to construct
numerical schemes with additional properties, such as the discrete maximum
principle.

§ 5.3. Rearrangement of tetrahedrizations

Net
0.8

quasi-uniform 0 28 7002 8285 5998 2761 450

T a b l e 5.2
Distribution of tetrahedra by quality

regular-2 0 5 8389 17 316 13 027 6018 1086

b

´

regular-1 0 0 3416 9455 6854 3244 506

152

0.4 0.5 0.6

Rice. 5.17. Construction of a quasi-uniform grid based on a coarse initial

with approximately the same number of tetrahedra, which thickens towards the
hole. The quality of a tetrahedron is determined in such a way that its size
increases in direct proportion to the square of the distance to the central axis of
the hole. The trace of the grid on the surface of the region is shown in Fig. 5.18,
a. The quality of the reconstructed grid Q(ÿh) = 0.53 with an average

We now rebuild the quasi-uniform grid into a regular grid

Thirdly, the basic algorithms change the number of basic mesh objects: nodes,
tetrahedra, and boundary faces. These objects are represented by structured
lists (see § 2.3). Adding a new object to a structured list is the same as adding a
new row to a two-dimensional array. Deleting an object involves shifting all objects
below the deleted object by one line, which is an expensive operation. Instead,
we will store additional lists of removed nodes, boundary faces, and tetrahedra,
i.e., the numbers of the corresponding rows in structured arrays. When adding a
new object, we first check for free places in the structured list and fill them. After
rebuilding the grid, empty spaces in the structured list are filled, for example, by
moving grid objects from the end of the list to empty spaces. Rebuilding the grid
is carried out by algorithm 35, described in § 5.2. Since the adaptation of this
algorithm to tetrahedral meshes consists in replacing triangles with tetrahedra and
edges with faces, we will not repeat the structure of this algorithm. In what follows,
we will refer to Algorithm 35 as an algorithm

for rebuilding tetrahedral meshes.

Quality

Ch. 5. Rearrangement of simplicial grids

Returning to the grid shown in Fig. 5.17b, we note that its quality is Q(ÿh) =
0.45, while the average quality of tetrahedra is 0.67. Although Q(ÿh) is much
smaller than Q0, nevertheless, the maximum dihedral angle is 138ÿ and the
minimum is 22ÿ, which is an acceptable result for tetrahedral mesh generators.
The second line in the table. 5.2 shows the quality distribution of tetrahedra in this
casi-uniform mesh. Note that only 28 tetrahedra have a quality in the range (0.4,
0.5].

by local changes in the mesh topology, which constantly increase its quality.
Despite the lack of theoretical results, in practice Algorithm 35 makes it possible
to successfully build grids close to optimal for efficient approximate solution of
partial differential equations.

153

0.9 1.0

A

Machine Translated by Google

A

Rice. 5.18. Construction of regular grids based on a quasi-uniform grid

h .

§ 5.4. 3D Algorithm Parallelization

Moreover, the computer implementation of the basic algorithms is greatly simplified. A more rigorous

approach is to locally reconstruct the curvilinear boundary and is discussed in the appendix.

h

as tetrahedra 0.70. The maximum dihedral angle is 135ÿ and the minimum is 24ÿ. Thus, rebuilding

the grid made it possible not only to change the spatial distribution of tetrahedra, but also to preserve

important properties of the grid. This is confirmed by Table. 5.2, in the third line of which the

distribution of tetrahedra by quality is presented.

is in our

h ,

§ 5.4. 3D Algorithm ParallelizationCh. 5. Rearrangement of simplicial grids

grids into connected sets

155

b

154

Note that the smoothness of the surface mesh is less than that of the meshes constructed by the

advanced edge method. The smoothness of the mesh can lead to superconvergence of finite element

solutions if the differential solution is sufficiently smooth. In a number of elasticity problems, especially

in problems with cracks, the main error is concentrated near the cracks, where the solution is not

smooth enough, so that there is no superconvergence effect. In such applications with a non-smooth

solution, the visual smoothness of the mesh does not lead to a significant improvement in the

accuracy of the finite element solutions. We conclude this section with one useful practical tip for

remeshing in domains with curvilinear boundaries. If the analytical representation of these boundaries

is unknown, then we recommend fixing the grid nodes

at these boundaries once and for all. In this case, the rebuilt mesh will approximate curvilinear

boundaries with the same order as the original mesh.

set layer

The parallelization of the algorithm 35 is based on its locality. The grid can be rearranged

simultaneously in several places provided that any pair of reconfigurable superelements ÿ(ÿ) and ÿ(ÿ)

does not have common tetrahedra. As a rule, the rebuilding of triangular grids does not lead to

excessive computational work and can be performed on a single processor computer. Therefore, we

will focus on rebuilding tetrahedral meshes. The simplest model of a parallel algorithm consists of a

main processor (master), which distributes work among other processors (slave), sending them

superelements ÿ(ÿ) and including the results of their work

in the grid. Due to the large number of data structures that are associated with the superelement

ÿ(ÿ) and are necessary for its rebuilding, the time for sending and receiving packets can exceed the

time for rebuilding one superelement. Therefore, this model is designed for a small number of

processors. Let P be the number of processors in a parallel computer. The proposed model of the

parallel algorithm is based on the partition ÿ(i) i = 1, ... , P, with the number of tetrahedra approximately

equal to ÿ(i). An important requirement for the set to be nimization of its boundary, or rather, the

number of tetrahedra that have one ÿ(i) The exception is those boundaries of vertices that lie on the

boundary of the set, which are also the boundaries of the

original mesh. The application of basic operations to the tetrahedron ÿ lying in the boundary ÿ(i)

h requires data exchange with neighboring sets. Therefore, reducing the number of such tetrahedra,

called interface tetrahedra, will make it possible to

construct a more efficient parallel algorithm. Several methods are known

for partitioning the grid ÿh into P approximately equal parts. The most popular methods include various

variants of the bisection method. The spectral bisection method [48, 75] is based on the spectral

properties of the grid graph, such as the eigenvector corresponding to the second eigenvalue of the

Laplace grid operator. The need to solve the eigenvalue problem multiple times in the course of

remeshing makes this method too expensive for our parallel algorithm. The

inertial bisection method [85] is much cheaper in terms of computational work, but generates a larger

number of interface tetrahedra. Nevertheless, in view of the possibility of a strong increase or

decrease in the

number of tetrahedra on any processor during

To show the reliability of the mesh rebuilding algorithm, we will rebuild the quasi-uniform mesh

into a mesh that not only thickens towards the hole, but also contains twice as many tetrahedra. The

trace of the grid on the surface of the region is shown in Fig. 5.18b . The quality of the reconstructed

mesh is Q(ÿh) = 0.49, while the average quality of tetrahedra is 0.70. The maximum dihedral angle

is 136ÿ and the minimum is 23ÿ. The last line in the table. 5.2 shows an approximately twofold

increase in the number of tetrahedra in each quality range. Thus, both regular grids have

approximately the same properties.

Machine Translated by Google

5:

156

1: Calculate the inertia tensor T(ÿh) on a processor with rank 0 2: loop k = 1, 2, 3:

3:

Algorithm 42 requires several additional data structures to be implemented. Assembling a

global grid from subgrids is greatly simplified if grid nodes at the boundaries between subgrids

retain information about the original global numbering. Comparison of global indices leads to

fast and reliable finding of pairs of identical grid nodes. Note that step 4 of Algorithm 42 can

lead to a low quality of near boundary tetrahedra and, as a consequence, to a low quality

where x ÿi ÿ R3 denotes the geometric center of the tetrahedron ÿi and x ÿh is the grid center:

Nt (ÿh)

Ch. 5. Rearrangement of simplicial grids

pi = x ÿi ÿ x ÿh ,pi2 I3 - pi pt

A processor with rank 0 selects tetrahedra whose quality is less than Q0, as well
as all their neighbors. The set of selected tetrahedra is divided into P approximately

equal parts using the inertial bisection method for the kth principal axis of the tensor

T(ÿh) and distributed over all processors. A processor with rank m, m = 0, ... , P ÿ
1, rearranges its subgrid in this way that borders

with neighboring subgrids

mesh generation, optimization of the number of interface tetrahedra can be sacrificed to

minimize computational work.

=

,

x ÿi .

A processor with rank 0 collects subgrids from other processors and builds a new

conformal global grid ÿh. If Q(ÿh) Q0, then the algorithm terminates 6: end loop 7:

The processor with rank 0 allocates tetrahedra whose
vertices

belonged to one of the boundaries between subgrids at each of the three previous steps,

rebuilds them, and proceeds to step 1

Algorithm 42. Parallel reconstruction of the tetrahedral mesh

4:

Rice. 5.19. Partition of the computational domain into subdomains by planes orthogonal to the
first (a) and second (b) eigenvectors of the inertia tensor

i=1

a lot of time. Thus, rebuilding the subgrid remains the most time-consuming operation.

Let us consider a body consisting of unit point masses located at the geometric centers

of the tetrahedra of the grid ÿh. The inertia tensor of this body is defined as follows:

T(ÿh) =

Nt(ÿh)

Each of the terms in the sum (5.4.1) is a positive semidefinite 3 × 3 matrix. Therefore, the

tensor T(ÿh) is positive definite for a system of four or more points not lying in the same plane.
Due to the smallness of the order T(ÿh), the calculation of the eigenvectors of the inertia tensor

is a cheap operation.

(5.4.1)

1

Using the inertia tensor, we can divide the grid into subgrids with approximately the same

number of elements by planes orthogonal to one of the eigenvectors of this tensor (see Fig.

5.19). To avoid creating too thin subdomains, we recommend using a small number of splits.

Consider a simplified implementation of the inertial bisection method. This implementation is

efficient when the number of processors is

small, but each processor has enough RAM to contain minimal information about the

entire mesh. Simple calculations show that the storage of a tetrahedral mesh containing 106

elements requires about 34 MB of RAM, which is hundreds of times less than the amount of

memory in modern computers. A small number of processors allows meshing only along one

direction. After partitioning the grid into P approximately equal subgrids, the grid rebuilding

algorithm is applied independently to each subgrid. To preserve the conformality of the global

grid, certain restrictions are imposed on operations with tetrahedra at the boundaries between

subgrids: admissible operations must not change the grid at these boundaries. The arithmetic

complexity of mesh

decomposition (step 3 in Algorithm 42) and conformal mesh assembly (step 5) is

proportional to Nt(ÿh). Numerical experiments confirm that these steps do not take

157

do not change

§ 5.4. 3D Algorithm Parallelization

i

xÿh

The inertial bisection method uses only the coordinates of the grid nodes to calculate the

inertia tensor, followed by grid splitting along its main axes. The computational complexity of
this method is proportional to the number of tetrahedra Nt(ÿh).

i=1

Nt(ÿh)

Machine Translated by Google

A

158

2.31.8

Rice. 5.20. Error u ÿ uhLÿ(ÿ) (a) and grid quality Q(ÿh) (b)

Remeshing time, P = 1, L = 20

Ch. 5. Rearrangement of simplicial grids

list of element qualities.angle, ÿ=(0, 1)3 \ [0, 0,5] 3, and singular right-hand side:

Nt(ÿh)

b

ÿ ÿu = |x ÿ x0| u = 0

on ÿÿ,

58.6

731 1155 3747 3097 6075 11 147 18 904

1.9

On fig. Figure 5.20 shows the results of re-meshing for various values of P. Graphs
in fig. 5.20a show the maximum error rate between u and the finite element solution uh

4.6

where x0 = (0.5, 0.5, 0.5). The properties of the solution to problem (5.4.2) were studied
in [27]. The solution has weak anisotropic edge singularities and a strong isotropic
singularity at the vertex of the reentrant angle. To solve the equation, we apply the finite
element method with piecewise linear basis functions. To estimate the discretization error,
we replace the unknown exact solution u with a discrete solution u computed on a very
fine adaptive mesh containing approximately 1.5 × 106 tetrahedra. To construct an
adaptive grid, problem (5.4.2) needs to be solved several times on a sequence of grids
with an approximately equal number of cells. We use 20 iterations of the adaptive
algorithm 45 presented in the application, at each iteration of which algorithm 42 is used.

T a b l e 5.3

1.5

11.2

subgrids and the global grid. Therefore, changing the direction of cutting the grid into
subgrids is very important for the convergence of the algorithm. On fig. 5.19b shows the
case when all boundary tetrahedra in a quasi-uniform mesh with step h are of poor
quality . These tetrahedra and their neighbors, schematically represented by
parallelepipeds of thickness 2 h, are divided into subdomains by planes orthogonal to the
second eigenvector of the inertia tensor. The eigenvectors of the inertia tensor are three
orthogonal directions in space. However, even after changing

the three directions, the global mesh may contain tetrahedra whose vertices always
remain at the boundaries between the submesh. As a result, only a part of the basic
algorithms was applied to these tetrahedra. To improve their quality, the last step in
Algorithm 42 is necessary. The number of such tetrahedra is proportional to the number
of intersections of different triplets of parallel planes, equal to (P ÿ 1)3. Since the number
of processors is small, the last step of the algorithm is implemented on one processor.
Another interesting observation is that the dynamics of mesh modifications can be quite
different in parallel and sequential meshing algorithms, since the parallel algorithm
modifies the global mesh in P different places simultaneously [66, 67]. Let's consider a
model example showing that this

can greatly affect the operation of the algorithm. Numerical experiments [66] were
carried out on a COMPAQ Tru64 Cluster parallel computer with ev6 processors with a
frequency of 667 MHz. Consider the Poisson equation in the domain ÿ with one input

Vtab. Figure 5.4 shows the number of implemented basic operations in parallel
computations and the total time of mesh rebuilding. It is pertinent to note that only after
the 10th adaptive iteration, when the grid was practically established, the time of grid
rebuilding became proportional to the number of implemented basic operations. On non-
stationary meshes, the number of basic operations may not correlate with the mesh
rebuilding time. This is explained by different spatial distributions of local modifications of
the grid.

as a function of the number L of the adaptive iteration. This error is approximately the
same for all parallel calculations. Graphs in fig. 5.20b show that the mesh quality after five
adaptive iterations is greater than 0.1 for all values of P, which indicates the robustness
of Algorithm 42. The next two tables show the arithmetic complexity of parallel re-

meshing . Arithmetic complexity is measured by the number of basic #mod operations
implemented. In table. Figure 5.3 shows the time and number of basic operations
performed for the last, twentieth, iteration. The number of local basic operations is
proportional to N(ÿh), and the execution time of each operation is approximately
proportional to N(ÿh)1/2. Apparently, this dependence is due to the non-optimal
implementation of algorithms for working with ordered

9735 19,359 28,151 36,134 52,079 100,075 160,944

3.1

in ÿ,

4.7

#mod

159

cpu time 1.2 cpu time

103 1.6
#mod

§ 5.4. 3D Algorithm Parallelization

ÿ1

25.3

(5.4.2)

1.31.6

Machine Translated by Google

10

160

1.8 1.5 1.3 1.3 1.4 1.9 2.2 2.6 2.8 2.9 3.1 3.4

For complex geometric models, mesh generators can produce topologically
correct but physically incorrect meshes. For example, using simple methods to
close the gaps generated in the advancing front method completes the meshing
process, but can lead to a confusing mesh. In particular, therefore, in § 3.7 we
use a rather complicated method to close gaps. Another source of entangled
grids is Lagrangian methods, in which the grid moves along with the flow,
becoming entangled in the process. Remeshing methods will help correct the
mesh in both cases. Recall that the quality of a regular mesh is defined as a
positive function: 0 < Q(ÿh) 1. In order to apply basic meshing algorithms to an

entangled mesh, we generalize the concept of the quality of a simplex Q(ÿ)
as follows. Let's assume that for

12

6.1

P=2

6 33,018 74.6 19,332 38.8 7643 15.0 4841 11.2 3061 9.4

§ 5.5. Fixing and unraveling meshes

L

3.8 3.4 3.3 3.8 4.6 6.7 7.5 9.3 10 10.1 9.7 10.1

P=6

T a b l e 5.5
Acceleration during parallel re-meshing with Nt(ÿh) ÿ 160 000

T a b l e 5.4
Number of basic operations and re-meshing time with Nt(ÿh) ÿ 160 000

1 30 403 27.2 16 204 15.2 8752 7.9 6448 7.2 5484 6.5

Over the past half century, many methods have been proposed for generating
high quality triangular meshes. Unfortunately, a similar statement is not true for
tetrahedral meshes, since each of the methods for constructing tetrahedral
meshes has its own advantages and disadvantages. For example, both the
advancing front method and the Delaunay tetrahedrization method can be used
to construct strongly flattened tetrahedra in which all four vertices lie practically in
the same plane (slivers). To remove such tetrahedra and correct the mesh,
various methods of correcting or improving the quality of the mesh are used. In
this section, to correct the mesh, we apply the methods of mesh rebuilding, the
distinguishing feature of which is

14 23 878 65.9 10 336 21.5 3741 9.8 1885 7.6 911 6.3

9

2

20 18 904 58.6 7902 15.6 3265 9.7 1384 6.0 785 6.1

1 2 3 4 5 6 7

4 28,027 48.7 22,585 38.4 9804 16.6 6570 12.8 5294 11.8

changing the mesh topology.

eleven

P=1

4

2.4 1.9 2.0 2.1 2.9 3.4 4.4 5.3 4.9 5.4 5.1

8

Superlinear acceleration is due to different orders of execution of local
modifications of the grid. It turns out that if the mesh is too far from the one
established in the course of adaptation, then the most efficient sequence of its
local modifications is to choose a tetrahedron with the lowest quality. Therefore,
the total number of basic operations is less for P = 1. If the grid is approximately
adapted to the solution, then the sequence

P

3.4 2.7 2.3 2.9 3.7 5.0 5.4 6.1 6.5 7.5 7.0 7.5

P=4

10 32,986 87.9 13,776 30.2 4996 11.7 2602 8.7 1445 7.2

the tangled mesh is topologically correct, which is true in the vast majority of
cases. Then checking the mesh entanglement reduces to checking the sign of
algebraic areas (in two dimensions) or algebraic volumes (in three dimensions) of
pairs of neighboring simplexes. Let us consider triangular meshes in more detail,
although everything said will be true for tetrahedral meshes as well. An entangled
triangular grid always contains a pair of cells ÿ1 and ÿ2

with a common edge and with the same signs of algebraic areas [see (5.2.1)],
as shown in fig. 5.21b :

Sÿ241 Sÿ243

P=8

18 25,056 75.8 9802 20.1 2842 8.6 1536 6.3 434 5.7

ÿÿÿÿ L

Ch. 5. Rearrangement of simplicial grids

3

4.2 3.7 3.5 4.1 5.4 7.9 9.4 10.5 11.8 12.2 12.5 12.8

8

6

161

#mod with #mod with #mod with #mod with #mod with

§ 5.5. Fixing and unraveling meshes

(5.5.1)0.

its local modifications, which consists in choosing the worst tetrahedra in subgrids.
Being separated in space, such local modifications improve the quality of a larger
number of tetrahedra, which leads to a faster decrease in #mod on 6 and 8
processors.

2 30 850 39.6 18 273 27.1 12 340 14.5 8231 11.6 6937 10.8

Another interesting observation is that the number of basic operations
implemented on one processor is not always inversely proportional to the number
of processors. At the first adaptive iterations, the total number of basic operations
#mod · P grows with P. However, when the grid is established, it decreases,
which leads to a superlinear acceleration of the grid construction time (Table 5.5).
We emphasize that this is a new and interesting property of the grid generator.

Machine Translated by Google

Ch. 5. Rearrangement of simplicial grids

Q (ÿ1) = ÿQ(ÿ1), Q (ÿ2) = ÿQ(ÿ2). The qualities

of the remaining triangles do not change, i.e. Q (ÿ) = Q(ÿ). The new quality of the
triangle Q (ÿ) changes continuously from ÿ1 to 1 and equals 0 when one of the
entangled triangles degenerates into a segment. The continuity of the modified
quality Q

(ÿ) is necessary for the successful implementation of basic algorithms.
Unraveling the grid occurs due to the growth of quality from a negative value,
through zero, to a positive (real) quality. The modified quality does not require
changes in the basic algorithms, except for the extension of the quality calculation
algorithm. In addition to the existing algorithm, it is required to check the sign in
inequalities (5.5.1) and change the quality sign of the triangle, if necessary. Let's
consider two examples. The initial entangled mesh shown in Fig. 5.22, a, contains
158 triangles. The mesh was artificially tangled by random

displacement of nodes. Note that some of the nodes were shifted outside the
region. The quality of the entangled mesh is Q(ÿh) = ÿ0.93 with the average
quality of triangles being 0.24.

Rice. 5.21. Pairs of untangled (a) and tangled (b) triangles

162

The geometric model of the gear shown in fig. 5.23, a, was created using
CAD. It contains 422 nodes, 636 curved edges and 217 curved surfaces. For
this model, two tetrahedral meshes with different numbers of elements were
constructed by combining the advanced front method with the Delaunay
tetrahedrization method, as described in Chap. 3. To build a coarse mesh, the
surface of the gear was divided into 7084 triangles with 3530 nodes, as shown
in fig. 5.23b . To build a fine grid, the model surface was divided into 38834
triangles with 19405 nodes.

163

Rice. 5.23. Gear model (a) and surface mesh with 7084 triangles

Let's mark both triangles ÿ1 and ÿ2 as entangled and assign negative qualities to
them:

§ 5.5. Fixing and unraveling meshes

To correct this tangled grid, we apply Algorithm 35 with the modifications
described in § 5.2. To preserve the boundary of the region, we will fix the grid
nodes on this boundary. The finite quasi-uniform mesh ÿh shown in Fig. 5.22b
contains 145 triangles. Its quality is Q(ÿh) = 0.53, while the average quality of
triangles is 0.84. The second example illustrates the use of basic meshing
algorithms

to improve the quality of a tetrahedral mesh. In this example, the quality of a
tetrahedron is defined as the quality of its shape, i.e., Q(ÿ) = 1 only on a regular
tetrahedron of any size. A detailed description of the various qualities is given in
Chap. 6.

Recall that a reliable algorithm for constructing a three-dimensional mesh
(see § 3.7) successively uses the advanced front (F) and Delaunay
tetrahedrization (D) methods. The advanced front method is not reliable enough,
and in our example it was only able to mesh a patch with a volume of 99.96% of
the domain volume. The same behavior of the advancing front method was
observed in other examples considered in Chap. 3. After the completion of the
method, 32 triangles in the coarse grid and 352 triangles in the fine grid remained
in the front. The quality of the unfinished grids turned out to be quite low

Rice. 5.22. Unraveling a triangular mesh by rebuilding it

Machine Translated by Google

0

2

8 min 40 s. The construction of the spatial grid took 41 s, and its rebuilding took only 12 s.

0

Method

Rice. 5.24. Spatial mesh slice for the gear. The mesh contains 6870 nodes, 7084 boundary
triangles and 22456 tetrahedra

T a b l e 5.7
Distribution of tetrahedra by quality in a fine mesh

F

0

Mesh rebuilding algorithms (GR) significantly improved their quality - up to 0.14 in a

coarse grid and up to 0.2 in a fine grid. The low quality tetrahedrons that appeared after

the Delaunay tetrahedrization were successfully rebuilt. Part of the spatial grid is shown in

fig. 5.24. Building a fine grid required 9 min 33 s. Most of the resources were spent on the

formation of the initial front:

Q(ÿh)

Quality distribution of tetrahedra in a coarse mesh

1.06 10ÿ2 13655 13375280 0 P+D 6.12

10ÿ4 13687 13390290 5 P+D+PS 1.44 10ÿ1 25485

25485 0

10-1 10-2 10-3 10-4 10-5

Q(ÿh)

0

Nt

0

165

5

0

F+D

Ch. 5. Rearrangement of simplicial grids

0

0

§ 5.5. Fixing and unraveling meshes

0

Other examples of correction of tetrahedral meshes are presented in § 3.7.

Method

(see tables 5.6 and 5.7). The grids were completed by the Delaunay tetrahedrization
method. After that, the quality of the meshes dropped even more—to 6.1 10ÿ4 in the fine

mesh and to 1.6 10ÿ5 in the coarse mesh. The detailed distribution of tetrahedra by quality

is presented in Table. 5.6 and 5.7. F

T a b l e 5.6

Nt

0

01.01 10ÿ3 140,442 139,684,750 8 1.60 10ÿ5

140,723 139,817,854 37

10-1 10-2 10-3 10-4 10-5

164

10

Machine Translated by Google

A

Rice. 6.1. Grids constructed by the advancing front method (a) and the multilevel
hierarchical refinement method (b)

Consider the unit square [0, 1]2 and construct a regular grid there, which
condenses to the point (0, 0). Define the function h(x) h(x) = 10ÿ4 + 10ÿ2 x21/2,

where x denotes the Euclidean norm of the vector x, x2 = x2 + y2. An unstructured
grid constructed by the advancing edge method with a grid step h(x) is shown in
Fig. 6.1, a. It contains 2

MANAGING MESH PROPERTIES

as

Both grids have advantages and disadvantages. In an unstructured grid, the
size of triangles changes smoothly, without large jumps. In the numerical solution
of partial differential equations, the smoothness of the grid can lead to a more
accurate discrete solution. On the other hand, the implementation of a number
of numerical methods is simpler on hierarchical or structured grids. The
hierarchical nature of the grid makes it possible to use more efficient methods
for solving emerging algebraic problems and interpolating grid solutions between
two grids in nonstationary problems.

where Rÿ and rÿ denote the radii of the circumscribed and inscribed spheres,
respectively, and the constant C does not depend on the simplex. For C ÿ 1, the
regular grid does not contain slivers and anisotropic simplices.

d(d + 1)
pd = Vd = 1d!

Regular grids represent an important class of grids for applications. First,
they can condense to the features of the model or to the features of the solution
according to the law specified by the user. Second, the vast majority of theoretical
results on the stability of numerical methods and estimates of the accuracy of the
numerical solution have been proved for regular grids. To construct regular
grids, it is necessary to specify the grid step

function h(x), which determines the desired diameter of the simplex at the
point x. In this section, we assume that the function h(x) is known and consider
three methods for constructing regular grids.

In this chapter, we will look at various methods for constructing meshes with
given properties, including controlling the local size of simplices (triangles or
tetrahedra), pulling simplices in a given direction, and controlling the number of
simplices in a mesh. The control is carried out by splitting the quality of the
simplex into factors that are responsible for its size and shape.

§ 6.1. Controlling properties of regular grids

In a regular grid, simplices can vary considerably in size, while remaining
close in shape to regular simplices. More precisely, each simplex ÿ in a regular
grid satisfies the following condition:

,

Q(ÿ) = Qsize(ÿ) Qshape(ÿ),

999 triangles and 540 knots. The grid constructed by the method of multi-level
hierarchical refinement is shown in fig. 6.1b . It contains 908 triangles and 494
nodes.

Rÿ

Chapter 6

rÿ

each of which varies from 0 to 1. The first factor is responsible for the size of the
simplex, the second for its shape. Let pd and Vd denote, respectively, the sum of
the edge lengths and the volume of a regular simplex with a unit edge, where d =
2 for a triangle and d = 3 for a tetrahedron. Simple calculations give:

b

c,

(6.1.1)

§ 6.1. Controlling properties of regular grids

The third method for constructing regular grids uses the grid rebuilding
algorithms described in Chap. 5. These algorithms require the introduction of
the quality of the simplex Q(ÿ). Most existing approaches define the quality of a
simplex as the product of two factors:

d+12d

167

.

Machine Translated by Google

A

pdd

Thus, the maximum quality value Q(ÿ) is achieved on a regular simplex with edge length le
= h(x ÿ). Compared to the formulas in § 2.1, formula (6.1.5) contains an additional factor
F(ÿÿ). Vtab. Table 6.1 shows the shape quality (6.1.4) and size quality (6.1.3) for an

isosceles
triangle with angles ÿ, ÿ = 180ÿ ÿ 2ÿ and base h(x ÿ) = 1. Note that the shape quality

Qshape(ÿ) = 0.8 can mean both obtuse and acute isosceles triangles. This is insufficient

for constructing good meshes for finite element calculations. The size quality has a more

pronounced maximum ÿ = 60ÿ, so that as a result the quality Q(ÿ) 0.8 is achieved only on
an acute triangle. The balance of the qualities of shape and size can be adjusted in many
ways, for example,

T a b l e 6.1
Quality of an isosceles triangle calculated by formula (6.1.5)

Qsize(ÿ) = F(ÿÿ) = min ÿÿ,

, ÿÿ =
pdh(x ÿ) where

x ÿ is the center of mass of the simplex ÿ, p ÿ is the sum of the lengths of its edges:

For a detailed analysis of various qualities of the simplex, we refer the reader to [62]. Let's
put

In a two-dimensional space, another common formula for the shape quality uses the sum
of squared edge lengths instead of p2 ÿ. Note that Qshape(ÿ) is a dimensionless quantity

with a maximum value of 1, which is achieved only on a regular simplex. In general, any
combination of dimensionless quantities that reaches a single maximum on a regular
simplex can be used as a definition of the shape quality. For more

ÿ

Thus, regardless of the value of ÿÿ, the quality Qsize(ÿ) 1.

pÿ

(6.1.4)

ÿÿ

1

168

le.

5ÿ

pdd

. (6.1.3)

b

(6.1.2)

Q(ÿ) = Qshape(ÿ)n Qsize(ÿ)m,

(6.1.5)

Qshape(ÿ) 0.11 0.34 0.55 0.74 0.89 0.99 0.98 0.82 0.38

.

1

ÿÿ

Ch. 6. Managing grid properties

15ÿ 25ÿ 35ÿ 45ÿ 55ÿ 65ÿ 75ÿ 85ÿ

eÿÿ

Q(ÿ) =

This quality increases for 0 < ÿ ÿ 1, decreases for ÿÿ > 1, and has a single maximum
(Qsize(ÿ) = 1) at the point ÿÿ = 1 (see Fig. 6.2). The factor Qshape(ÿ), which is responsible

for the shape of the simplex, can also be determined in a nonunique way. In the
examples below, we use the following quality:

,

Qsize(ÿ) 0.70 0.72 0.76 0.81 0.89 0.98 0.96 0.62 0.08

Such a definition of Qsize(ÿ) leads to the discontinuity of the derivatives of Qsize(ÿ)
with respect to ÿÿ and the coordinates of the vertices of the simplex. In basic algorithms
for optimizing the position of a grid node, the differentiability of the quality of a simplex is
an optional but desirable property. Therefore, in the examples below, we will determine the

quality of the simplex using the following differentiable function F:

.

Vd

pÿ

2 ÿ min ÿÿ,

§ 6.1. Controlling properties of regular grids

170ÿ 150ÿ 130ÿ 110ÿ 90ÿ 70ÿ 50ÿ 30ÿ 10ÿ

pÿ

Vÿ

Qshape(ÿ) =

3

Rice. 6.2. Size quality Qsize(ÿ) calculated by formulas (6.1.2) (a) and (6.1.3) (b) as a
function of ÿÿ

Q(ÿ) 0.08 0.24 0.41 0.60 0.79 0.96 0.95 0.51 0.03

where n and m are some positive parameters. Thus, when analyzing the properties of the
constructed grids, it is necessary to use an analog of Table. 6.1 for each new definition of
the quality of a triangle or tetrahedron.

Vd

In practice, the construction of an ideal grid with quality Q(ÿh) = 1 is unrealistic. First,
there is no two-dimensional condensing grid of equilateral triangles. Second, a tetrahedral
grid of regular tetrahedra cannot cover space. Thirdly, dihedral and planar angles in the
geometric model limit the maximum possible mesh quality. These limitations should be
taken into account when choosing the quality Q0 in the remeshing algorithm 35.

ÿÿ

Qsize(ÿ) = min ÿÿ,

169

ÿ

F(ÿÿ), ÿÿ = pd ÿ
pdh(x ÿ)

=

1

The multiplier Qsize(ÿ) is usually built on the basis of the grid step function h(x), for
example:

Vÿpdÿ

Machine Translated by Google

Ch. 6. Managing grid properties

leads to the grid shown in Fig. 6.3b . This grid was obtained by rebuilding the grid
in Fig. 6.3, a.

between two points x1 and x2 in the constant metric M is calculated as follows:

A generalization of the concept of distance requires the introduction of the matrix
M, which is a symmetric positive definite 2 × 2 matrix. Distance

171

Eigenvectors w1 and w2 of a specific matrix 5.89 2.51 2.51

5.01

(6.2.1)

shown in fig. 6.4, but as semi-axes of an ellipse centered at the point O. They
correspond to the eigenvalues ÿ1 = 8.0 and ÿ2 = 2.9. In the Clidean metric,
points A and B are equidistant from the center O. In the metric M, the distance

to point A is ÿ1/ÿ2 times greater than to point B. An equilateral triangle in the
metric M is shown in fig. 6.4, b. The height of this triangle is ÿ2/ÿ1 times less than

the height of an equilateral triangle in the Euclidean metric. For a strongly
anisotropic metric with ÿ1 ÿ2, shown in Fig.

6.4, b , an equilateral triangle in the metric M will look like a strongly flattened
one in the Euclidean metric. Another feature of the anisotropic metric is that, as
an equilateral triangle rotates in the metric M, its shape will change strongly. For
example, when rotated by 90ÿ, instead of a flattened triangle, we get a highly
elongated needle-shaped triangle. The ratio of eigenvalues ÿ1/ÿ2 is called the
condition number of the matrix M, or the anisotropy of the metric. Last

ÿM(x1, x2) = (x1 ÿ x2)TM (x1 ÿ x2).

M=

Rice. 6.3. Meshes generated by the mesh rebuilding algorithm

The high quality regular grids considered in § 6.1 usually consist of triangles
close in shape to a regular triangle. The size of these triangles is controlled by
one parameter, the local grid spacing. The construction of anisotropic meshes,
where the orientation of triangles plays an important role, requires the introduction
of additional parameters, which inevitably lead to the concept of a tensor metric.
The Wuclidean metric is the distance between two points x1 and x2

170

The distance between two points in space is calculated using a similar formula,
only in this case M is a 3 × 3 symmetric positive definite matrix.

§ 6.2. Managing the properties of anisotropic meshes

Rice. 6.4: a are the 2 × 2 eigenvectors of the matrix M, b the height of the triangle
is ÿ = 3ÿ2/(4ÿ1)

ÿ(x1, x2) = (x1 ÿ x2)2 + (y1 ÿ y2)2.

§ 6.2. Managing the properties of anisotropic meshes

Let's return to the function (6.1.1). The result of the operation of the mesh
restructuring algorithms is shown in Fig. 6.3, a. The mesh contains 1004 triangles
and 545 nodes. Despite the visual sensation of the mesh being non-smooth, its
quality is quite high: Q(ÿh) = 0.797. The flexibility of this approach lies in the ability
to rebuild any grid into a grid with new properties by replacing the grid step
function h(x). For example, the choice

h(x) = 10ÿ4 + 10ÿ2 x ÿ e21/2, e = (1, 1)T,

on a plane is measured according to the Pythagorean theorem:

Machine Translated by Google

In the case of a constant metric, formulas (6.2.2) and (6.2.1) coincide. Note also that in
the case of a variable metric, a straight line is not always the shortest distance between
two points.

x12=

id,

Using the formulas for the length of an edge and the volume of a simplex in the
metric M, we define the new quality of a simplex as the product of the qualities of size and
shape:

=
1

,

le,M ÿ (x1 ÿ x2)TM(x12) (x1 ÿ x2),

ÿ

The example shows that an increase in the anisotropy of the metric by a factor of 100
leads to a stretching (or flattening) of the triangle by a factor of 10. In three dimensions,
the anisotropy of the metric is defined as the ratio of the maximum eigenvalue of the
matrix M to the minimum. A further generalization of the concept of distance assumes
that the

elements of the matrix M are functions of the spatial coordinate x. Note that M(x)
remains a symmetric and positive definite matrix at every point x. Let ÿ(t) be the simplest
parametrization of the edge e = [x1, x2]: ÿ(t) = x1 + t(x2 ÿ x1),

le,M = Q(ÿ) = Qsize, M(ÿ) Qshape, M(ÿ),

0

2

= Vÿ ÿdetM.

detM(x) dV.

Where

p ÿ,M

= Vÿ h(x ÿ)ÿd Using formulas (6.2.3) and (6.2.2), we obtain Vÿ, M = h(x ÿ)ÿ1p ÿ, which
transforms formulas (6.2.4) and (6.2. 5) to for and p ÿ, M mule (6.1.5). Quality (6.2.4)

reaches its

maximum when Qsize, M(ÿ) = Qshape, M(ÿ) = 1. The first factor is equal to 1 if all

edges of ÿ have the same length h M(x ÿ) in the metric of M. The second the factor is
equal to 1 when the ratio Vÿ, M/pd ÿ, M reaches its maximum value, i.e. also on a regular

simplex considered in the metric M.

172

In a metric space, a unit of length in the direction of an eigenvector is multiplied by the
square root of the corresponding eigenvalue. Since the determinant of the matrix M is the
product of its eigenvalues, we have the following formula for the volume:

dt =

When rebuilding the meshes, there is no need to calculate the exact length of the
edge in the metric M by formula (6.2.2). It is enough to apply a quadrature of the second
order with a central point:

In practice, when rebuilding the grid, the metric is calculated either at each simplex or
at each node of the grid. In the first case, the metric is piecewise constant and
discontinuous between simplices, i.e., the length per mesh edges depends on the simplex
on which it is calculated. In the second case, the metric is assumed to be linear in each
simplex and continuous in the entire domain, so the edge length is the same for all
simplices containing this edge. Therefore, the continuous metric leads to faster rebuilding
of the mesh. All meshing examples in this book use a continuous metric. In terms of the
Wuclidean metric, the volume of a simplex is calculated by the formula

Vÿ, M

(6.2.5)

eÿÿ

Ch. 6. Managing grid properties

(6.2.4)

Here the function F is defined by formula (6.1.3), where

ÿ2

(6.2.3)

pdd

=

Thus, in a metric space, there is no need to introduce a separate function h(x), which

describes the size of the simplex, and parameters that determine its orientation. The
metric M controls both the orientation of the simplex and its size.

and the function h M(x ÿ) defines the step of a regular grid in a space with metric M. The
new quality of the simplex is constructed in such a way that it coincides with the quality
(6.1.5) for the isotropic metric:

Vÿ,M =

0

ÿÿ, M

ÿT t

p ÿ, M

M(x) = h(x)

0 t

(x2 ÿ x1)TM(ÿ(t)) (x2 ÿ x1) dt. (6.2.2)

ÿ

Qsize, M(ÿ) = F(ÿÿ,M), Qshape, M(ÿ) =

=

dV.

§ 6.2. Managing the properties of anisotropic meshes

for which ÿ t(t) = x2 ÿ x1. The edge length e is calculated as follows:

Vd

(x1 + x2).

1,

.

1

173

M(ÿ(t)) ÿ t

le,M,

hM(xÿ) = 1,

Vÿ,Mpd

pdh M(xÿ)

In the case of a constant metric, we obtain the relation

Vÿ =

where Id denotes the identity matrix of order d. Indeed, is

1

ÿ,M

Machine Translated by Google

.

175

a

Thus, to construct a grid with N simplices, we first calculate the parameter h by formula
(6.2.7), using some initial triangulation (tetrahedrization) of the domain, and then the
quality of the simplex by formulas (6.2.4)–(6.2.6). In the case of a rough initial estimate of
the parameter h, the number of simplices in the constructed mesh N(ÿh) may differ
significantly from N. In this case, the constructed mesh can be used to more accurately
estimate the parameter h and the mesh rebuilding process can be repeated. As we noted
above, in the overwhelming majority of problems it is unrealistic to construct a mesh with
the maximum quality Q(ÿh) = 1. Therefore, the

desired number of simplices N will almost always be reached only approximately.
The deviation of N from N(ÿh) depends on the quality Q(ÿh) of the constructed grid. The
lower the average quality of the grid elements, the greater the deviation of N(ÿh) from the
desired value.

h =

N(ÿ0 h)

Ch. 6. Managing grid properties

.

+10

0 1M = Rÿ/4

Consider an example of controlling the properties of regular grids. Using the isotropic

metric M = h(x)ÿ2 I2, where

ÿ

(6.2.7)

Thus, to estimate the parameter h, it suffices to calculate the area (volume) of the domain
ÿ in the given metric M:

h

1

h(x) = max{|(x ÿ 0.4)
2

h M(x ÿ) = h,

ÿ

ÿ

2

ÿ

ÿ

1

i=1

ÿ4 |a/2},+ (y - 0.5)

0

Consider an example of controlling the properties of anisotropic meshes. Let 10

where h is to be estimated. The area (volume) of the computational domain in two (three)
dimensions is calculated by the formula

2

Vÿi det M(xÿi)

NVd

Rice. 6.5. Isotropic grids with a = 0.5 (a) and a = 1 (b)

RTÿ/4,

|(x ÿ 0.6)

det M(x) dV

174

NVd

2

where Rÿ/4 is the 45ÿ rotation matrix. Thus, as a increases, the metric becomes stronger
in the direction (ÿ1, 1). A grid that is quasi-uniform in such a metric must stretch in the
perpendicular direction (1, 1). Let N = 2000. Consider two values a = 1 and a = 2. In both
cases, we estimate h using the grid

shown in Fig. 6.3, a. The result of rebuilding the grid is shown in Fig. 6.6. The grid in
fig. 6.6, a contains 1850 triangles, and its quality is Q(ÿh) = 0.574, while the average
quality of elements is 0.870. Only 9 triangles have quality below 0.8. Note that, despite
the relatively high average quality, the deviation of N(ÿh) from N is 7.5%. The grid in fig.
6.6, b contains 1867 triangles, and its quality is Q(ÿh) = 0.208 with an average quality of
elements of 0.864. Multiple triangles near the top left and bottom right corners cannot

+ 10 ÿ4|a/2,

Using some triangulation (tetrahedrization) ÿ0 of the computational domain and applying
a quadrature with a central point, we obtain a simple estimate of this parameter:

§ 6.2. Managing the properties of anisotropic meshes

h ÿ

and by changing the value of the parameter a, we will change the degree of concentration

of the isotropic grid to two points (0.4, 0.5) and (0.6, 0.5) on the boundary of the wing-
shaped obstacle (see Fig. 6.5). Both grids in this figure contain about 1800 triangles each
and are of approximately the same quality. Note that the grid in Fig. 6.5, b was built from
the grid in fig. 6.5, and with the help of the triangular mesh rebuilding methods described
in Chap. 5. The main drawback of the metric introduced above is the lack of control over
the number of simplices in the

constructed grid. To return this control, it is necessary to establish a correspondence
between the desired number of simplices N and the parameter h M(x ÿ). For a visual grid
consisting of regular simplices of the same diameter in the metric M, this parameter does

not depend on the simplex ÿ; therefore,

(6.2.6)

|ÿ|M = N Vd hd .

+ (y - 0.5)

1/d

1/d

Machine Translated by Google

Application

Our experience shows that the construction of highly anisotropic tetrahedral
meshes is a much more difficult problem than the construction of anisotropic
triangular meshes. In practice, the algorithms described in Chap. 5 make it
possible to build triangular meshes in which elements can be easily stretched by
a factor of 103–104 in any direction. For tetrahedral meshes, the degree of
extrusion of elements is usually limited to values of 10–100.

SOME PROBLEMS OF GRID ADAPTATION

§ A.1. Adaptation to external and internal boundaries

By grid adaptation, we mean the process of constructing or rebuilding a
computational grid that is consistent with the geometric features of the
computational domain and/or with the features of the grid solution. The process
of grid adaptation, as a rule, is aimed at the approximate minimization of some
functional under given constraints. In the appendix, we consider several typical
examples of such functionals and restrictions on rebuilding some initial simplicial
grid.

176

A common example of grid adaptation is the adaptation of the initial grid to a
curvilinear boundary, which can be either external or internal. The main purpose
of this adaptation is to improve the approximation of the original boundary by
boundary edges or faces of the adaptive mesh. As a functional to be minimized,
one can choose, for example, the error of approximation of a curvilinear boundary
by a piecewise linear boundary in the maximum norm, and as a constraint, the
maximum admissible number of grid nodes. This formulation corresponds to the
problem of constructing an adequate discrete model in the class of simplicial grids
for a given domain with a curvilinear boundary.

Rice. 6.6. Anisotropic grids with a = 1 (a) and a = 2 (b)

Ch. 6. Managing grid properties

It is obvious that a decrease in the approximation error of a curvilinear
boundary by a piecewise linear boundary implies a refinement of the given mesh
in the vicinity of the boundary, i.e., an improvement in the resolution of the
original discrete model. Depending on the mesh refinement method, it is
necessary to implement either a shift of the boundary nodes along the boundary
or the placement of new nodes on the boundary. Both operations assume the
existence of curved boundary data. Below we

consider several ways to use curvilinear boundary data to adapt the grid in its
vicinity. For simplicity of presentation, we restrict ourselves to the case when all
boundary nodes of the original grid lie on the boundary of the domain.

be strongly elongated in the direction (1, 1), which leads to a decrease in their
quality and, consequently, in the quality of the grid. However, due to the high
average quality of triangles, the deviation of N(ÿh) from N is only 6.7%.

Machine Translated by Google

i=1

e

ÿi,

T a b l e A.1

Parameter of the midpoint of a segment
calculated by formulas (A.1.1)–(A.1.3).

Clause 1.1. Adaptation of triangulation to a curvilinear parameterized
boundary

(A.1.3)

1.

te

Formula (A.1.1) (A.1.2) (A.1.3)

0.5tv

(A.1.1)

t2

b

i ,

t

ÿi = {(x, y) | x = ÿi(t), y = ÿi(t), t ÿ [t

i

Rice. P.1. An example of an area with three
curved borders

t

Vtab. Item 1 shows the values of the parameter tv for the middle of a curved segment

(part of a parabola), defined as follows:

§ A.1. Adaptation to external and internal boundaries

Clause 1.2. Adaptation of tetrahedralization

to a smooth parametrized surface

If the midpoint of the curved segment is a point equidistant from the vertices v1 and v2, then tv

is a solution to the nonlinear equation

tv = (t1 + t2) /2.

The root tv belonging to the interval (t1,t2) can be found by the bisection method or by

Newton's method. If the midpoint of the curvilinear

v

ti ,

ÿ =

Application. Some problems of grid adaptation

ÿ2(t) + ÿ2(t) dt =

Thus, the shift of any point v with the

parameter tv along the boundary segment ÿi

reduces to a successive increase or decrease

in the parameter tv. Inserting a new node v

with coordinates (xv, yv) and parameter tv

into the middle of a curved segment

parametrized by the functions ÿ, ÿ and

connecting two vertices v1, v2 with parameters t1, t2 depends on the definition of the middle of

a curved segment. If the midpoint is the image of the midpoint of a segment in the parametric

space, then

179

ÿ2(t) + ÿ2(t)dt.

ÿ(t) = t, ÿ(t) = t 2, 0 t

Here tb

The notation introduced is shown in Figs. P.1.

0.618 0.611

segment is a point from which the paths along the segment to the vertices v1 and v2 are

equal, then tv is a solution to a more complex nonlinear equation

t1

Where

are the ends of the curve ÿi in the parametric space.

Although from a mathematical point of view, the definition of the midpoint of a curved

segment by the formula (A.1.3) is the only correct one, our practical experience shows that the

use of simpler definitions (A.1.1) and (A.1.2) does not lead to serious distortions of the mesh

quality when its adaptation to a curvilinear boundary, since in the methods of re-meshing

(Chapter 5) the position of the middle of the segment is corrected by the basic node shift

operation. We also note that if the length of the grid edge tends to zero, then the solutions

found by formulas (A.1.2) and (A.1.3) converge to each other with the second order.

(x1 ÿ ÿ(tv))2 + (y1 ÿ ÿ(tv))2 = (x2 ÿ ÿ(tv))2 + (y2 ÿ ÿ(tv))2 . (A.1.2)

Since all boundary nodes of the original

grid lie on the boundary ÿ, then for any point
v ÿ ÿi with coordinates (xv, yv) lying between

the two nearest boundary nodes v1 and v2

with parameters t1 and t2, respectively,

there exists a parameter tv ÿ [t1, t2] such

that xv = ÿi(tv), yv = ÿi(tv).

For 3D regions, the availability of parameterization of external or internal boundaries

depends on the specific application. In some cases such parametrizations are known explicitly,

as, for example, when the boundary is specified by a finite set of parametrized surfaces. In

other cases, these parameterizations are known implicitly, as, for example, when interacting

with the CAD kernel. In this case, regardless of the method of setting, each piece of the surface

ÿi is parametrized by three continuous functions

of two real variables, called parameters p and s, which

In the two dimensional case, the curvilinear boundary can be parametrized by a set of

functions of one real variable called the parameter t. In this case, the boundary is covered by

a finite set of curves, each of which is described by continuous functions of the point coordinates:

m

i]}.

178

v

Machine Translated by Google

180

ÿi = {(x, y, z) : x = ÿi(p, s), y = ÿi(p, s), z = ÿi(p, s), (p, s) ÿ ÿi}.

are given in some domains ÿi of the two dimensional parametric space. Let

Secondly, one can construct a point equidistant from the vertices v1 and v2, whose
inverse image in the parametric space lies on the segment connecting (p1, s1) and
(p2, s2), i.e.

where ÿ ÿ (0, 1) is the solution of the non-linear equation

181

Where

pv = p1ÿ + p2(1 ÿ ÿ), sv = s1ÿ + s2(1 ÿ ÿ),

m

Rice. P.2. An example of mesh adaptation that degrades boundary approximation

+ (y2 ÿ ÿ(pv(ÿ), sv(ÿ)))2 + (z2 ÿ ÿ(pv(ÿ), sv(ÿ)))2 . (A.1.5) This equation

can be solved by the bisection method in the interval (0, 1) or by Newton's method.
Note that the bisection method relies exclusively on the procedure for estimating a
function of one variable at some points; therefore, the method for calculating the
functions ÿ(pv(ÿ), sv(ÿ)), ÿ(pv(ÿ), sv(ÿ)) and ÿ (pv(ÿ), sv(ÿ)) is not important for this
approach.

Clause 1.3. Adaptation of
meshes to boundaries with unknown parameterization

Due to the continuity of the parametrizing functions, for any point v ÿ ÿi with coordinates
(xv, yv, zv) there exists a point in the parametric domain (pv, sv) ÿ ÿi such that xv =
ÿi(pv, sv), yv = ÿi(pv, sv) and zv = ÿi(pv, sv). One of the basic operations for rebuilding
a mesh is

shifting a node along a curved surface. A shift of a point v with parameters (pv, sv)
along a piece of the parametrized surface ÿi reduces to changing these parameters.
Insertion of a new vertex v with coordinates (xv, yv, zv) and parametric coordinates
(pv, sv) on the surface parametrized by the functions ÿ, ÿ, ÿ, midway between two
vertices v1, v2 with parameters (p1, s1), (p2 , s2) can be implemented in several
ways. First, we can construct the image of the midpoint of the segment in the
parametric space:

The simplest approach is to place new nodes on the current (in the process of
adaptation) boundary of the grid area. As the simple two dimensional example shown
in Fig. A.2, the removal of boundary nodes, which is possible during adaptation, can
lead to a significant error in the approximation of the original boundary by the
boundary edges of the grid, even though the step of the adapted mesh is less than the
step of the initial mesh.

(A.1.4)

(x1 ÿ ÿ(pv(ÿ), sv(ÿ)))2 + (y1 ÿ ÿ(pv(ÿ), sv(ÿ)))2 + + (z1 ÿ

ÿ(pv(ÿ), sv(ÿ)))2 = (x2 ÿ ÿ(pv(ÿ), sv(ÿ)))2 +

§ A.1. Adaptation to external and internal boundaries

The accuracy of surface approximation can be substantially improved by restoring
a higher order surface based on a given piecewise linear surface. Several

In those cases where parameterization of the domain boundary is not available, it
is difficult to construct a mesh adapted to the boundary. In this case, as a rule, the
boundary of the region is specified using surface triangulation. Let us consider ways
of adapting a tetrahedral mesh to a boundary of this type.

pv = (p1 + p2)/2, sv = (s1 + s2)/2.

Another way to search for a pair (pv, sv) is to compose and solve a system of two
nonlinear equations expressing the equidistance of v from the vertices v1 and v2 and
the minimum distance from v to (v1 + v2)/2. In addition to the possible non-uniqueness
of the solution of such a system, the search for a solution can be difficult (see also
Section 3.4.3).

i=1

Another solution to the problem is to use the result of the adaptive calculation as
feedback from the CAD system to build a new surface triangulation. This approach
requires direct user intervention and may be too complex for some applications. The
third solution of the problem is based on the assumption that if the unknown surface
of the boundary

is sufficiently smooth (or piecewise smooth), then its triangulation implicitly carries
additional information about this surface. Below, we consider a method for constructing
a new discrete surface for which the error in the approximation of a smooth boundary
is substantially smaller than for a piecewise linear triangulation.

Application. Some problems of grid adaptation

ÿ = ÿi,

The simplest solution to this problem is to preserve the initial surface triangulation
by refining it or shifting the node only along the original piecewise linear surface [43].
Such an approach, which "freezes" the original boundary, naturally preserves the
approximation error of the curvilinear boundary by the original set of boundary faces.
In the numerical solution of the equations of mathematical physics, an insufficiently
high resolution of the boundary surface can lead to a significant error and even negate
the efforts expended on constructing an adaptive grid inside the domain.

Machine Translated by Google

i=1

si

Here ÿi is the coordinate vector of the vertex of the triangle vi, ÿi(ÿ) is the value in ÿ
of a linear function equal to 1 in vi and 0 in the remaining vertices of the triangle ft.
This formula for specifying a quadratic function is a consequence of Taylor's
multipoint formula [39] for representing the error function of linear interpolation of a
doubly differentiable function on a triangle ft. The construction of the Hessian Hÿ2
consists of two steps. First, we calculate the Hessian at the

nodes of the grid ÿh and then extend it into triangles ft ÿ ÿh in such a way that
the functions ÿ2, t(ÿ) restored on ft form a continuous surface ÿh. Step 1. For each
internal node vi of the grid ÿh, consider the superelement ÿ(vi) and define a plane
approximating the nodes of this superelement in the sense

of minimum squares and approximating the plane tangent to ÿ at vi. Let (ÿ1,
ÿ2) denote the local coordinate system for this plane. We define the superelement
ÿi as the orthogonal projection of triangles from ÿi onto the (ÿ1, ÿ2)-plane. On fig.
Item 3 shows the superelement ÿi, its projection ÿi, and some triangle from ÿi and
its projection onto the plane (ÿ1, ÿ2) are also shaded. Using a change of variables,
we define a continuous function ÿi (ÿ1, ÿ2) locally representing the surface ÿ,

and a continuous piecewise linear function ÿi h(ÿ1, ÿ2) locally representing ÿh. Let
us assume that both functions are single-valued over ÿi. Finally, we denote the
Hessian ÿi by Hÿ and the discrete Hessian ÿh by Hh.

km

Rice. P.3. Local coordinate system for the superelement ÿ(v1)

3

Hhkm(vi)ÿh dS = ÿ

i

k, m = 1, 2,

by analogy with the finite element method.

1 ÿ2(ÿ) = ÿ

§ A.1. Adaptation to external and internal boundaries

Let the local extrapolation ft be described by a quadratic function ÿ2, t. Below
we will omit the index t if this does not lead to confusion. Let us describe the function
ÿ2 in the local coordinate system ÿ = (ÿ1, ÿ2) convenient for us and associated
with the plane of the triangle ft, ÿ2 ÿ2 using its Hessian Hÿ2 = {Hÿ2 km}2 ÿÿkÿÿ m

si

2

k,m=1,

Application. Some problems of grid adaptation 183

ÿ

The eigenvalues and vectors of the Hessian Hÿ(vi) are related to the principal
curvatures and principal directions of the surface ÿ at the point vi; therefore, its
projection (Hÿ(vi)e, e) onto any unit vector e in the plane tangent to ÿ is the normal
curvature in the direction e. If the components of the discrete Hessian Hhkm(vi) at
the site vi approximate the components of the differential Hessian Hÿkm(vi), then
the quantity (Hhe, e) approximates the normal curvature of the surface ÿ in the
direction e. In [51], a method was proposed for calculating the curvatures of a
discrete surface ÿh converging to the curvatures of a smooth surface ÿ in the
maximum norm as h tends to zero. We use a different approach to estimating
normal curvatures, which is simple and works well in practice, despite the lack of
theoretical justification. In this approach, the components of the discrete Hessian
Hh at the node vi are defined in terms of the weak formulation:

methods of local restoration of such a surface, see [53, 70, 71, 73] and references
therein. We describe a method [43] that uses discrete differential geometry to
compute a piecewise quadratic continuous function approximating the reconstructed
surface. The continuity of this function is a hallmark of this method. The Hessian
(matrix of second derivatives) of this function is calculated based on the weak
formulation,

:

ÿÿi h ÿÿh
dS,

ÿÿk ÿÿ m

Consider a smooth piece of the surface ÿ with boundary ÿ. Let ÿh be some
piecewise linear approximation of ÿ with discrete boundary ÿh. We assume that
the nodes ÿh and ÿh lie on ÿ and ÿ, respectively, although this assumption is not
necessary in practice. A piecewise quadratic extrapolation ÿh of a triangulation ÿh
is defined as a continuous surface consisting of local quadratic extrapolations ft ÿ
ÿh over triangles ft ÿ ÿh.

(Hÿ2 (ÿ ÿ ÿi), ÿ ÿ ÿi) ÿi(ÿ).

(A.1.6)

182

Hÿ2

Machine Translated by Google

A

22

V

eij1 eij1 Hÿ2 + eij2 eij2 Hÿ2 + 2 eij1 eij2 Hÿ2

G

which must hold for any continuous piecewise linear functions ÿh that vanish on ÿÿi.

12

(A.1.7)

3

aij = 2 (A.1.8)

Hÿ2

eleven

= 16|ft|3 > 0,

Step 2. The extension of the Hessian inside the triangles is based on the quantities ÿij

representing the projections of the Hessian onto the edges eij of the triangle ft. Here and below,

we assume that the vector eij starts at the vertex vi and ends at vj = vi+1, where v4 ÿ v1. In the

local coordinate system, the vectors eij are given by two coordinates: eij = (eij1 , eij2). Then, by

definition of ÿij, we have: eij1 eij2 which generates a system of three linear equations with three

unknown matrix elements:

22

Since the function ÿ2, t is quadratic on the edge of the triangle, it is uniquely determined by

the values at the vertices of the edge and the corresponding value ÿij . Therefore, to construct a

continuous surface ÿh, we assume that it contains the nodes of the original grid ÿh and that the

value of ÿij on the edge eij is calculated in the same way for all triangles containing this edge. We

define ÿij as the average of two nodal approximations of the Hessian:

This definition has two exceptions. If vi ÿ ÿh and vj ÿ/ ÿh, then ÿij = (Hh(vj)eij , eij). If vi ÿ ÿh and vj

ÿ ÿh, then ÿij = 0. This is the

b

Hÿ2

§ A.1. Adaptation to external and internal boundaries

It is believed that the nodal approximation of the Hessian is not restored at the boundaries of

smooth pieces. This also means that the traces of ÿh and ÿ h coincide on ÿh.

ÿ ÿ ÿ2, tLÿ(ft) ÿ ÿ ÿhLÿ(ft).

eij1

eij2

The following result shows that the matrix of the system is nondegenerate, i.e., the solution (A.1.7)

exists and is unique. Lemma A.1.1. The matrix B of system (A.1.7)

coefficients is nondegenerate. Proof. Direct calculations of the determinant of the matrix B

12

184

Hÿ2

1

Application. Some problems of grid adaptation

eleven

i = 1, 2, 3.

given e12 + e23 + e31 = 0 give

((Hh(vi) eij , eij)+(Hh(vj) eij , eij)).

As an illustration, consider a sphere ÿ of radius 0.18, a smooth surface without boundary, ÿ

= ÿ. Consider a sequence of quasi uniform surface triangulations ÿh with steps h = 0.1; 0.05;

0.025; 0.0125 shown in fig. P.4.

= ÿij ,

= ÿij ,

| de B| = 2 e121 e232 ÿ e231 e132

where |ft| is the area of the triangle ft.

Vtab. Item 2 presents the maximum error rate for approximating the surface ÿ by piecewise

linear surfaces ÿh and reconstructed piecewise quadratic surfaces ÿh. These tables confirm that

piecewise quadratic completion can significantly reduce the representation error of a smooth

surface given by surface triangulation. Note that the components of the discrete Hessian

reconstructed by formula (A.1.6) may not converge in the maximum norm to the corresponding

components of the Hessian Hÿ as h ÿ 0. This explains

why we do not observe a cubic decrease in the error in the right

Rice. P.4. Quasi-uniform triangulations of a sphere of radius 0.18 with steps h = 0.1 (a); 0.05 (b);
0.025 (c) and 0.0125 (d)

If the surface ÿ can be represented by a smooth function, then the proposed piecewise

quadratic extrapolation ÿh provides a better approximation error ÿ than ÿh [43]. In other words,

,

12

185

Hÿ2

Machine Translated by Google

4:

cÿ ÿ u ÿ uhÿ, ÿ Cÿ ÿ,

5:

where c, C are constants of the order of unity, and ÿ, ÿ are some error norm on the cell ÿ.
Various approaches to calculating a posteriori error estimates will be considered at the
end of the section. The adaptive construction of the computational

grid by local hierarchical refinement can be implemented based on the available a
posteriori error estimate ÿ ÿ and a given threshold ÿ for the maximum error. Algorithm 43
serves as an example of such an implementation. Let us note the following features of the
algorithm. This adaptation algorithm does not provide a strict equipartition of the error,
but only

does not refine the grid where the local estimate is below a given threshold. The initial
grid must be coarse enough to satisfy ÿ ÿ > ÿ on all its cells. Otherwise, on those cells
where ÿ ÿ ÿ, the principle of equipartition of the error estimate will be violated.

column. Nevertheless, the use of quantities (A.1.6) gives a significant gain when using
piecewise quadratic completion in practical calculations. The use of a more complicated
method [51] for estimating the curvatures of a discrete surface ÿh can further reduce the
error in representing the surface ÿ by a reconstructed piecewise quadratic surface ÿh.

Calculate the local a posteriori error estimate ÿ ÿ Add a cell to the set M
if ÿ ÿ > ÿ

chemical grinding

7: end loop
Calculate ÿmax = max 8: ÿ ÿ ÿ ÿh Construct a new grid ÿh by bisecting

cells
from the set M (see Algorithms 21 and 24) 10: end while

0.1

9:

0.05

1: Construct the initial grid ÿh. Put ÿmax = ÿ 2: while while ÿmax > ÿ
do 3: Find the numerical solution
uh on the grid ÿh. Put M = ÿ

§ A.2. Adaptation to the solution by local hierarchical refinement 187

0.0125

If, in addition to the local mesh refinement procedure, there is a local mesh coarsening
procedure, then the adaptive algorithm can be strengthened. To do this, we need to
require that the initial mesh admits multilevel coarsening (see § 4.4). Algorithm 44
generates a grid in which the error estimate for all cells lies in the interval [ÿÿ, ÿ], 0 <ÿ< 1.
The parameter ÿ is chosen in such a way that

loop over all cells ÿ ÿ ÿh

Application. Some problems of grid adaptation

1.4 10ÿ3

2.3 10ÿ4

5.7 10ÿ5

3.4 10ÿ5

T a b l e A.2
Errors in representing the sphere by
piecewise linear (ÿh) and reconstructed
piecewise quadratic (ÿh) surfaces

1.3 10ÿ2

3.5 10ÿ3

8.9 10ÿ4

2.4 10ÿ4

6:

h

Algorithm 43. Adaptive meshing by local hierarchy

The fundamental principle of constructing adaptive computational grids is the principle
of equipartition of the numerical solution error u ÿ uh over grid cells ÿh. According to this
principle, a grid provides the minimum error rate, i.e., minimizes the error functional,
among all grids with a given number of cells, if the error rate is the same on all its cells. In
this case, the specific type of norm does not matter. The application of the error
equipartition principle is based on the monotonic dependence of the error rate on each
grid cell on its size and on the possibility of modifying a grid with an unequally distributed
error in such a way that the error rate decreases. In many applications, however, the
principle of error equipartition cannot be realized, since the error of the numerical solution
cannot be calculated due to the unavailability of the exact solution. In these cases, the
principle of

equipartition of the a posteriori error estimate ÿ ÿ is applied, which can be calculated
without an exact solution. The error rates of a numerical solution on a grid with an equally
distributed error and on a grid with an equally distributed a posteriori error estimate will be
comparable if the local error estimate approximates the local error well:

0.025

§ A.2. Adaptation to the solution through

local hierarchical refinement

In the case of a domain with a curvilinear boundary, hierarchical refinement in the
vicinity of the boundary, strictly speaking, does not make sense, since new nodes may
not lie on the boundary of the domain. In such cases, newly appeared boundary nodes
must be projected onto the boundary (see § A.1) and the hierarchical nesting of meshes
will be violated. However, from a topological point of view, the hierarchical nesting of grids
is preserved and the method of multilevel grid refinement can be modified for this case.

186

ÿ ÿ ÿhLÿ ÿ ÿ ÿhLÿ

Machine Translated by Google

10:

As an example of local hierarchical refinement, consider the approximate
solution of the diffusion equation

The above adaptive algorithms are mainly applicable to the approximate
solution of stationary equations of mathematical physics. For nonstationary
problems, the following circumstances should be taken into account.

The initial mesh is shown in fig. P.6, a. To construct an adaptive grid shown
in Fig. A.6, b, Algorithm 43 was used, in which the a posteriori

6:

Rice. P.5. Split into three subregions

Algorithm 44. Adaptive meshing by local hierarchical refinement and coarsening

ÿdiv ÿ ÿ u = f

ÿ ÿ and ÿmin = min

2) Adaptive re-meshing based on a posteriori error estimate can be done not
at every time step, but once in several time steps [46]. 3) Cell coarsening is an
integral part of mesh adaptation.

Otherwise, an increase in the number of grid cells over time can slow down
or even block the calculation.

ÿ1

In some applications, hierarchical mesh adaptation can be accompanied by
node shifting to achieve a better approximation of solution discontinuities such as
shock waves and shocks in gas dynamics, material discontinuities and cracking
in solid mechanics, and model geometry.

once.

ÿ ÿ
ÿ ÿh

§ A.2. Adaptation to the solution by local hierarchical refinement 189

ÿ ÿ ÿh

Rice. P.6. Initial mesh (a) and refined hierarchical mesh (b)

M2 = ÿ
loop over all cells ÿ ÿ ÿh

Application. Some problems of grid adaptation

Calculate the local a posteriori error estimate ÿ ÿ Add a cell to the
set M1 if ÿ ÿ > ÿ Add a cell to the set M2 if ÿ ÿ < ÿÿ from
the set M1 11: end while

so that local refinement (roughening) of the cell reduces (increases) the error by
no more than ÿ

5:

1) In addition to adaptive control over the spatial grid step, adaptive control
over the time step is required. Time discretization should provide an error
comparable to the spatial discretization error.

(A.2.1)

with the homogeneous Dirichlet condition by the finite element method on an
adaptive triangular grid [57]. The equation is considered in a unit square divided
into three subdomains ÿ1, ÿ2, and ÿ3, with ÿ2 being the inner ring (see Fig. A.5).
The diffusion coefficient ÿ(x) = ÿi in the subdomain ÿi is defined as ÿ1 = ÿ3 = 1, ÿ2
= 10000, and the right hand side f(x) = 1. The mechanical analogy of the
considered boundary value problem is the strain under load of a composite
material with fixed boundaries .

7:

´

1: Construct an initial grid ÿh that allows multilevel coarsening. Set ÿmax = ÿ,
ÿmin = 0 2: while ÿmax > ÿ and ÿmin < ÿÿ do 3:

Find the numerical solution uh on the
grid ÿh. Put M1 = ÿ,

9:

´

188

4:

Machine Translated by Google

ÿ

ÿ ÿ U = fÿuh ÿwdV .

.

ÿ

,

ÿv = sup wÿH1
(ÿ),ÿw=1 ÿ

ÿ uh ÿw dV = fw dV ÿ ÿÿÿh ÿ

[ne ÿ uh]e = ne ÿ uh|ÿ+ ÿ ne ÿ uh|ÿÿ .

Taking these considerations into account, the local a posteriori estimate of the residual
error can be written as

parts on each triangle is carried out with the help of quadrature formulas. Moreover, it is

possible to replace the integrable function f by its mean value

over all triangles, the integral over each internal

ÿuh ÿvdV

U=uh

= ÿ(Uh ÿ uh)L2(ÿ ÿ).

ÿR,ÿ = (diam(ÿ))2 f2

u = 0 on ÿÿ.

0

ÿ

§ A.2. Adaptation to the solution by local hierarchical refinement 191

1/2

1 fÿ = |
ÿ|

ÿ

sup
wÿH1 (ÿ),ÿw=1

L2(e)

Clause 2.1. A posteriori estimation of the residual error

ÿv ÿw dV

by the finite element method, in which on each triangle ÿ(v1, v2, v3) the space of polynomials

of the first order is enriched with the bubble function bÿ = ÿ ÿ, 1 ÿ ÿ, 2 ÿ ÿ, 3. Here and below, ÿ

ÿ, i denotes a linear finite element basis function on ÿ, i.e., ÿ ÿ, i(vj) = ÿij . Note that the

piecewise cubic function Uh is piecewise linear on ÿÿ ÿ. A posteriori error estimate based on

the solution of local

+,

190

R, ÿ

,

in ÿ ÿ,

ÿ

|e| [ne ÿuh]e2

(A.2.2)

The main principle of all a posteriori error estimates based on the solution of local

subproblems is the formation of a large number of problems with a small number of unknowns.

When solving auxiliary problems, it is necessary to use higher order finite element spaces

than when solving the original problem (A.2.2). For each triangle ÿ, we form a subdomain ÿ ÿ

containing ÿ and triangles adjacent to ÿ along an edge. In each subdomain ÿ ÿ we consider an
approximate

solution Uh of the local problem

ÿ

,

fw dV ÿ

1

ÿ ÿu = f in ÿ,

valid for a generalized solution u ÿ H1 (ÿ) of problem (A.2.2) and any function v ÿ H1 (ÿ), where

H1 (ÿ) is the Sobolev space of functions with zero trace on ÿ ÿ and an integrable square of the
generalized derivative [39] . Because the

Factor

Clause 2.2. A posteriori error estimate based on the
solution of local subproblems

on ÿÿ ÿ

(A.2.4)

(A.2.3)

The a posteriori residual error estimate is based on the identity

+

More details about the methods of a posteriori error estimation and their application to a wider

class of problems can be found in [83].

0

Integrating by parts and using the fact that the solution is linear on each triangle, we can show

that

Application. Some problems of grid adaptation

1

where |ÿ| denotes the area of triangle ÿ.

the gradient error ÿ(u ÿ uh) can be estimated in terms of the residual norm of the finite element
solution in the dual space with the norm

where [ne ÿ uh]e denotes the jump of the normal component of the flow of the function uh
through the inner mesh edge e separating two triangles ÿ ÿ ÿ:

in the second term takes into account that when summing

fv dV ÿ

0

ÿ

ÿ L, ÿ

residual error estimate given below, and local refinement was provided by the red–green

partitioning method [30], an alternative to the bisection method. The error is proportional to

the diffusion coefficient, which leads to a strong refinement of the grid in the subregion ÿ2. Let

us briefly describe several approaches to the formation of a posteriori error estimates for a

piecewise linear finite element solution uh of a two dimensional elliptic equation on regular

triangulations. For simplicity, we consider the Poisson equation with the Dirichlet boundary

condition:

values of ÿ2,

its edge enters it twice. In practice, the calculation of the L2-norm of the right

ÿ

fw dV ÿ

f dV

0

L2(ÿ) 2 eÿÿ,
e /ÿÿÿ

[ne ÿ uh]ew dS,
eÿÿh, e /ÿÿÿ e

0

subtasks, calculated by the formula

2

ÿ(u ÿ uh) ÿv dV =

Machine Translated by Google

The hierarchical a posteriori error estimate [41] for solving problem (A.2.2) is
based on the enrichment of the original space of piecewise linear finite elements. Let
ÿi denote the piecewise linear basis function associated with node vi. For each edge
eij we define a bubble function bij = 4 ÿiÿj . The enriched space is constructed by
adding edge functions of bubbles bij to the original basis ÿi . Let Uh denote a finite
element solution of problem (A.2.2) in an enriched space. The main assumption of
the method is

that the difference between the piecewise linear solution uh and the piecewise
quadratic solution Uh is a good approximation to the error u ÿ uh:

L2(ÿ)

for basic functions:

ALL u L

vi

D

in ÿ,

on ÿ ÿ ÿ ÿ ÿ,

This problem is solved by the space enriched finite element method described above.
FQ ÿ AQL u L

Therefore, the value

ÿ H, ÿ

eij

1 ÿ ÿ

And

then the coefficients of this expansion satisfy the system of linear equations

[ne ÿuh]e
ÿu

from which it follows that D

ÿ(uh ÿ Uh)L2(ÿ) ÿ ÿ(uh ÿ u)L2(ÿ). To estimate

ÿ(uh ÿ Uh)L2(ÿ), we decompose uh and Uh

=
ÿ(u ÿ uh)

(A.2.7)
DQ

2

ÿ(uh ÿ Uh)L2(ÿ).

UQ, ij bij .

= FL

eij

§ A.2. Adaptation to the solution by local hierarchical refinement 193

L, iÿi +

D

on ÿ ÿ \ ÿ ÿ.

AQQ DQ = FQ ÿ AQL u L. (A.2.8) The matrix AQQ is well

conditioned on grids with regular cells, so system (A.2.8) can be effectively solved, for
example, by the conjugate gradient method. It can also be shown [41] that

u L, iÿi, Uh =

The coefficients of this expansion satisfy the systems of linear equations

ALL ALQ

=

D

1

The a posteriori estimate of the error over the mean gradient is based on

.
Guh - ÿ uh

192

1

= 0, and the vector DQ satisfies the system

(A.2.5)

UL The triangle inequality leads to a two-sided error estimate:

FL ÿ ALL u L

ALL O

(A.2.9)

uh =

2

on an easily computable approximation Guh of the function ÿ u, for which

FQ

L

= ÿ

DQ,ij ÿbij

ÿn

Clause 2.3. Hierarchical posterior error estimate

is an easily computed hierarchical a posteriori estimate of the local gradient error.

AQL AQQ

The approximation Guh is defined as the discrete L2 projection of a piecewise
constant vector function ÿ uh onto the space of continuous piecewise linear vector
functions. Projection resolution

Guh - ÿ uh.

,

L

FQ ÿ AQL u L

About AQQ

eij

vi

UQ

Application. Some problems of grid adaptation

ÿÿÿ

=

=

1

If we expand the function uh ÿ Uh in terms of basis functions:

ÿ ÿu = f ÿ

DQ

DQ, ij ÿbij
eijÿÿ

ÿ u ÿ Guh ÿÿ(u ÿ uh), 0 ÿ < 1.

FL

1+ÿ

Other options for the formation of local subtasks are also possible. For example,
instead of the superelement ÿ ÿ, we can consider the superelement ÿ(v) formed by
triangles with a common vertex v. Besides the local Dirichlet problem, one can also
consider the local Neumann problem on the inner triangle and the mixed boundary
value problem on the boundary triangle:

ÿÿÿ

L

Clause 2.4. A posteriori error estimate from
the averaged gradient

uh ÿ Uh =

(A.2.6)

FL ÿ ALL u L

L2(ÿ)

ALL ALQ

AQL AQQ

where the vectors FL, FQ and u L are known. However, the solution of the system
(A.2.7) is too costly, requiring more arithmetic work than the solution of the original
system (A.2.6). To construct an easily computed a posteriori estimate, we replace
system (A.2.7) with a simplified system

vi

UL, iÿi +

1

DQ, ijbij ,

u = uh

,

Machine Translated by Google

ÿ Z, ÿ

ÿuh
ÿxk

In a certain sense, all considered a posteriori error estimates are equivalent, since they

provide upper and lower error estimates for the finite element solution [83].

ÿÿh
ÿx

Suppose that the method for constructing a tensor metric is given, then the algorithm for

constructing an adaptive grid with a given number of cells looks very simple.

Clause 3.1. Tensor metric based on Hessian recovery

Construct an M-quasi-uniform grid ÿh with N elements Calculate the grid solution

uh Calculate a new tensor metric M from

uh 5: 6: end while

ÿ(vi)

min
N(ÿh) N

3:

where x1 = x, x2 = y, x3 = z. Because in most

dx

Algorithm 45. Building an adaptive grid with N elements

As shown in § 6.2, controlling the properties of a grid using a tensor metric is the most

flexible means of controlling the properties of grid cells. The main reason that distinguishes

metric control from other methods of control is the possibility of constructing anisotropic grids

with highly elongated cells. The advanced front and Delaunay triangulation methods become

much less reliable when constructing anisotropic meshes. Section 6.2 considers a method for

constructing anisotropic meshes using the tensor metric M(x) as a control. The method

reduces to constructing a grid that is quasi uniform in a given metric M(x) by means of a

sequence of local modifications of the current grid. We will call such a grid an M-quasi-uniform

grid.

(A.3.1)

1: Construct the initial grid ÿh, find the grid solution uh and calculate the tensor metric M

4:

§ A.3. Adaptation to the grid solution by local modifications 195

= Guh ÿ ÿ uhL2(ÿ).

When developing methods for constructing triangular or tetrahedral meshes that are

adapted to the mesh solution, the main problem is the construction of a tensor metric based

on the current mesh solution. The choice of a metric is associated with the approximate

minimization of a certain error norm of the grid solution on the set of conformal grids ÿh with

a limited number of cells N(ÿh):

Such a replacement leads to the local calculation of the function Guh at any node of the grid

v:

Application. Some problems of grid adaptation

Thus, the a posteriori error estimate for the averaged gradient is defined as follows:

for any continuous piecewise linear finite element function ÿh vanishing at the boundary of

the superelement ÿ(vi). In the boundary

is expressed in a special choice of the scalar product based on the replacement of the integral

over a triangle by the quadrature formula of rectangles:

2: while the grid ÿh is not M-quasi-uniform do

§ A.3. Adaptation to the grid solution through local modifications

Hh, km(vi) ÿh dx = ÿ

u ÿ uhÿ.

|ÿ|
ÿ dV ÿ (ÿ(v1) + ÿ(v2) + ÿ(v3)). 3

Below, we consider several methods for constructing a tensor metric based on a grid

solution and illustrate the resulting adaptive algorithms with numerical results.

The first method for constructing a tensor metric uses methods for restoring the Hessian

of the grid function uh. Recall that the Hessian H of a scalar doubly differentiable function u is

the matrix of second partial derivatives of this function with elements ÿ2 u Hkm(u) = ÿxkÿxm In

applications, grid solutions are not classically doubly differentiable functions, the classical

partial
derivatives are

replaced by into generalized ones. We present two methods for computing a continuous

piecewise linear grid Hessian Hh from a continuous piecewise linear function uh. To do this, it

suffices to determine the values of the Hh components at the grid nodes. Let d denote the

dimension of the space, d = 2, 3. The most common method for calculating the Hessian values

of the grid function uh at grid nodes, based on the idea of finite element discretization of

second order elliptic equations, was briefly described in § A.1.

Consider the superelement ÿ(vi) as the union of all simplices containing vi. The

components of the grid Hessian Hh, km(vi), k, m = 1, ... , d, are reconstructed at the internal

node vi of the grid ÿh as follows:

ÿ(vi)
m

ÿ(v1, v2, v3)

Guh(v) =

,

194

|ÿ|
ÿuh|ÿ. |ÿ(v)|

ÿÿÿ(v)

Machine Translated by Google

(A.3.2)

The above analysis is directly confirmed by a numerical experiment. Consider
the problem of optimizing the error of piecewise linear interpolation of the function

where ÿ1(H) denotes the eigenvalue of H closest to zero. Then the error estimate

ÿ = diag{ÿi},
min

ÿ h:N(ÿ h) N

The main advantage of the above method for constructing a tensor metric
from a grid function uh is its independence from the problem the solution of which
is this function. The disadvantage of this approach is the possibility of a large error
in estimating the grid Hessian using formula (A.3.1), which is clearly manifested in
the vicinity of the singularities of the solution. This caused the impossibility to carry
out a theoretical analysis of the adaptive algorithm, although the algorithm has
proven itself well in practice [5, 9, 66].

,

Iÿh(u), which uses the value of the function at the grid points and returns a
continuous piecewise linear function. Theorem A.3.1.

Let u ÿ C2(ÿ), det H = 0, and ÿh be an |H|-quasi-uniformly dimensional grid
with N elements. Further, let ÿ ÿ ÿh be the element at which the maximum error of
piecewise linear interpolation is reached, and H = H(x ÿ), where x ÿ | detH(x)|.
Finally, = arg max xÿÿ, let Hh be a consistent approximation of the Hessian H on the elements of ÿ
for which

(A.3.3)

q > 0,

h

The mathematical substantiation of the adaptive construction of an Mh-quasi-
uniform grid with metric (A.3.1)–(A.3.2) is the following result for the optimal
interpolation problem [5, 23]. For a continuous function u, we define the
interpolation operator

ÿ

ÿ

In the choice of weights, we follow [23], where the weight is defined as the measure
of the intersection of two superelements:

Hh(vi) = W ÿ WT,

Mp = (det|H|) ÿ1/(2p+d) |H|.

§ A.3. Adaptation to the grid solution by local modifications 197

Hh(v) =

.

values.

ÿi = |ÿ(v) ÿ ÿ(vi)|

u ÿ Iÿ

(u)Lp(ÿ) CN ÿ2/d

196

H ÿ HhL ÿ(ÿ) <

...

u(x, y) = yx2 + y3 + th(6(sin(5y) ÿ 2x))

viÿÿ(v),vi=v

where W is an orthonormal matrix of eigenvectors Hh(vi), ÿ is a diagonal matrix of
eigenvalues ordered in non-decreasing order of their absolute value:

(A.3.4)

with a constant C depending on q, |H|, ÿ, but independent of p and N.

ÿi = 1.
viÿÿ(v),vi=v

Note that the requirement of consistent approximation is always satisfied for
a fixed function u for sufficiently large values of N. It can also be shown [5, 23]
that for a

function u ÿ C2(ÿ)

In the case of a degenerate Hessian Hh, the metric is formed by formula
(A.3.2) using the matrix of perturbed eigenvalues

.

Thus, under reasonable constraints, an |H|-quasi-uniform mesh with N
elements ensures an asymptotically optimal rate of decay of the interpolation error
in the maximum norm, i.e., it is quasi-optimal. The error estimates in the maximum
norm can be generalized [6] to the Lp-norm 1), p > 0. Moreover, the metric M = |H|
should be replaced by the following metric:

1) For 0 <p< 1, the norm becomes a quasi-norm.

|ÿ(v) ÿ ÿ(vi)|

(u)Lÿ(ÿ).

ÿ1

born Hessian for sufficiently large N, we have the estimate

|ÿ| := diag{max{| ÿ1|; ÿ}, ..., max{| ÿ3|; ÿ}} .

Application. Some problems of grid adaptation

u ÿ Iÿh (u)L ÿ(ÿ) C(q, |H|, ÿ) N ÿ2/d

We define the following tensor metric:

h

q2

|ÿ1|

u ÿ Iÿ

grid node, the Hessian Hh(v) is defined as a convex linear combination of the
Hessian values at the nearest internal nodes: ÿi Hh(vi),

The grid Hessian Hh(vi) is a symmetric matrix that may be indefinite. Therefore,
to construct a metric (a positive definite matrix), the spectral modulus |Hh(vi)|
matrices Hh(vi). Consider the spectral decomposition of this matrix:

Mh(vi) = |Hh(vi)| = W |ÿ| WT, where

|ÿ| is the diagonal matrix of the absolute values of the eigenvalues

(A.3.5)

CN-2/d

Let ÿh be an Mp-quasi-uniform mesh with N simplices. Then the asymptotic
decay rate of the interpolation error in the Lp-norm will be the same as for the
maximum norm:

ÿ

ÿviÿÿ(v),vi=v
|ÿ1(H)|,

|ÿd|.

Machine Translated by Google

4000

convergence from unity lies in the fact that the finite element method

8000

mentov minimizes the energy error norm ÿ(u ÿ uh)L2(ÿ).

(r, ÿ) (see Fig. A.8). The problem is defined in a unit circle ÿ
centered at the origin without a cut S given by the conditions x > 0
and y = 0:

Rice. P.8. Isolines for solving the problem of a crack (a) and an adaptive grid (b)

on Sÿ,

N

ÿuÿn = 0

Rice. P.7. Isolines of the interpolated function (a) and quasioptimal grids
with approximately 1000 triangles minimizing the interpolation error in

the L1 (b) and Lÿ (c) norms

Consider, for example, the classical boundary value problem of a
crack with the exact solution u(r, ÿ) = r1/4 sin(ÿ/4) in polar coordinates

ÿu = 0

ÿ0.9

u ÿ uhLÿ(ÿ) 0.056 0.016 0.005 0.0014

ÿÿÿÿÿÿÿÿÿÿÿÿÿ

where S+ and Sÿ denote the sides of the cut S facing the half
planes x > 0 and y < 0, respectively.

§ A.3. Adaptation to the grid solution by local modifications 199

2000

A theoretical analysis of the asymptotic properties of |Hh|-
quasiuniformly dimensional grids is presented only for the problem of
piecewise linear interpolation. Note that Algorithm 45 can use any grid
solution uh on the grid ÿh, for example, a finite element solution of a
boundary value problem. Despite the lack of substantiation of both
the convergence of adaptive iterations and the asymptotic properties
of the adaptive grid constructed in this way, numerical experiments
show the applicability of such an extension even for problems with singularities.

Table A.3
Interpolation errors of function (A.3.5) on
quasi-optimal grids in the L1 and Lÿ

norms

Application. Some problems of grid adaptation

(A.3.6)

on grids with a given number of cells. To minimize the error in the
Lÿ- and L1-norms, we use Algorithm 45, in which the metric is
recovered by formulas (A.3.1), (A.3.2), and (A.3.4).

on S+,

abs

T a b l e A.4
Maximum error rate of the finite element

solution for the crack problem

in ÿ\S,

u = 0

We will look for a solution to this problem in the space of
continuous piecewise linear functions defined on conformal
triangulations, and reconstruct the grid Hessian using formulas
(A.3.1) and (A.3.2), ignoring the singularity at the origin of the polar
coordinate system. As can be seen from Table. A.4, on the
constructed adaptive grids (see Fig. A.8, b), the maximum error
rate of the finite element solution demonstrates an almost optimal

convergence rate:). Cause of slight speed deviation

1000 4000 16000 64000

Table A.3 shows that the measured error rates are inversely
proportional to the number N of triangles in the grid. On fig. Item 7 shows
isolines of the function u and adaptive grids for p = 1 and p = ÿ. As can
be seen from the figure, a larger value of p leads to a more intensive
refinement of the grid around the singularity of the function.

N u ÿ uhL1(ÿ) u ÿ uhLÿ(ÿ) 2.4 10ÿ2
4.4 10ÿ2 1000 1.2 10ÿ2 2.2

10ÿ2 5.6 10ÿ3 9.0 10ÿ3 2.8

10ÿ3 5.0 10ÿ3

u ÿ uhLÿ(ÿ) = O(N

198

u = sin ÿ4 on ÿÿ \ S,

Machine Translated by Google

u = 0 on ÿ ÿ \ (ÿin ÿ ÿout).

.

b

ÿÿÿÿÿ

ÿÿÿÿÿ

V

ÿ ÿ 0.01 ÿ u + b ÿ u = 0 in ÿ,

Because the maximum error rate is not subject to the energy norm, it can fall at a
slower asymptotic rate. a

Rice. P.10. Convergence of the grid solution: in the domain with the analytical
representation of the sphere ÿ (a), in the domains with three discrete models ÿ0.05,
ÿ0.025, and ÿ0.0125 for the sphere ÿ (b; denoted by lines 0.05, 0.025, 0.0125), in
domains with discrete models ÿ0.0125, ÿ0.025, and ÿ0.05 for the sphere ÿ (c; denoted

by lines 0.0125, 0.025, 0.05)

(A.3.7)

V

u = g on ÿin, ÿu

Algorithm 45 and the metric recovery method (A.3.1), (A.3.2) are successfully
used for adaptive solution of boundary value problems with non self adjoint operators
and anisotropic singularities of the solution, such as boundary layers [5, 9, 43, 66].
Moreover, quadratic extrapolation of piecewise-linear approximations of curvilinear
boundaries (see § A.1) makes it possible to efficiently adapt the mesh around a
curvilinear boundary. As an illustration, consider the convection–diffusion equation

§ A.3. Adaptation to the grid solution by local modifications 201

ÿn

Note that the constructed adaptive grids provide a much smaller error than
conventional quasi-uniform triangulations: the error rate on a grid with 64,000 triangles
is 0.16, which is two orders of magnitude greater than the value of 0.0014 from Table
1. P.4.

= 0 on ÿout,

b

Application. Some problems of grid adaptation

Here b = (1, 0, 0)T is the constant velocity field, ÿ = (0, 1)3 \ B0.5(0.18) is the cubic
computational domain with the removed ball B0.5(r) of radius r = 0.18 centered at (0.5,
0.5, 0.5). The boundaries of the computational domain are the surface of a sphere, ÿ
= ÿB0.5(0.18), and the surface of a cube. On the surface of the cube, we select the
planes ÿin = {x ÿ ÿÿ: x = 0} and ÿout = {x ÿ ÿÿ: x = 1}. Finally, g(y, z) = 16 y(1 ÿ y)z(1 ÿ
z) denotes the standard Poiseuille flow profile. The solution to problem (A.3.7) has a
boundary layer along the leeward part of the spherical boundary ÿ and is very smooth
in the

shadow zone behind the obstacle. Since the exact solution is unknown, in the
experiments it was replaced by a piecewise linear finite element solution uÿ calculated
on a very fine adaptive (quasi-optimal) grid containing more than 1.28 × 106 tetrahedra
(see Fig. A.9). To generate this adaptive grid, the analytical representation ÿ ÿ was
used. The first experiment (plot in Fig. A.10, a) confirms the asymptotic result (A.3.3)
with uÿ instead of u. The error in the maximum ÿ2/3 norm almost coincides with the
analytical curve 60 N In the second experiment (graph in Fig. A.10, b), the boundary
ÿ is

approximated by a quasi-uniform triangulation ÿh. We present the maximum
adaptive decision error rate as a function of N for three different values of h. The graph

shows the saturation of this

Rice. P.9. Adaptive mesh trace on the obstacle (a), mesh cut (b) and from the solution
line uÿ (c) in the xy plane passing through the center of the obstacle

200

A

Machine Translated by Google

L2(ÿ)

§ A.3. Adaptation to the grid solution by local modifications 203

ÿ

|dk|

(A.3.8)

=
3

Application. Some problems of grid adaptation

k=1

ÿ1

finite element solution. Its main advantages are its applicability to a wider class of functions,
including functions with singularities, the possibility of a posteriori estimating the energy
error rate, and the minimization of the error rate, which is natural for the finite element
method. Consequently, an adaptive procedure using such a metric ensures the optimal
rate of convergence of the grid solution to the differential solution and control of the

discretization error uh ÿ u [25]. In § A.2 we considered a hierarchical method for estimating
the a posteriori error based on the assumption (A.2.5) that the difference between the
piecewise linear finite element solution uh and the

piecewise quadratic finite element solution Uh gives a good approximation to the error
uh ÿ u . For an efficient approximate calculation of uh ÿ Uh on each triangle ÿ, a linear
combination (A.2.9) of bubble functions bij associated with the edges eij of the triangle ÿ
was taken. The coefficients of this combination satisfy the system (A.2.8):

1

= |ÿ|(B d, d),

We fix a triangle ÿ and introduce a vector d ÿ R3 with coefficients DQ, ij corresponding

to the edges of this triangle. The gradient L2-norm of the a posteriori estimated error ÿh
can be written as follows:

= |ÿ|
k=1

Clause 3.2. Tensor metric based on edge error estimates

3

(A.3.9)

ÿbk ÿbm dV.

ÿk, ÿk = |dk|(B d, d)

DQ, ijbij .
eijÿÿ

The splitting of the error rate into three edge quantities ÿk has a simple justification. Such a
choice additionally equally distributes the maximum discretization error rate on the edges of
the triangle, and, consequently, on all edges of the grid [24, 26].

. (A.3.10)

uh ÿ u ÿ ÿh ÿ

L2(ÿ)

Unfortunately, the error rate on a triangle is a number that does not provide enough
information to determine the tensor metric M. In order to determine the tensor metric, we
split the error into three edge components ÿk 0 such that

2

L2(ÿ)

where the summation goes over the edges e12, e23, e31, and B denotes a 3 × 3 symmetric
positive definite matrix with entries

3

202

k=1
ÿÿh2

errors due to inaccurate resolution of the curvilinear boundary. Note that the saturable error
ÿh is almost inversely proportional to h2: ÿ0.05 = 0.2, ÿ0.025 = 0.067, and ÿ0.0125 = 0.021.

This is probably related to the second-order approximation by the piecewise linear manifold
ÿh for a smooth boundary ÿ.

ÿÿh2

The disadvantages of the adaptive procedure based on the metric obtained by restoring
the Hessian of the grid function are large errors in restoring the Hessian in the vicinity of the
singularities of the solution, the lack of control over the interpolation or discretization error,
and the fact that it generates grids minimizing the Lp-norm of the error, 0 < p ÿ, while finite
element solutions tend to minimize the energy norm of the error. Minimization of the energy
error rate is of greater interest for elasticity problems, since it leads to a more accurate
calculation of stresses in prefracture zones. The energy norm is related to the L2-norm of
the gradient error; therefore, to optimize the finite element discretization error, one must be
able to construct a metric that generates grids minimizing the L2-norm of the gradient error.
The proposed method for constructing a tensor metric is based on the use of edge a

posteriori estimates of the energy error

The third experiment (graph in Fig. A.10, c) studies the effect of piecewise quadratic

completion ÿh for ÿh on the accuracy of a discrete solution. Saturation errors are compared
for three fixed surface grids with the same number of nodes: the first grid is a quasi-uniform
triangulation ÿ0.0125, the second and third grids are obtained from the grid ÿ0.0125 by

projecting its nodes onto the reconstructed piecewise-quadratic surfaces ÿ0.025 and ÿ0.05
respectively, i.e. they use edge information with a resolution of h = 0.025 and h = 0.05. For

convenience, we also denote the second and third grids by ÿ0.025 and ÿ0.05. The
dependence plots of the adaptive solution error in regions with fixed boundaries ÿ0.0125
and ÿ0.025 actually coincide, which leads to an approximate equality of saturation errors:

ÿ0.025 ÿ ÿ0.0125 ÿ 0.021. Note that the saturation error ÿ0.025 in a region with a fixed

boundary ÿ0.025 with a resolution h = 0.025 exceeds ÿ0.025 by more than three times. A
coarser piecewise linear representation of the boundary with a resolution h = 0.05

demonstrates an even greater difference in saturation errors: ÿ0.05 = 0.2 for the region with
the boundary ÿ0.05 and ÿ0.05 = 0.03 for the region with the boundary ÿ0 .05. Thus,
piecewise quadratic completion makes it possible to significantly reduce the saturation error
of grid adaptation in regions with curvilinear boundaries, which are represented by surface

triangulations.

dkÿbk

Bk,m = |
ÿ|

Machine Translated by Google

VM ÿ, ÿ

ÿÿhL2(ÿ) ÿ N In

computational practice, the piecewise constant tensor metric is replaced by a
continuous metric, which ensures faster convergence of the algorithm 45. The
continuous tensor metric is formed based on the values at the grid nodes and linear
interpolation

technologies.

Method

T a b l e A.6
Energy norms of error and error estimates for an
adaptive finite element solution for the crack problem

L2(ÿ)

ÿÿhL2

In the case of tetrahedral meshes, the derivation of the metric repeats
calculations (A.3.9)–(A.3.11) with the correction that the tetrahedron has six edges,
and the scaling in (A.3.11) is changed: = (det|H2|) ÿ1/5

|H2|.

1 v2 = ÿ
2 k=1

we set

0.11 0.053 0.027 0.015

The constructed metric M ÿ connects the L2-norm of the gradient error (A.3.10)
with the geometric properties of the triangle ÿ. The following inequalities were
proved in [24, 26]:

1 |ÿh|M.

M

M

ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ N

2

error

§ A.3. Adaptation to the grid solution by local modifications 205

2

ÿ | p M ÿ, ÿ|

inside each element. The value at the node v is taken equal to the value of the
metric on the simplex from the set ÿ(v) that has the largest determinant.

(A.3.11)

ÿ, ÿ |p M ÿ, ÿ| 2.

As the experiment on constructing an adaptive grid in the crack problem (A.3.6)
shows, both methods of constructing the metric (using the restoration of the grid
Hessian and using the a posteriori hierarchical error estimate) provide the
asymptotically optimal (N ÿ1/2) rate of fall of the energy norm ki errors. Vtab. A.5

shows the energy norms of the finite element error for two methods of constructing
the metric: a) by formulas (A.3.1), (A.3.2) and b) by formulas (A.2.8), (A.3.9)–
(A.3.11). The data in the table confirm a twofold drop in the energy norm of the
finite element error with a fourfold increase in the number of grid elements, which
confirms the asymptotic behavior of N ÿ1/2. error rates due to the known a posteriori
estimate (A.3.8). Vtab. In Section 6, we compare the energy norms of the exact

error uh ÿ u and the a posteriori estimated error ÿh. Table
values demonstrate the closeness of the norms of both errors. Controlling the

error of a finite element solution in engineering calculations is an important property
of this computational

204

(A.3.1), (A.3.2)

N(ÿh)

.

3

V

ÿ

ÿÿhL2(ÿ) ÿ N ÿ1/2

T a b l e A.5
Energy norms of the error of the adaptive finite element solution ÿ(uh ÿ
u)L2(ÿ) of the crack problem, for two methods for constructing the tensor

metric

5

(A.3.13)

(A.2.8), (A.3.9)–(A.3.11)

1000 4000 16000 64000

ÿ1/3

where |H2| is the spectral modulus of the matrix H2. Otherwise, we slightly increase
the largest of the three edge errors so that the Hessian of the modified quadratic
function v2 becomes a nondegenerate matrix. In practice, a 1% increase is

VM

ÿkbk and denote its Hessian by H2. If det H2 = 0,

M

ÿ(uh ÿ u)L2 0.11 0.053 0.027 0.015 0.10 0.051

0.026 0.013

Application. Some problems of grid adaptation

metric recovery

The principle of error equipartition underlying adaptive meshing leads to the
equipartition of the following geometric properties:

(A.3.14)

As for triangular meshes, M-quasi-uniform meshes containing N tetrahedra provide
an asymptotically optimal decay rate for the gradient error estimate [24, 26]:

1000 4000 16000 64000

(A.3.12)

.

Three numbers ÿk allow us to determine three elements of the metric tensor M
ÿ on the triangle ÿ. To do this, we introduce the quadratic function

0.11 0.053 0.026 0.013

2

.

= (det|H2|) ÿ1/4 |H2|,

ÿÿh2

Thus, we need to build grids with the same areas of triangles and the same
perimeters of triangles measured in the tensor metric M, which is composed of
piecewise constant metrics M ÿ. According to (A.3.13), an M-quasi-uniform mesh ÿh
containing N triangles ensures the asymptotically optimal decay rate of the gradient
error estimate

sufficient.

N

Machine Translated by Google

Subject index

— — — through local subtasks

— — — — rib errors 203

Inertia tensor 156
Tetrahedron: algebraic volume 21,

— construction of tetrahedrization
76 — — triangulation
49 Hierarchical a posteriori error

estimate 192
— — — by residual 190

142 - degenerate
21 -: quality 22, 168, 169
-: volume 21
- regular 21, 140 -
regular 22 -: sliver
45, 161 Delaunay
tetrahedralization 44, 83 - quasi-
uniform 23

Simplicial mesh 15 Hessian
mesh 184, 195 Simplex 15,
24 Block-ordered
list 37 - unstructured 33 - implicitly
ordered 35 - structured 32 -
ordered 34 Superelement 24,
123, 140 -: quality 122

— CUBIT 66

171

193

Subject index

— — —: Parallel version 155
— — —: Super linear acceleration

— — —: computational complexity

CAD 13
Mesh dynamic 118 -
hierarchical 94 -:
hierarchical refinement 95,

Triangle area 17, 167
Construction of a metric based on

edge error estimates
203 — — — grid Hessian 195

CAD boundary 40 - parameterized
42, 64,

68, 178 Graph dual 31 - planar 29 -
flat 29 - triangulated
29

Surface Mesh Enhancement 71

Search tree octal 38 — —
quaternary 38

191

-: - coarsening 114, 117 -:
quality 18, 122 -
quasi-optimal 197 -: local
modification 121 -: unraveling
161 - regular 20, 166

Euler formula 25 Two-
dimensional front 47 —
three-dimensional 76

Gradient descent method 129, 146 -
inertial bisection 156 - advancing
front 47, 67, 75 - partitioning along
the largest edge 96 - - - labeled

edge 96
Metric: mesh edge length 172
-: volume of the simplex 172 -:
distance between points
170,

Basic algorithms for modifying
tetrahedralization

140 — — — triangulation
123 — — — at a curvilinear boundary

123, 131,
141 CGM library 66

139

Polyhedron - isolated gap 82 -
simple 76

Polygon non-
convex 46 - non-strictly convex
46 - strictly convex 46

207

— Open CASCADE 66
Fast search: block ordered list 37,

139 — —: bisection
method 35 — —:
quaternary tree 38, 57

Rib errors 202

202 - regular 20

Tetrahedrization conformal 23 -
regular 23
Triangle: algebraic area 17, 125

- canonical 18 -:
quality 18, 168, 169
- oriented 75 - equilateral
18, 171 Triangulation M-
quasi-uniform 173, 194 -
Delaunay 43 - quasi-uniform 19 -

conformal 19
- surface 20, 41, 62, 181,

— — — — averaged gradient

104

Hierarchical mesh adaptation 187
— — to the boundary
177 — — by modifications 137,
194 Mesh rebuilding algorithm 136

160

Machine Translated by Google

¨

Bibliography

Stuttgart: Teubner, 1999.

34. Borouchaki H., Hecht F., Saltel E., George P.-L. Reasonably efficient Delaunay
based mesh generator in 3 dimensions // Proc. 4th Int. Mesh Roundtable. -
Albuquerque, 1995. - P. 3-14.

28. Arnold D., Mukherjee A. Pouly L. Locally adapted tetrahedral meshes using
bisection // SIAM J. Sci. Comput. 2000. V. 22, No. 2. P. 431–448.

2. V. N. Apanovich and T. A. Dolgova , Practical convergence of the method of
external finite element approximations in solving three dimensional problems of
elasticity theory. — Dep. in VINITI 17.03.93, No. 645-V.

25. Agouzal A., Lipnikov K., Vassilevski Y., “On optimal convergence rate of finite
element solutions of boundary value problems on adaptive anisotropic meshes,”
Math. Comput. Simul. 2011. V. 81. P. 1949–1961.

15. V. D. Liseikin , Yu. V. Likhanova , and Yu. I. Shokin , Difference grids and
coordinate transformations for the numerical solution of singularly perturbed
problems. — Novosibirsk: Nauka, 2007. 16. Liseikin

VD , Shokin Yu. I., Vaseva IA , Likhanova Yu. V. Technology of constructing difference
grids. — Novosibirsk: Nauka, 2009. 17. Mishchenko A. S., Fomenko

A. T. A course in differential geometry and

1983.

˜

No. 5, pp. 7–12.

Mech. a. Eng. Dec 1, 2012 V. 249–252. P. 2–14.

27. Apel T. Anisotropic finite elements: Local estimates and applications. —

7. Vasilevsky Yu. V., Vershinin A. V., Danilov A. A., Plenkin A. V. Technology for
constructing tetrahedral meshes for domains specified in CAD // Matrix Methods
and Technologies for Solving Large Problems / Ed. E. E. Tyrtyshnikova. — M.:
INM RAN, 2005. — S. 21–32. 8. Vasilevsky Yu . V. Parallel technologies for

solving boundary value problems:

pology. - M .: Factorial Press, 2000.

22. Advances in grid generation / Ed. O. Ushakova. — NY: Nova Science Publishers,
2005.

20. Electronic resource: The Common Geometry Module: http://
cubit.sandia.gov/cgm.html 21.

Electronic resource: The Common Geometry Module, Argonne (CGMA):

10. V. A. Garanzha , Discrete Curvatures, Quasi-Isometric Mappings, and Quasi-
Optimal Computational Grids: Dis... doctorate. Phys.-Math. Sciences. — M.: VTs
RAN, 2011. .

5. Yu . V. Vasilevsky and K. N. Lipnikov , “An adaptive algorithm for constructing
quasi-optimal grids,” Zh. Vychisl. math. and mat. physical 1999. V. 39, No. 9. S.
1532–1551.

31. Bansch E Local mesh refinement in 2 and 3 dimensions // IMPACT of Comput. in
Sci. a. Eng. 1991. V. 3. P. 181–191.

24. Agouzal A., Lipnikov K., Vassilevski Y. Hessian-free metric-based mesh adaptation
via geometry of interpolation error, Comput. math. and mat. physical 2010. V. 50,
No. 1. S. 131–145.

1. B. N. Azarenok, Variational methods for constructing structured grids and their
applications to gas dynamics: Dis... doctorate. Phys.-Math. Sciences. — M.: VTs
RAN, 2009.

Dis... doc. Phys.-Math. Sciences. - M.: INM RAN, 2006.

12. A. A. Danilov , “Construction of tetrahedral meshes for domains with given
surface triangulations,” Computational Methods, Parallel Computations, and
Information Technologies, vol. — M.: MGU, 2008. — S. 119–130.

P. 229–263.

13. N. Dolbilin , “Three theorems on convex polytopes,” Kvant. 2001.
v. 217–220. P. 77–95.

14. Ivanenko S. A. Adaptive-harmonic grids. — M.: VTs RAN, 1997.

26. Agouzal A., Vassilevski Yu. Minimization of gradient errors of piecewise linear
interpolation on simplicial meshes // Comput. Meth. Appl. Mech. a. Eng. 2010. V.
199. P. 2195–2203.

http://www.opencascade.org/

29 Auricchio F., Beirao da Veiga F. , Hughes T. J. R. et al. Isogeometric collocation
for elastostatics and explicit dynamics // Comput. Meth. Appl.

32. Bazilevs Y., Calo V. M., Cottrell J. A. et al. Isogeometric analysis using T-splines //
Comput. Meth. Appl. Mech. a. Eng. 2010, 1 Jan. V. 199, is. 5–8.

3. V. G. Boltyanskii and V. A. Efremovich , Visual topology. — M.: Nauka,

4. S. N. Borovikov , I. E. Ivanov , and I. A. Kryukov , “Construction of a constrained
Delaunay tetrahedrization for bodies with curvilinear boundaries,” Zh. Vychisl.
math. and mat. physical 2005. V. 45. S. 1407–1423.

209

30. Bank R. E. PLTMG: a software package for solving elliptic partial differential
equations, users' guide 6.0. — Philadelphia: SIAM, 1990.

9. Yu . V. Vasilevskii and K. N. Lipnikov , “Using the Hessian Restoration Technique
in the Construction of Adaptive Grids,” Vopr. atom. in science and technology:
ser. Mat. physical modeling. processes. 2006. Issue. 3. P. 37–53.

http://trac.mcs.anl.gov/projects/ITAPS/wiki/CGM

Bibliography

6. Yu. V. Vasilevskii and A. Aguzal , “Unified Asymptotic Analysis of Interpolation
Errors on Optimal Grids,” Dokl. 2005. V. 405, No. 3. S. 1–4.

33. Borden M. J., Verhoosel C. V., Scott M. A. et al. A phase-field description of
dynamic brittle fracture // Comput. Meth. Appl. Mech. a. Eng. 2012, 1 Apr.

11. A. A. Danilov , “Technology for constructing unstructured grids and monotonic
discretization of the diffusion equation,” Cand. Phys.-Math. in UK. - M.: INM
RAN, 2010.

18. Skvortsov A. V. Delaunay triangulation and its application. - Tomsk: Publishing
House Vol. un-ta,

2002. 19. Electronic resource: Open CASCADE Technology:

23. Agouzal A., Lipnikov K., Vassilevski Y. Adaptive generation of quasioptimal
tetrahedral meshes // East-West J. Numer. Math. 1999. V. 7. P. 223–244.

Machine Translated by Google

67. Lipnikov K., Vassilevski Yu. On control of adaptation in parallel mesh generation //
Eng. with Comput. 2004. V. 20, No. 3. P. 193–201.

72. Misztal M. K., Baerentzen J. A., Anton F., Erleben K. Tetrahedral mesh
improvement using multi-face retriangulation // Proc. 18th Int. Meshing
Roundtable/ Ed. BW Clark. - Berlin-Heidelberg: Springer-Verlag, 2009. - P.
539-555.

53. Garimella R. V., Swartz B. K. Curvature estimation for unstructured triangulations
of surfaces. - Los Alamos Report LA-UR-03-8240; http://math.lanl.gov/Research/
Publications/Docs/garimella-2003-curvature.pdf.

J. Numer. Anal. Math. Modelling. 2003. V. 18, No. 1. P. 1–11.

63. Kuratowski K. Sur le probleme de courbe gauches en topologie // Fund.

2011. V. 200. P. 89–100.

tion. — Berlin: Springer-Verlag, 2006.
70. McIvor A. M., Valkenburg R. J. A comparison of local surface geometry estimation

methods // Machine Vision a. Appl. 1997. V. 10. P. 17–26.

35. Buscaglia G. C., Dari E. A. Anisotropic mesh optimization and its application in
adaptivity // Int. J. Numer. Meth. engng. 1997. V. 40. P. 4119–4136.

42. Du Q., Wang D. Recent progress in robust and quality Delaunay mesh
generation // J. Comput. a. Appl. Math. 2006. V. 195. P. 8–23.

40. Danilov A. Unstructured tetrahedral mesh generation technology // Comput.
math. and mat. physical 2010. V. 50, No. 1. S. 146–163.

Berlin: Springer-Verlag, 1996, pp. 245–256.

73. Mokhtarian F., Khalili N., Yuen P. Curvature computation of free-form 3-D meshes
at multiple scales, Comput. vision a. image understanding. 2001.

Meth. Appl. Mech. a. Eng. (Elsevier). Oct 1, 2005 V. 194. P. 4135–4195.

56. Handbook of grid generation/ Ed. J. Thompson, B. Soni, N. Weatherill. — Boca
Raton, FL: CRC Press, 1999.

44. Elguedj T., Hughes T. J. R. Isogeometric analysis of nearly incompressible large
strain plasticity, Comput. Meth. Appl. Mech. a. Eng. Jan 1, 2014

47. Fary I. On straight line representations of planar graphs // Acta Sci. Math.

J. Numer. Anal. 1992. V. 29. P. 32–56.

210

43. Dyadechko V., Lipnikov K., Vassilevski Yu. Hessian based anisotropic mesh
adaptation in domains with discrete boundaries // Russ. J. Numer. Anal.

68. Liseikin V. Grid generation methods. — Berlin: Springer-Verlag, 1999.

36. Carey G. F. Computational grids: generation, adaptation, and solution strate.

54. George P. L., Borouchaki H. Delaunay triangulation and meshing: application to
finite elements. - Paris: Editions Hermes, 1998.

59. Ivanenko S. A. Selected chapters on grid generation and applications. — Moscow:
Dorodnicyn Computing Center of the Russian Academy of Sciences, 2004.

61. Knupp P., Steinberg S. Fundamentals of grid generation. — Boca Raton: CRC
Press, 1994.

49. Freitag L. A., Ollivier-Gooch C. Tetrahedral mesh improvement using swap ping
and smoothing // Int. J. Numer. Meth. Eng. 1997. V. 40. P. 3979–4002.

Bibliography

41. Deuflhard P., Leinen P., Yserentant H. Concepts of an adaptive hierarchical

65. Levenberg K. A Method for the Solution of Certain Non-Linear Problems in Least
Squares, Quart. Appl. Math. 1944. V. 2. P. 164–168.

V. 83. P. 118–139.

57 Hoppe R., Iliash Yu., Kuznetsov Yu. et al. Analysis and parallel implementation
of adaptive mortar element methods // East-West J. Numer. Math.

V. 268. P. 388–416.

1948. V. 11. P. 229–233.

50. Frey P. J., George P. L. Mesh generation: application to finite elements. —

55. George P. L., Borouchaki H., Saltel E. 'Ultimate' robustness in meshing an
arbitrary polyhedron, Int. J. Numer. Meth. Eng. 2003. V. 58. P. 1061–1089.

Math. Modelling. 2005. V. 20, No. 4. P. 391–402.

69. Liseikin V. A computational differential geometry approach to grid genera

60. Klingner B. M., Shewchuk J. R. Aggressive tetrahedral mesh improvement // Proc.
16th Int. Meshing Roundtable/Ed. M. Brewer, D. Marcum. - Berlin-Heidelberg:
Springer-Verlag, 2007. - P. 3-23.

66. Lipnikov K., Vassilevski Yu. Parallel adaptive solution of 3D boundary value
problems by Hessian recovery // Comput. Meth. Appl. Mech. a. Eng. 2003.

Oxford: Hermes Science Publishing, 2000.

gies. — Washington: Taylor & Francis, 1997.

62. Knupp P. Algebraic mesh quality metrics // SIAM J. Sci. Comput. 2001.

1998. V. 6. P. 223–248.

45. Eymard R., Gallou¨et T. R., Herbin R. The finite volume method // Handbook of
Numerical Analysis. V. 7/Ed. PG Ciarlet and JL Lions. - North Holland, 2000. - P.
713-1020.

48. Foster I. Designing and building parallel programs. — NY: Addison-Wesley,

Bibliography

38. Chugunov V., Svyatski D., Tyrtyshnikov E., Vassilevski Yu. Parallel iterative
multilevel solution of mixed finite element systems for scalar equations // Concur.
a. Comput.: Pract. a. Expert. 2006. V. 18, No. 5. P. 501–518.

Math. 1930. V. 15. P. 271–283.

71. Meyer M., Lee H., Barr A. H., Desbrun M. Generalized barycentric coordinates
on irregular polygons // J. Graph. tools. 2002. V. 7, No. 1. P. 13–22.

37. Chugunov V., Vassilevski Yu. Parallel multilevel data structures for a non-
conforming finite element problem on unstructured meshes // Russ.

V. 23. P. 193–218.

51. V. L. Garanzha, “Discrete extrinsic curvatures and approximation of surfaces by
polar polyhedra,” Comput. math. and mat. physical 2010. V. 50, No. 1. S. 71–98.

211

finite element code // IMPACT. 1989. V. 1. P. 3–35.

V. 192, nos. 11–12. P. 1495–1513.

52. Garimella R. V. Anisotropic Tetrahedral Mesh Generation. — Rensselaer
Polytechnic Institute, Report 1998-31, PhD Thesis. — 1998.

58. Hughes T. J. R., Cottrell J. A., Bazilevs Y. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement, Comput.

46. Farrell P. E., Maddison J. R. Conservative interpolation between volume meshes
by local Galerkin projection // Comput. Meth. Appl. Mech. a. Eng.

1995.

74. Nicolaides R. A. Direct discretization of planar div-curl problems // SIAM.

39. Ciarlet P. The finite element method for elliptic problems. - Amsterdam: North-
Holland, 1978.

64. Lachaud J.-O. Topologically defined iso-surfaces // Proc. 6th DGCI. —

Machine Translated by Google

.

.

.

.

.

.

.

.

. .

P. 2889–2906.

.

.

.

. .

.

Bibliography

.

.

.

.

.

.

.

(V. A. Levin) ... Author's

preface.

.

. 49

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..

.

. 57

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

80. Rado T. Uber den Begriff der Riemannschen Fl Mathem. (Szeged).

1925. V. 2. P. 101–121.

85. Williams R. Performance of dynamic load balancing algorithms for unstructured mesh

calculations // Concurrency: Practice and experience. 1992. V. 3.

.

.

77 Proc. 18th Int. Meshing Roundtable/Ed. BW Clark. - Berlin-Heidelberg: Springer-Verlag, 2009.

.

.

.

.

.

. 70

.

.

.

.

.

.

.

. .

. .

.

.

.

areas

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

.

.

17

.

.

.

.

.

. 53

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

. 59

82. Tautges T. J. The Common Geometry Module (CGM): A Generic, Extensible Geometry Interface //

Eng. with Comput. 2001. V. 17. P. 299–314.

.

.

.

.

.

..

.

.

.

.

.

.

.

Chapter 1. Introduction .

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

front.

3.4.1. Surface representation. 3.4.2. Interaction

with the geometric CAD core. 3.4.3. Algorithm of the advanced front. .

3.4.4. Experimental results.

.

.

.

.

.

.

..

. .

.

.

.

.

.

.

..

.

.

.

.

.

24

.

.

.

.

..

.

.

.

.

.

5

.

75. Pothen A., Simon H., Liou K. Partitioning sparse matrices with eigenvectors of graphs // SIAM J.

Math. Anal. Appl. 1990. V. 11. P. 430–452.

.

.

TABLE OF CONTENTS

.

.

.

.

.

.

.

.

.

eleven

.

.

.

.

.

.

.

.

.

§ 3.1. Methods for defining a computational domain § 3.2.

Construction of the Delaunay triangulation. . § 3.3.

Building a triangulation by the advancing front method. . 3.3.1. Algorithm of the

advanced front. . 3.3.2. The influence of computational

errors. 3.3.3. Finiteness of the Algorithm 10 . 3.3.4. The speed

of the advanced front algorithm. 3.3.5. Experimental

results. § 3.4. Construction of surface triangulation by the promoted method.

62

..

.

.

.

.

..

.

.

.

.

..

.

.

Chapter 2. Basic concepts

.

.

.

..

.

.

.

81. Shewchuk J. R. Constrained Delaunay tetrahedralizations and provably good boundary recovery //

Proc. 11th Int. Mesh Roundtable. - Ithaca, 2002. - P. 193-204.
.

.

.

.

78. Rivara M. Mesh refinement processes based on the generalized bisection of simplexes // SIAM J.

Numer. Anal. 1984. V. 21. P. 604–613.

P. 457–481.

.

. 67

.

.

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

..

.

.

.

.

. .

..

.

.

.

.

. 45

.

.

.

. 31

.

.

.

.

.

76 Proc. 16th Int. Meshing Roundtable/Ed. M. Brewer, D. Marcum. —

.

.

. 65

.

9

.

.

¨

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

83. Verfurth R ̈A review of a posteriori error estimation and adaptive mesh-refinement techniques. -

Stuttgart: Wiley-Teubner, 1996.

.

.

.

.

.

.

.

.

. 40

.

.

.

.

. 63

17

.

.

.

.

.

.

..

.

.

86. Zavattieri P., Dari E., Buscaglia G. Optimization strategies in unstructured mesh generation // Int.

J. Numer. Meth. Eng. 1996. V. 39. P. 2055–2071.

212

.

.

79. Rivara M. Selective refinement/derefinement algorithms for sequences of nested triangulations,

Int. J. Numer. Meth. Eng. 1989. V. 28.

.

.

.

.

.

.

.

.

.

.

.

.

.

Foreword by the scientific editor of the five-volume series of monographs
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

47

..

.

.

Berlin-Heidelberg: Springer-Verlag, 2007.

§ 2.1. Triangular and tetrahedral meshes § 2.2. Grid

Properties and Elements of Graph Theory. § 2.3. Data Structures

and Fast Algorithms.

.

.

.

.

.

.

.

.

.

.

¨achen // Acta Scient.

.

.

.

.

.

.

.

.

..

. .

.

.

84. Verhoosel C. V., Scott M. A., Borden M. J. et al. Discretization of Higher Order Gradient Damage

Models Using Isogeometric Finite Elements // Damage Mechanics of Cementitious Materials and

Structures. — NY: Wiley, 2012. — P. 89–120.

.

.

.

.

.

.

.

.

.

.

.

.

Chapter 3. Construction of unstructured grids in arbitrary . 40

.

.

.

.

.

.

.

.

Machine Translated by Google

.

.

.

.

.

.

3.7.1. Delaunay tetrahedrization. .

3.7.2. Restoration of area geometry 3.7.3.

Restoration of the mesh trace at the boundary. . 3.7.4.

Finiteness of the algorithm. 3.7.5. Improving

the quality of the resulting mesh 3.7.6. Experimental

results.

.

.

.

. .

. 82

.

.

.

.

.

.

.

.

.

.

.

. 155

.

214

.
.

.

.

.

Bibliography .

.

.

.

. .

.

.

111

.

.

. 118

.

.

.

..

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

. .

.

.

.

. .

. .

.

. .

.

.

meshing

cation.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

. 94

.

.

.

.

.

.

.

.

.

.

.

.

Clause 1.2. Adaptation of tetrahedralization to smooth parametrized with respect
to . 179

.

.

.

.

71

.

.

.

. 85

.

.

.

.

.

.

.

.

.

Appendix. Some problems of grid adaptation. . § A.1. Adaptation to

external and internal boundaries. Clause 1.1. Adaptation of

triangulation to curvilinear parametrized . 178

. 193

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

.

.

.

. 190

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

§ 3.7. Reliable algorithm for constructing a tetrahedral mesh. .

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

. 208

ny subtasks .

.

.

.

.

.

.

.

.border .

.

.

.

.

. 206

.

.

.

.

.

.

.

.

.

.

grinding. . .

.

.

.

.

Clause 1.3. Adaptation of grids to boundaries with unknown parametrization.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

.

. .

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.
.

. .

.

.

.

.

.

.

.

.

. .

.

.

..

.

.

. 202

. .

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3.6.1. Algorithm of the advanced front. .
.

.

.

.

. 140

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

.

.

.

.

§ 4.1. Principles of multilevel grid construction. . § 4.2. The

Bisection Method for Refining Triangulations. § 4.3. Bisection

method for grinding tetrahedrizations. . § 4.4. Multilevel Coarseness

Algorithm. § 4.5. Algorithms for constructing dynamic

grids

.

.

.

.

.

.

.

177

..

.

. 87

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

Table of contents

. 82.

.

.

.

.

. 95

.

.

.

.

.

.

121.

.

.

.

.

.

..

. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

..

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

. 192

.

.

.

75

.surface .

.

.

.

.

.

.

.

.

.

..

. 86

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

.

.

.

.

.

.

CHAPTER 5 Reconstruction of simplicial grids by means of local modifications .
§ 5.1. Principles of organization

of algorithms. . § 5.2. Rearrangement of

triangulations. . § 5.3. Rearrangement of

tetrahedralizations. § 5.4. Parallelization of

the 3D Algorithm. § 5.5. Fixing and unraveling meshes. .

.

.

.

177

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

..

.

Clause 3.1. Tensor metric based on Hessian recovery. . Clause 3.2.

Tensor metric based on edge error estimates

.

.

.

.

.

.

Table of contents

..

.

.

.
.

. .

.

.

.

.

.

§ A.2. Adaptation to the solution by means of a local hierarchical of . 186

.

.

.

.

. .

. .

.

. .

. .

. .

.

.

. .

.

.

.

.

.

.

.

.

. .

.

. 166

. 181

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

215

.

. 76

. .

.

.

. .

.

.

.

.

.

.

.

.

. .

.

.

.

Clause 2.3. Hierarchical a posteriori error estimate. . Clause

2.4. A posteriori estimate of the error on the averaged gradient. § A.3.

Adaptation to the grid solution by means of local modifications. 194

.

. 104

.

.
.

.

.

.

.

.

.

.

.

.

Subject index .

.

.

.

.

.

.

. .

. .

.

.

.

.

.

.

.

.

.

.

.

Chapter 4. Multi-level hierarchical refinement and coarsening . 94

.

.

.

.

.

.

.

. 195

..

. .

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

§ 3.5. Method for improving a given surface mesh § 3.6.

Construction of a tetrahedral mesh by the advanced front method

.

.

.

.

.

.

.

. 87

.

.

. 83

.

.

. 161

.

..

.

. .

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.

Clause 2.1. A posteriori estimate of the residual error

A.2.2. A posteriori error estimate based on the locale solution. 191

.

.

.

.

.

Chapter 6. Managing Mesh Properties § 6.1.

Controlling properties of regular grids § 6.2. Managing

the properties of anisotropic meshes. .

.

.

.

.

.

.

.

. . 166

.

.

.

.

.

121

.

.

.

.

.

.

.

.

.

. .

.

Machine Translated by Google

DEAR COLLEAGUES!

5. If you are interested in introducing an innovative component into the
educational process at your university, then we suggest creating
(deploying) a “Virtual Laboratory for Strength Engineering Analysis
Courses” as a private cloud of your university. This will allow teachers to
conduct classes remotely, and students to use tablets or even
smartphones when teaching. In this case, we can offer the joint
development of laboratory work.

We offer you cooperation in a number of areas: 1. If you have an
industrial module for an engineering analysis package, then we offer

its integration with CAE Fidesys for their joint promotion to the market. 2.
If you have a scientific software

product (for any type of engineering analysis) or you are working on its
creation, then we are ready to assist in its commercialization by integrating
with the Fidesys CAE package.

The specified private cloud can be supplemented with the ability to use
the Fidesys CAE package in the work of the engineering center of your
university. In

addition, when a university purchases one commercial license, we are
ready to supply up to 5 educational licenses in an industrial configuration.
At the same time, we propose the creation of joint training centers with
your university for industrial users of CAE Fidesys.

3. If you are cooperating with industrial enterprises, then we offer to
work with you on the basis of the Fidesys CAE package to create a new
software product - a specialized industry solution - and transfer it to the
enterprise (industry). Scientific and methodological guidance remains
with you and / or representatives of the enterprise (industry). 4. If you are

developing a new direction in engineering analysis, then we are ready
to consider algorithmization and software implementation and, if necessary,
act as an "industrial partner".

CAE Fidesys

We are also interested in the industrial use of modern numerical
methods, for example, the discontinuous Galerkin method, isogeometry

STRENGTH ENGINEERING ANALYSIS
APPLICATION PACKAGE A trial version (1 month) of

the product and a user manual with step-by-step examples
are available at http://www.cae-fidesys.com Tel.: +7 (495)

930-87-53, e -mail:
contact@cae-fidesys.com

cal analysis.

Machine Translated by Google

