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FOREWORD  OF  THE  SCIENTIFIC  EDITOR  OF  THE  
FIVE-VOLUME  CYCLE  OF  MONOGRAPHS

This  volume  of  a  five-volume  cycle  of  monographs  for  a  specialist  in  
the  field  of  strength  calculations  stands  somewhat  apart.  A  researcher  
or  a  strength  engineer  usually  does  not  think  about  algorithms,  and  even  
more  so  about  the  most  complex  mathematical  apparatus,  on  the  basis  
of  which  the  algorithms  for  constructing  (generating)  grids  for  the  
numerical  solution  of  strength  problems  are  developed.  This  is  probably  
due  to  the  fact  that  if  a  universal  or  niche  CAE  (Computer  Aided  
Engineering  -  engineering  analysis  system)  is  used  for  calculations,  then  
it  contains  an  industrial  grid  generator.  If  the  solution  of  a  particular  
complex  research  problem  requires  the  development  of  an  independent  
program,  then  the  existing  grid  generator  is  used,  since  this  is  almost  
always  enough  to  solve  a  particular  problem.  At  the  same  time,  it  should  
be  understood  that  such  a  program  is  usually  workable  only  in  the  
hands  of  a  researcher.  The  need  for  

a  deeper  dive  into  the  problem  arises  when  developing  a  fully  
functional  CAE,  for  example,  for  strength  engineering  analysis,  capable  
of  solving  complex  problems  with  finite  deformations  and  their  
redistribution.  Such  problems  describe  mechanical  processes,  with  finite  
deformations  under  loading,  in  which  the  boundaries  and  boundary  
conditions  change.  Such  processes  include,  for  example:  the  formation  
of  stress  concentrators  during  loading;  changing  the  material  properties  
of  a  body  part;  forced,  from  the  point  of  view  of  the  mechanics  of  a  
deformable  solid  body,  an  increase  (change)  in  the  mass  of  the  body.  
Such  problems  are  solved  on  the  basis  of  the  theory  of  multiple  
superimposition  of  large  deformations  (vols.  I–III).  Academician  L.I.  
Sedov,  

noting  more  than  a  third  of  a  century  ago  its  practical  significance  in  
the  future.  It  should  be  noted  that  in  our  time,  with  the  development  of  
additive  technologies,  the  creation  of  new  materials,  with  an  increased  
need  to  more  accurately  evaluate  supercritical  loading  scenarios  and  
product  life,  the  industrial  implementation  of  such  problems  has  become  
a  practical  necessity.
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increasing  geometry  (topology)  of  the  computational  domain  
and  to  stress/strain  fields  in  the  process  of  solution,  including  
anisotropic  meshes  that  make  it  possible  to  take  into  account  
the  induced  anisotropy  in  the  vicinity  of  stress  concentrators.  
This  is  important,  for  example,  in  dynamic  problems  in  which  it  
is  necessary  to  

ensure  high  accuracy  of  the  solution  at  the  wave  front.  To  
implement  this  functionality,  it  is  necessary,  in  particular,  to  
solve  the  problem  of  mesh  rebuilding  near  the  curvilinear  
boundaries  of  the  body;  control  of  anisotropic  adaptation  of  
meshes  through  their  local  modifications;  restoration  of  body  
geometry  using  a  deformed  mesh;  automatic  mesh  rebuilding  
to  improve  the  convergence  of  iterative  algorithms  for  solving  
essentially  nonlinear  problems  under  large  deformations  and  
distortions  of  the  original  body  geometry;  automatic  rebuilding  
(improving  properties)  of  a  finite  element  mesh  based  on  the  
original  mesh  containing  strongly  elongated  

elements  and/or  elements  with  "excessively  sharp"  corners.  
This  volume  is  devoted  to  the  description  of  the  solution  of  
such  problems.  Most  of  the  research  in  this  area,  due  to  the  
specialization  that  has  arisen  in  modern  science,  unfortunately  
ends  at  the  stage  of  the  research  code  and  rarely  gets  
industrial  implementation.  The  authors  of  the  volume  were  
able  to  bring  them  to  an  alienable  software  product  that  has  
proven  its  usefulness  in  research  tasks  and  is  able  to  
complement  the  functionality  of  industrial  mesh  generators  1).  Academician  G.I.  Marchuk.

It  should  be  noted  that  in  the  four  years  that  have  elapsed  from  the  
coordination  of  the  structure  of  the  five  volume  cycle  to  its  release,  a  
serious  trend  has  emerged  in  the  technologies  for  solving  the  problems  
of  strength  engineering  analysis  using  the  methods  of  isogeometric  
analysis  [29,  33,  44,  58,  84].  The  essence  of  the  approach  is  to  use  
the  linear  space  as  the  basis  functions,  within  which  the  solution  of  the  
original  boundary  value  problem  in  partial  derivatives  is  sought,  for  
example,  by  the  method  of  weighted  Galerkin  residuals,  inhomogeneous  
rational  B-splines  (NURBS),  simultaneously  specifying  the  geometry  
of  the  considered  body  (CAD  -model;  in  practice,  this  is  a  joint  use  of  
CAD  and  CAE).  In  this  case,  there  is  no  need  to  introduce  an  additional  
basis  consisting  of  shape  functions  given  on  the  finite  element  
discretization  of  the  original  model
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This  approach  in  industrial  problems  of  strength  engineering  
analysis  is  generally  impossible  because  of  the  unsolved  problem  
of  constructing  a  basis  from  three  dimensional  NURBS  for  regions  
of  arbitrary  shape  [32].  When  (if)  this  problem  is  overcome,  it  is  
likely  that  a  significant  part  of  the  trivial  standard  strength  
calculations  will  be  carried  out  using  isogeometric  analysis.  
Complex  problems  associated  with  the  analysis  of  defect  behavior,  
the  development  of  prefracture  zones,  changes  in  boundaries  and  
boundary  conditions,  and  body  mass  will  still  require  the  use  of  
mesh  generators.  And,  probably,  a  symbiosis  of  these  or  similar  
approaches  will  be  implemented  in  industrial  packages.  We  can  
assume  the  emergence  of  a  computational  block  with  the  conditional  
name  

"sampling  generator",  combining  these  approaches  2).  A  
methodologically  similar  process  is  observed  when  the  method  of  spectral  elements
one  hundred  of  the  finite  element  method  (see  vols.  I,  II)  3).

1)  Cottrell  JA,  Hughes  TJR,  Bazilevs  Y.  Isogeometric  Analysis:  Toward

In  this  case,  a  very  high  functionality  is  required  from  the  mesh  
generator.  This  is  not  only  the  basic  functionality  -  the  ability  to  build  
structured  and  some  types  of  unstructured  grids,  but  also,  in  particular,  
automatic  adaptation  of  the  grid  to  changes.

Integration  of  CAD  and  FEA.  —  NY:  Wiley  &  Sons,  2009.  
2)  Therefore,  the  scientific  editor  of  this  series  of  monographs  proposed  to  

prepare  the  second  part  of  vol.  IV  (as  a  separate  volume)  on  the  use  of  
isogeometric  analysis  in  the  numerical  solution  of  problems  in  the  mechanics  of  
a  deformable  solid  body.

The  method

1)  This  integration  is  done  in  CAE  FIDESYS  (www.cae-fidesys.com).

3)  The  described  combination  of  numerical  discretization  methods  is  
implemented  in  the  industrial  strength  engineering  analysis  package  CAE  
FIDESYS  (www.cae-

fidesys.com).  4)  Apanovich  VN  Method  of  external  finite  element  
approximations.  -  Minsk:  Highest.  school,  1991.  -  170  p.;  Aubin  J.P.  
Approximation  of  elliptic  boundary  value  problems.  —  NY:  Wiley-Interscience,  1972.  See  also  [2].

and,  as  a  consequence,  the  construction,  often  nontrivial,  of  
unstructured  grids  is  not  

required.  It  should  be  noted  that  at  present,  effective  methods  
have  been  developed  for  the  geometric  description  of  the  
boundaries  of  three-dimensional  bodies  (curved  linear  surfaces)  
using  NURBS,  and,  as  a  result,  isogeometric  analysis  is  
successfully  used,  for  example,  in  solving  problems  for  shell  structures  1).  However,  the  use

external  approximations  4).  This  method  is  a  kind  of  logical  generalization  
of  the  finite  element  method,  expanding  and  supplementing  its  main  
ideas,  including  the  weak  formulation  and  the  search  for  a  solution  in  
Sobolev  subspaces.  Without  going  into  details,  we  note  that,  within  the  
framework  of  the  method  of  external  approximations,  the  concept  of  a  
generalized  finite  element  is  introduced,  which  in  problems  of  the  
strength  of  assemblies  and  complex  composite  structures  is  actually  
their  component  part  —  in  fact,  each  assembly  detail  can  be  described  by  one  generalized
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finite  element  of  arbitrary  geometric  shape.  Another  difference  from  the  classical  
finite  element  with  isoparametric  discretization  of  the  geometry  and  fields  of  
unknown  functions  inside  the  element  is  the  possibility  of  specifying  an  arbitrary  
set  of  basis  functions  that  are  in  no  way  related  to  the  geometry  of  the  generalized  
element;  the  only  requirement  for  choosing  a  basis  is  completeness  in  the  
corresponding  Sobolev  subspace.  An  unsolved  problem  from  the  point  of  view  
of  mass  industrial  use  is  the  insufficiently  accurate  description  of  complex  
boundaries.  Note  that,  from  a  practical  point  of  view,  for  the  user,  the  method  of  
external  approximations  is  similar  to  isogeometric  analysis,  allowing  one  to  
perform  calculations  directly  on  the  initial  geometry  of  the  body  without  any  
modifications  and  additional  actions  to  prepare  the  model  for  calculation.  
Considering  all  of  the  above,  the  editor  of  the  cycle  expects  the  creation  within  
the  next  decade  in  industrial  packages  of  strength  

engineering  analysis  of  some  combinations  of  “sampling  generators”  and  
solvers  that  combine  existing  and  emerging  methods  for  solving  strength  
problems.  In  conclusion,  I  would  like  to  note  the  deep  immersion  of  the  authors  
of  the  volume  into  the  problems  of  strength  at  finite  strains  and  their  redistribution,  
their  practical  

participation  in  their  solution  1),  careful  study  of  the  examples  given  in  the  
book  and  proposed  by  the  editor  of  the  cycle  2).  This  volume  will  be  of  interest  

to  both  users  and  developers  of  packages  for  strength  engineering  analysis,  as  
well  as  useful  to  senior  students  and  graduate  students  of  specialized  specialties.

Professor  V.  A.  Levin

1)  In  particular,  automatic  mesh  adaptation  in  problems  of  elastic  wave  
propagation  under  finite  deformations  over  a  damaged  material  (vol.  I)  was  
performed  by  A.A.  Danilov.

We  started  working  on  the  problem  of  constructing  quasioptimal  grids  for  the  
numerical  solution  of  partial  differential  equations  more  than  15  years  ago.  
Initially,  it  was  obvious  to  us  that  such  grids  should  be  unstructured  and  may  
contain  triangles  or  tetrahedra  that  are  strongly  elongated  in  some  direction.  
Analysis  of  the  properties  of  numerical  solutions  on  such  grids  required  the  
development  of  new  algorithms  and  special  software.  The  purpose  of  the  book  
is  a  detailed  discussion  of  various  practical  tools  that  are  in  demand  in  
engineering  applications  and  necessary  for  efficient  automated  construction  of  
unstructured  adaptive  computational  grids,  both  regular  and  anisotropic.  One  of  
our  practical  observations  is  that  the  fast  and  reliable  construction  of  
computational  grids  requires  a  combination  of  three  different  methods.  The  
advancing  

front  method  constructs  a  mesh  fairly  quickly  in  95–99%  of  the  computational  
domain.  The  Delaunay  triangulation  method  requires  more  computational  costs  
for  constructing  each  element  of  the  grid,  but  allows  one  to  complete  the  grid  in  
the  remaining  problematic  subdomains.  Finally,  the  shape  of  the  mesh  elements  
in  the  problematic  subdomains  is  improved  using  the  anisotropic  meshing  
method,  which  has  the  highest  computational  complexity.  The  algorithms  that  
form  the  basis  of  our  reliable  meshing  technology  are  presented  in  Chapters  3  
and  5.  Optimization  of  computational  costs  in  dynamic  problems  assumes  that  
the  initial  mesh  changes  over  time  depending  on  the  dynamics  of  the  solution.  
Chapter  4  presents  methods  for  constructing  adaptive  dynamic  meshes  through  
their  multilevel  hierarchical  refinement  and  coarsening.  In  the  remaining  
chapters  and  appendix,  we  discuss  various  methods  for  controlling  the  local  size  
and  shape  of  mesh  elements  using  scalar  and  tensor  metrics,  as  well  as  various  
numerical  error  estimates.  The  book  is  intended  for  developers  of  engineering  
analysis  systems,  engineers  and  mathematicians  whose  activities  are  related  to  
the  construction  of  computational  grids.  Our  colleagues  have  provided  us  with  
considerable  assistance  in  writing  the  book.  A.  Aguzal  made  a  decisive  
contribution  to  the  theoretical  analysis  of  the  properties  of  numerical  solutions  
on  anisotropic  grids.  The  mathematical  methods  

developed  jointly  with  him  formed  the  basis  of  a  number  of  algorithms  
implemented  in  our  open  source  software,

2)  That  is  why  the  author  of  the  preface  considered  it  right  for  himself  not  to  be  part  
of  the  team  of  authors,  but  to  confine  himself  to  selecting  examples  and  discussing  
the  structure  of  the  volume.

AUTHOR'S  PREFACE
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INTRODUCTION

The  work  on  the  book  took  several  years  and  a  lot  of  personal  time.
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This  book  is  the  fourth  volume  of  the  cycle  "Nonlinear  Computational  
Mechanics  of  Strength".  The  main  goal  of  this  cycle  is  to  present  various  
mathematical  models,  numerical  methods,  and  algorithms  that  form  the  basis  
of  engineering  analysis  (SIA)  systems  and  make  it  possible  to  describe  the  
behavior  of  a  deformable  solid  body  under  finite  deformations,  when  boundaries  
and  boundary  conditions  change  during  its  loading,  discretely  or  continuously.  
conditions.  An  important  application  of  SIA  is  strength  problems,  the  solution  of  
which  is  associated  with  numerical  simulation  of  the  development  of  a  defect  
in  a  solid,  taking  into  account  the  occurrence  of  prefracture  zones  and  phase  
transitions  at  the  defect  tip  under  the  action  of  mechanical  stresses.  Numerical  
solution  of  this  kind  of  problems  requires  rich  tools  for  constructing  computational  
grids.  The  fourth  volume  of  the  series  is  devoted  to  the  description  of  various  
meshing  technologies.

The  main  purpose  of  the  book  is  to  present  a  number  of  modern  algorithms  
for  constructing  computational  grids  for  engineering  applications,  in  particular,  
those  related  to  strength  problems.  We  confine  ourselves  to  considering  only  
unstructured  grids,  which  can  be  constructed  in  almost  any  computational  
domain,  given  both  in  the  plane  and  in  space.  Technologies  for  constructing  
structured  grids  (i.e.,  grids  with  an  ijk-structure  of  connectivity  between  nodes)  
based  on  constructing  a  mapping  of  some  canonical  domain  into  a  given  
computational  domain  are  less  automated  than  technologies  for  constructing  
unstructured  grids.  A  number  of  monographs  and  scientific  collections  published  
both  in  our  country  and  abroad  are  devoted  to  methods  and  algorithms  for  
constructing  structured  grids  [1,  10,  14–16,  22,  56,  59,  61,  68,  69];  we  refer  the  
interested  reader  to  these  sources.

We  are  deeply  grateful  to  our  families  for  their  support  during  this  time.  

Moscow,  Russia  and  Los  Alamos,  USA  
December  3,  2014

Ani2D  and  Ani3D  packages.  We  are  grateful  to  A.V.  Vershinin  and  A.V.  
Plenkinu,  who  made  a  significant  contribution  to  the  development  of  a  method  
for  improving  a  given  surface  mesh.  We  thank  V.A.  Garanzhu,  R.V.  Garimello,  
V.M.  Goloviznina,  N.  Deby,  V.G.  Dyadechko,  P.L.  George,  I.V.  Kapyrina,  T.K.  
Kozubskaya,  V.D.  Liseikin,  D.R.  Madison,  Yu.M.  Nechepurenko,  K.D.  Nikitina,  
I.B.  Petrova,  A.V.  Plenkina,  I.A.  Sazonova,  P.E.  Farrell,  F.  Hesh  and  A.Yu.  
Chernyshenko  for  discussions  of  algorithms  for  constructing  computational  
grids  and  comments  that  allowed  us  to  improve  the  book.  For  the  invaluable  
contribution  to  testing  our  software,  we  are  grateful  to  the  students  of  the  
Moscow  Institute  of  Physics  and  Technology  and  Moscow  State  University,  as  
well  as  to  many  users  around  the  world  who  sent  their

Yu.V.  Vasilevsky  
A.A.  Danilov  

K.N.  Lipnikov  

V.N.  Chugunov

This  book  is  a  summary  of  many  years  of  experience  of  the  authors  in  the  
practical  construction  of  unstructured  computational  grids.  The  main  purpose  of  
the  book  is  to  discuss  the  various  tools  used  in  the  construction  of  such  grids.  
We  see  the  area  of  application  of  the  presented  tools  primarily  in  the  
development  and  implementation  of  new  grid  generators  in  engineering  
applications.  The  target  audience  of  the  book  is  SIA  developers,  engineers  
and  mathematicians  whose  activities  are  related  to  the  construction  of  
computational  grids,  i.e.  those  who  directly  program  or  use  grid  generators.

Chapter  1

comments.

Author's  preface
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The  book  by  no  means  claims  to  be  an  exhaustive  review  and  theoretical  
analysis  of  all  methods  for  constructing  unstructured  grids  and  the  data  
structures  used  for  this.  The  reader  can  study  these  issues  using  monographs  
[8,  11,  18,  36,  50,  52,  54]  and  the  works  of  specialized  domestic  
(NUMGRID-2004,  2006,  2008,  2010,  2012)  and  international  (International  
Meshing  RoundTable,  1992–2014)  conferences  (see,  for  example,  [76,  77]).  
The  yet  unpublished  monograph  by  V.A.  Garangi  "Numerical  geometry  and  
construction  of  computational  grids",  containing  rich  theoretical  material  on  
the  subject  under  consideration.  The  framework  of  our  book  is  formed  by  a  
set  of  algorithms  implemented  by  us  in  the  ani2D  and  ani3D  software  
packages,  which  are  freely  available  on  the  Internet:  www.sf.net/projects/
ani2d;  www.sf.net/projects/ani3d.  The  content  is  a  discussion  of  the  
presented  algorithms,  including  practical  results  of  their  use.

grids.

Ch.  1.  Introduction

This  book  has  a  number  of  features  that  distinguish  it  from  already  
published  monographs.  First,  it  represents  all  the  stages  of  the  technological  
chain  of  construction  of  the  computational  grid,  starting  from  the  specification  
of  the  area  and  ending  with  the  procedures  for  improving  and  adapting  the  
grid.  In  the  monographs  known  to  the  authors  [18,  36,  50,  54],  one  or  several  
stages  of  the  technological  chain  are  considered.  Second,  we  consider  
automated  technologies  for  reliable  mesh  generation  that  ensure  the  trouble  
free  operation  of  algorithms.  This  quality  is  extremely  important  when  
building  unstructured  3D  meshes  in  complex  areas.  Reliability  of  3D  meshing  
is  achieved  by  a  combination  of  several  methods,  since  no  individual  
method  alone  can  provide  an  acceptable  quality  mesh.  Thirdly,  we  give  a  
detailed  description  of  the  algorithms  used,  which  makes  it  possible  to  
understand  the  features  of  the  technical  implementation  of  the  algorithms  
in  our  programs.  An  algorithmic  view  of  the  methods  for  constructing  
computational  grids  is  also  characteristic  of  the  book  [18].  The  features  of  
the  book  listed  above  and  software  implementations  of  the  described  
algorithms  make  it  a  convenient  guide  not  only  for  users  of  our  software,  but  
also  for  developers  of  new  generation  libraries.

time;  secondly,  to  rebuild  the  grid  at  each  time  step,  condensing  it  to  a  new  
calculated  position  of  the  crack  edge  and  coarsening  it  in  other  zones.  In  the  
case  of  calculation  of  prefracture  zones  in  bodies  with  cavities,  it  is  necessary  
to  adapt  the  mesh  to  the  vertices  of  defects  and  track  the  boundaries  of  
prefracture  zones  and,  possibly,  rebuild  the  mesh  depending  on  the  
implementation  of  phase  transitions.  We  do  not  present  the  results  of  
calculations  for  problems  of  deformation  of  a  solid  body,  but  we  present  
meshes  that  can  be  used  to  solve  such  problems,  as  well  as  possible  
technologies  for  their  construction.

Most  of  the  geometric  models  considered  in  the  book  are  typical  
examples  in  strength  problems:  a  two-dimensional  or  three-dimensional  body  
with  holes  or  cracks.  When  a  significant  mechanical  load  is  applied  to  such  
bodies,  it  is  very  important  to  calculate  internal  stresses  and  predict  
prefracture  zones,  which  is  apparently  impossible  without  the  use  of  adaptive  
meshes.  For  example,  in  the  case  of  crack  propagation,  it  is  necessary  to  
dynamically  rebuild  the  mesh,  ensuring  its  thickening  to  the  current  position  
of  the  crack  edge.  For  this,  it  is  necessary:  firstly,  to  construct  an  initial  
mesh  that  adaptively  thickens  to  the  edge  of  the  crack  at  the  initial  moment

Ch.  1.  Introduction

In  addition  to  hierarchical  refinement  and  coarsening,  unstructured  
meshes  can  be  completely  rebuilt  through  a  sequence  of  local  mesh  
modifications.  This  approach  has  the  greatest  potential  compared  to  
hierarchical  refinement.

Let  us  briefly  list  the  main  advantages  of  the  technologies  developed  by  
us  for  constructing  and  adapting  unstructured  computational  grids.  The  
concepts  we  use  in  the  introduction  will  be  rigorously  defined  in  chapter  2  
of  the  book.

1)  Wanglophone  literature  CAD  (Computer  Aided  Design).
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The  book  proposes  a  set  of  algorithms  and  software  tools  for  the  reliable  
construction  of  2D  and  3D  grids  with  regular  cells  in  regions  of  complex  
shape,  which  can  be  specified  in  various  ways.  For  example,  a  three-
dimensional  region  can  be  defined  as  a  set  of  union,  subtraction,  and  
intersection  operations  of  geometric  primitives  such  as  an  ellipsoid,  box,  
cone,  etc.  The  region  boundary  can  also  be  defined  as  a  set  of  parameterized  
surface  pieces  whose  boundaries  are  also  parameterized.  The  most  common  
approach  to  defining  an  area  is  to  use  a  design  automation  system  (CAD)  
1),  which  is  an  integral  part  of  many  CIAs.  The  interaction  of  the  grid  
generator  with  CAD,  which  stores  the  internal  parametric  representation  of  
the  region  boundary,  is  provided  by  a  special  software  interface.  The  
constructed  unstructured  meshes  can  be  refined  using  local  mesh  
refinement  methods.  In  this  case,  triangular  or  tetrahedral  cells  selected  by  

the  user  are  divided  into  two  subcells,  as  well  as  some  neighboring  cells,  
which  guarantees  the  conformity  of  the  resulting  mesh.  When  applied  
several  times,  this  procedure  provides  multi-level  local  grinding,  during  
which  the  quality  of  new  cells  can  only  slightly  deteriorate.  Moreover,  refined  
meshes  allow  multi-level  local  coarsening  according  to  rules  set  by  the  user,  
thereby  providing  the  construction  of  dynamically  adaptable  meshes  that  
track  the  moving  features  of  the  mesh  solution.

12
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Chapter  3  is  devoted  to  the  construction  of  unstructured  simplicial  grids  in  arbitrary  

domains  with  a  piecewise  smooth  boundary.  Section  3.1  discusses  several  ways  of  specifying  

the  boundary  of  a  region.  The  set  of  methods  covers  the  widest  range  of  areas  encountered  

in  applications.  In  §§  3.2  and  3.3,  two  main  methods  for  constructing  two-dimensional  meshes  

are  discussed  -  the  Delaunay  triangulation  method  and  the  advancing  front  method.  In  §  3.4  

the  advancing  front  method  is  transferred  to  the  construction  of  surface  triangulations,  which  

is  the  initial  stage  in  the  generation  of  a  tetrahedral  mesh.  If  the  boundary  of  the  three-

dimensional  area  is  already  defined  by  surface  triangulation,  then  this  stage  of  the  technological  

chain  can  be  omitted.  If  the  quality  of  a  given  surface  mesh  is  poor,  it  may  be  necessary  to  

improve  it,  as  discussed  in  §  3.5.  Sections  3.6  and  3.7  are  devoted  to  questions  of  automatic  

generation  of  tetrahedral  meshes  with  a  given  trace  on  the  boundary.  Chapter  4  covers  the  

technology  of  multilevel  hierarchical  local  refinement  and  coarsening  of  simplicial  grids,  which  

preserves  the  regularity  of  simplex  cells.  In  this  chapter,  as  in  all  the  following,  it  is  assumed  

that  the  initial  mesh  in  the  region  has  been  built.  Section  4.1  gives  the  basic  principles  of  

hierarchical  mesh  refinement.  Sections  4.2  and  4.3  

describe  in  detail  the  algorithms  of  the  bisection  method  for  triangular  and  tetrahedral  

meshes.  In  §  4.4,  the  technology  of  multilevel  coarsening  of  a  locally  refined  mesh  is  

considered,

chennaya
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b  Fig.  1.1.  Examples  of  computational  grids:  (a )  unadapted  unstructured,  (b )  anisotropically  
adapted,  (c )  hierarchical  locally  refined

Ch.  1.  Introduction
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Finally,  another  advantage  of  our  approach  is  that

that  the  technologies  for  constructing  computational  grids  listed  above  are  implemented  in  

freely  distributed  software  packages,  and  therefore  can  be  tested  by  any  user.  Let's  move  on  

to  a  brief  description  of  the  contents  of  the  book.  Chapter  2  is  

introductory  for  the  non-specialized  reader.  In  §  2.1  we  give  the  main  definitions  of  
unstructured  grids  considered  in  the  book,  and  also  introduce  common  notation.  The  general  

name  for  the  grids  generated  by  our  technological  chain  is  conformal  simplicial  grids.  A  

simplex  is  a  triangular  cell  for  2D  meshes  or  a  tetrahedral  cell  for  3D  meshes.  In  §  2.2  we  

discuss  the  main  properties  of  simplicial  grids  that  can  be  used  in  applications.  Section  2.3  

discusses  the  data  structures  and  fast  algorithms  underlying  the  technology  for  generating  

unstructured  meshes.

15

Examples  of  an  unadapted  unstructured  grid,  an  anisotropic  adapted  grid,  and  a  

hierarchical  locally  refined  grid  are  shown  in  Figs.  1.1.  The  choice  between  locally  refined  

and  completely  unstructured  meshes  depends  on  the  problem.  In  a  number  of  problems  of  
elasticity  and  hydrodynamics,  especially  in  problems  with  strong  singularities,  an  anisotropic  

unstructured  mesh  makes  it  possible  to  achieve  an  acceptable  accuracy  of  the  mesh  solution  

on  a  much  smaller  number  of  cells  than  a  regular  mesh.  On  the  other  hand,  the  construction  

of  an  anisotropic  grid  requires  more  computational  effort.

Automated  algorithms  for  adaptive  rebuilding  of  computational  grids  require  control  over  
the  properties  of  these  grids.  You  can  control  the  local  hierarchical  rebuilding  of  the  grid  using  

the  indicators  of  a  posteriori  error,  examples  of  which  we  give.  To  construct  unstructured  

grids,  it  is  necessary  to  determine  continuous  functions  that  characterize  the  local  properties  

of  the  cells,  for  example,  their  desired  size  at  each  point  of  the  region.  A  posteriori  error  
estimates  underlie  the  construction  of  such  functions.  Functions,

that  control  the  isotropic  refinement  or  coarsening  of  the  mesh  are  scalar,  and  the  functions  

that  control  the  anisotropic  adaptation  are  tensor,  since  they  must  specify  both  the  cell  size  

and  the  direction  of  its  elongation.  The  correct  setting  of  the  control  function  is  an  important  

condition  for  the  efficiency  of  the  computational  grid.  We  propose  new  methods  for  constructing  

these  functions  and  show  their  efficiency  both  theoretically  [24,  26]  and  practically.

Ch.  1.  Introduction

V

meshes,  because  it  allows  you  to  build  anisotropic  meshes.  Anisotropic  adaptation  reduces  
or  increases  the  size  of  cells  in  preferred  directions,  which  is  reasonable  for  solutions  with  

anisotropic  features.  The  set  of  local  operations  is  very  limited.  In  the  2D  case,  it  suffices  to  

implement  just  five  basic  operations:  inserting  a  node  onto  an  edge,  replacing  an  edge,  

shifting  a  node,  deleting  an  edge,  and  deleting  a  node.  In  the  three-dimensional  case,  the  
number  of  basic  operations  is  seven:  inserting  a  node  onto  an  edge,  direct  and  reverse  

replacement  of  a  face  by  an  edge,  replacing  an  edge  by  a  polygonal  face,  shifting  a  node,  

deleting  an  edge,  and  deleting  a  node.  The  same  basic  operations  are  used  to  fix  and  detangle  

meshes.  Such  meshes  arise,  for  example,  when  solving  deformation  problems  using  dynamic  
meshes  that  move  

along  with  the  deformable  body.
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v2  and  v3,  i.e.  the  set  of  points

i=1

The  algebraic  area  of  a  triangle  ÿ  is  the  quantity

Ch.  1.  Introduction
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Sÿ
2

which  opens  the  way  to  the  construction  of  a  sequence  of  grids  with  dynamic  adaptation,  
described  in  §  4.5.

3

§  2.1.  Triangular  and  tetrahedral  meshes

.

=

A  plane  triangle  is  the  simplest  polygon  having  three  vertices  v1,  v2,  v3  and  three  

edges  e12,  e23,  e13.  The  edge  eij  is  a  segment,  where  1  i<j  3.  If  all  three  vertices  of  a  
triangle  connecting  a  pair  of  vertices  vi  and  vj  lie  on  the  same  straight  line,  then  it  is  

called  degenerate.  Let  a  Cartesian  coordinate  system  (x,  y)  be  given  on  the  plane,  in  
which  any  point  

vi  can  be  represented  by  a  vector  vi  with  two  components  xi  and  yi.  A  directed  edge  eij  
connecting  two  vertices  vi  and  vj  can  be  represented  by  the  vector  eij  =  vj  ÿ  vi.  (Here  and  

below  we  will  use  regular  font  for  points  or  edges  as  such,  and  bold  font  for  points  or  edges  
as  vectors.)  The  triangle  ÿ  is  the  convex  hull  of  the  three  vertices  v1,

i=1

spare.

16

A  canonical  triangle  is  a  triangle  in  which  two  edges  of  unit  length  coincide  with  the  unit  
vectors  of  the  chosen  Cartesian

BASIC  CONCEPTS

ÿivi,  ÿi  0,

det{e12,e13}  ÿ  2

This  chapter  will  introduce  the  basic  concepts  needed  to  construct  triangular  and  
tetrahedral  meshes.  We  also  recall  the  main  results  of  graph  theory,  which  will  be  used  in  
subsequent  chapters.  Finally,  we  describe  the  basic  data  structures  needed  to  implement  
the  locally  refined  and  unstructured  meshing  algorithms  presented  in  the  book.

i  =  1

(( x2  ÿ  x1)( y3  ÿ  y1)  ÿ  (x3  ÿ  x1)( y2  ÿ  y1)),  (2.1.1)  

where  

det{e12,e13}  denotes  the  determinant  of  a  matrix  with  two  columns  e12  and  e13.  Due  to  
the  properties  of  the  determinant,  the  algebraic  area  changes  sign  when  any  two  vertices  
in  the  triangle  ÿ  are  interchanged.  The  area  of  a  triangle  is  the  absolute  value  of  the  
algebraic  plane

1

Chapter  2

ÿ=x:x=

1

Chapter  5  presents  the  most  general  technology  for  adaptive  rebuilding  of  simplicial  
meshes  by  means  of  their  local  modifications.  The  flexibility  and  generality  of  the  
technology  is  due  to  the  fact  that,  firstly,  the  properties  of  the  adaptive  rebuilt  mesh  are  
practically  independent  of  the  properties  of  the  initial  mesh  and,  secondly,  this  approach  
allows  the  construction  of  anisotropic  adaptive  meshes.  Section  5.1  presents  the  basic  
principles  of  organizing  mesh  rebuilding  algorithms  based  on  its  local  modifications.  
Sections  5.2  and  5.3  describe  in  detail  all  types  of  local  operations  on  2D  and  3D  meshes,  
respectively.  The  sequence  of  local  modifications  of  a  tetrahedral  mesh  can  be  
computationally  expensive,  so  in  §  5.4  we  describe  a  parallel  version  of  the  technology  
under  consideration.  In  addition  to  adaptability,  a  set  of  local  mesh  modifications  also  
provides  the  ability  to  correct  and  unravel  meshes,  which  is  discussed  in  §  5.5.  Although  
small,  Chapter  6  provides  the  reader  with  important  practical  information  about  controlling  
the  properties  of  unstructured  meshes.  Sections  6.1  and  6.2  successively  consider  methods  
for  controlling  the  properties  of  regular  and  anisotropic  simplicial  grids.  These  sections  
describe  the  construction  

of  the  necessary  scalar  and  tensor  functions,  respectively.  Adaptation  of  computational  
grids  is  an  important  link  in  the  technological  chain  for  constructing  grids  with  the  optimal  
arrangement  of  nodes  and  edge  connections  between  them,  which  minimize  the  error  of  
the  grid  solution.  Some  important  practical  issues  of  grid  adaptation  are  considered  in  the  
appendix.  Section  A.1  considers  the  rebuilding  of  grids  near  curvilinear  boundaries.  
Inaccurate  approximation  of  curvilinear  boundaries  

can  severely  limit  the  accuracy  of  grid  solutions.  Section  A.2  describes  a  posteriori  
error  estimation  methods  for  controlling  the  properties  of  hierarchical  locally  refined  
adaptive  grids.  Section  A.3  presents  various  approaches  to  controlling  the  anisotropic  
adaptation  of  meshes  by  means  of  their  local  modifications.
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The  data  in  the  last  two  lines  correspond  to  an  isosceles  triangle  with  a  varying  

angle  with  equal  sides.  An  angle  less  than  90ÿ  corresponds  to  the  extension  of  the  
triangle,  and  an  angle  greater  than  90ÿ  corresponds  to  its  flattening.  We  note  in  particular  
that  the  quality  of  the  shape  of  a  right  triangle  is  quite  high  and  equals  approximately  
0.9.

Qÿ  0.382  0.820  0.983  0.986  0.892  0.738  0.548  0.336  0.113

A  triangle  is  said  to  be  regular  if  the  ratio  of  its  area  and  the  area  of  an  equilateral  
triangle  of  the  same  diameter  is  on  the  order  of  1.  There  are  several  equivalent  measures  
for  the  regularity  of  a  triangle.  Let  |e|  denotes  the  length  of  the  edge  e  of  the  triangle  ÿ,  
and  Pÿ  is  its  perimeter:  Pÿ  =  |e12|  +  |e13|  +  |e23|.  In  this  book  we  consider  the  following  
measure  of  the  regularity,  or  quality  of  the  shape,  of  a  triangle:

2 4

Qÿ  =  12ÿ3  |Sÿ|

Ch.  2.  Basic  concepts

(2.1.3)

19

16

Rice.  2.1.  Canonical  (a)  and  equilateral  (b)  triangles

The  relationship  between  the  quality  of  the  shape  of  a  triangle  and  the  parameters  
of  its  geometric  shape  is  illustrated  in  Table.  2.1  for  two  examples.  The  data  in  the  first  
two  lines  correspond  to  the  extension  of  an  equilateral  triangle  into  an  acute  isosceles  

triangle.  The  triangle  stretch  factor  s  is  1  for  an  equilateral  triangle  and  grows  linearly  
with  the  triangle's  largest  height.  Note  that  the  quality  of  the  shape  of  a  prolate  triangle  
decreases  approximately  in  inverse  proportion  to  the  stretch  factor  s.

64  128  256

The  area  of  a  canonical  triangle  is  1/2,  and  the  area  of  an  equilateral  triangle  of  
diameter  1  is

This  formula  is  based  on  the  following  property:  an  equilateral  triangle  has  the  largest  
area  among  all  triangles  with  a  fixed  perimeter.  It  follows  from  this  definition  that  Qÿ  is  a  
positive  value  not  exceeding  1.  Moreover,  Qÿ  =  1  only  for  an  equilateral  triangle.

18

Due  to  the  convexity  of  the  triangle,  its  diameter  coincides  with  the  length  of  the  largest  
edge.  Examples  of  canonical  and  equilateral  triangles  are  shown  in  fig.  2.1.

ÿ  10ÿ  30ÿ  50ÿ  70ÿ  90ÿ  110ÿ  130ÿ  150ÿ  170ÿ

(2.1.2)

§  2.1.  Triangular  and  tetrahedral  meshes

T  a  b  l  e  2.1  
Changes  in  the  quality  of  the  shape  when  stretching  (second  line)  and  

flattening  (fourth  line)  an  isosceles  triangle

1 8

—  the  region  ÿ  is  completely  covered  by  these  triangles;  —  the  
boundary  of  the  domain  ÿÿ  is  completely  covered  by  triangle  edges;  The  interiors  of  

the  triangles  do  not  intersect.  This  mesh  definition  is  quite  
general  and  includes  both  conformal  and  nonconformal  triangulations  (a  triangulation  

is  said  to  be  conformal  if  the  intersection  of  any  two  triangles  is  either  their  common  

vertex,  their  common  edge,  or  the  empty  set).  A  triangulation  is  called  uniform  if  it  
consists  of  equilateral  triangles,  and  quasi-uniform  with  step  h  if  all  its  triangles  are  close  
(in  measure  Qÿ)  to  an  

equilateral  triangle  of  diameter  h.  Note  that  uniform  grids  do  not  exist  in  three  
dimensions.

32

In  practice,  we  recommend  building  grids  with  elements  for  which  Qÿ  0.7.  For  the  
examples  above,  this  means  that  s  ÿ  (1,  2,9)  and  ÿ  ÿ  (23ÿ,114ÿ).  A  triangular  mesh,  or  

triangulation  ÿh  of  a  polygonal  
(polygonal)  domain  ÿ,  is  a  finite  set  of  triangles  ÿi,  i  =  1, ... ,  N,  such  that:

s

coordinate  systems.  An  equilateral  triangle  is  a  triangle  with  equal  edge  lengths.  The  
diameter  of  a  triangle  ÿ,  like  any  polygon,  is  the  value

P2ÿ
.

diam(ÿ)  =  max  |x  ÿ  y|.  xÿÿ,yÿÿ

Qÿ  1.0  0.849  0.563  0.325  0.174  0.090  0.046  0.023  0.012

Sÿ  =  ÿ34 .
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(2.1.4)

ÿ=x:x=

1

Vÿ  =  
6  ÿ  2  

A  tetrahedron  is  called  regular  if  the  ratio  of  its  volume  and  the  volume  of  a  regular  
tetrahedron  of  the  same  diameter  is

c

i  =  1

det{e12,e13,e14},

Ch.  2.  Basic  concepts

A  canonical  tetrahedron  is  a  tetrahedron  in  which  three  edges  coincide  with  the  unit  
vectors  of  the  chosen  Cartesian  coordinate  system.  An  equilateral,  or  regular,  tetrahedron  
is  a  tetrahedron  with  equal  edge  lengths.  The  diameter  of  a  tetrahedron  ÿ  is  the  length  of  
its  largest  edge.  Examples  of  canonical  and  regular  tetrahedra  are  shown  in  fig.  2.3.  The  
volume  of  a  canonical  tetrahedron  is  1/6,  and  the  volume  of  a  regular  tetrahedron  of  
diameter  1  is

21

1i  N

i=1

for  a  closed  two-dimensional  surface  which  is  the  boundary  of  a  three-dimensional  body.  
In  this  case,  the  grid  nodes  must  have  three  coordinates  (x,  y,  z),  the  edge  of  the  triangle  
is  a  curved  segment  lying  on  a  two-dimensional  surface,  and  the  absolute  value  of  the  
algebraic  area  (2.1.1)  is  only  an  approximation  of  the  integral  area  of  the  triangle.  
Tetrahedral  meshes  in  space  are  defined  by  analogy  with  triangular  meshes  in  the  plane.  
A  tetrahedron  in  

three  dimensions  is  the  convex  hull  of  four  vertices  v1,  v2,  v3,  and  v4.  If  all  the  
vertices  of  a  tetrahedron  lie  in  the  same  plane,  then  it  is  called  degenerate.  An  edge  of  a  
tetrahedron  is  a  segment  eij  connecting  and  a  face  of  a  tetrahedron  is  a  triangle  fijk  a  pair  
of  vertices  vi  and  vj ,  with  vertices  vi,  vj  and  vk.

points

Algebraic,  or  oriented,  volume  of  the  tetrahedron  ÿ  on

In  many  practical  applications,  the  boundary  nodes  of  a  triangulation  lie  on  a  
curvilinear  boundary  (see  Figure  2.2).  This  ensures  that  the  boundary  of  the  domain  is  
approximated  by  triangulation  edges  with  the  second  order  of  accuracy  with  respect  to  
the  length  of  the  edge,  i.e.,  the  distance  from  the  boundary  edge  of  the  grid  e  to  the  
curvilinear  boundary  is  a  value  of  the  order  of  |e|  2.  The  concept  of  triangulation  can  be  

generalized  for  a  
region  defined  on  a  two-dimensional  surface  in  three-dimensional  space,  as  well  as

20

ÿÿ

4

is  called  the  quantity

(2.1.6)

§  2.1.  Triangular  and  tetrahedral  meshes

<  1,  
diam(ÿ)  

where  ÿ  ÿ  is  the  radius  of  the  inscribed  circle,  and  the  constant  c  does  not  depend  on  the  
grid  triangle.  In  contrast  to  a  quasi-uniform  grid,  a  regular  grid  can  contain  triangles  that  
differ  greatly  in  diameter,  although  the  diameters  of  any  two  adjacent  triangles  do  not  
differ  much,  i.e.,  are  close  (in  measure  Q  ÿ).  For  example,  for  the  regular  grid  shown  in  
Fig.  1.1c,  we  have  c  =  ( ÿ  2  ÿ  1)/2.  The  measure  of  the  regularity  of  the  grid  ÿh,  or  its  

quality  Q(ÿh),  can  be  the  smallest  of  the  qualities  of  the  form  Q  ÿi  of  the  triangles  ÿi  
composing  the  grid:  Q(ÿh)  =  min

ÿivi,  ÿi  0,

Q  ÿi .

Vÿ  =  6

.

The  concept  of  triangulation  of  a  domain  ÿ  with  a  piecewise  smooth  curvilinear  
boundary  is  a  natural  generalization  of  the  concept  of  triangulation  of  a  polygonal  domain.  
The  main  difference  is  that  the  boundary  of  the  region  is  approached  by  the  mesh  edges,  
and  both  incomplete  coverage  of  the  near-boundary  part  of  the  region  and  the  mesh  going  
beyond  the  boundaries  of  the  region  are  allowed,  see  Fig.  2.2.

i=1

.

A  triangulation  is  regular  if  it  consists  of  regular  triangles.  For  triangular  regular  grids,  
the  following  inequalities  hold:

where  det{e12,e13,e14}  denotes  the  determinant  of  a  matrix  with  three  columns  e12,  
e13  and  e14.  The  algebraic  volume  changes  sign  when  any  two  vertices  in  the  tetrahedron  
ÿ  are  interchanged.  The  volume  of  a  tetrahedron  is  the  absolute  value  of  the  algebraic  
volume.

Rice.  2.2.  The  boundary  nodes  of  triangulation  lie  on  the  curvilinear  boundary  (a)  and  
near  this  boundary  (b)

Let  us  define  some  Cartesian  coordinate  system  (x,  y,  z)  in  which  any  point  vi  is  
represented  by  a  vector  vi  with  three  components  xi,  yi,  zi.  A  directed  edge  connecting  
two  vertices  vi  and  vj  can  be  represented  by  the  vector  eij  =  vj  ÿ  vi.  The  orientation  of  the  

face  with  vertices  vi,  vj,  and  vk  is  given  by  the  normal  vector  nijk  =  eij  ×  eik.  The  normal  
vector  can  be  directed  both  inside  and  outside  the  tetrahedron.  The  definition  of  a  
tetrahedron  can  be  formalized  as  follows.  A  tetrahedron  with  vertices  v1,  v2,  v3  and  v4  is  
a  set

4

(2.1.5)

1
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order  1.  There  are  several  equivalent  measures  of  tetrahedron  regularity.  Let  Pÿ  be  the  sum  of  

the  lengths  of  the  edges  of  the  tetrahedron  ÿ,  i.e.,  Pÿ  =  |e12|  +  +  |e13|  +  |e14|  +  |e23|  +  |e24|  +  |

e34|.  In  this  book  we  consider  the  following  measure  of  the  regularity,  or  shape  quality,  of  a  

tetrahedron:

A  tetrahedralization  is  regular  if  it  consists  of  regular  tetrahedra.  The  inequalities  (2.1.4)  

hold  for  regular  grids.  The  measure  of  regularity  Q(ÿh)  of  the  tetrahedralization  ÿh  can  be  the  

least  of  the  qualities  Q  ÿi  of  the  tetrahedra  ÿi  that  make  up  the  mesh:

8

ÿ  84.2ÿ  71ÿ  54.7ÿ  41.4ÿ  29.1ÿ  17.4ÿ  5.78ÿ

Qÿ

Q(ÿh)  =  min

32

Ch.  2.  Basic  concepts

Regular  triangulations  and  tetrahedrizations  are  widely  used  in  engineering  calculations,  

since  discretizations  on  regular  grids  have  a  number  of  advantages,  such  as  discretization  

stability,  acceptable  conditionality  of  generated  matrices,  and  the  existence  of  efficient  search  

algorithms.  The  concept  of  tetrahedralization  of  a  domain  with  a  curvilinear  piecewise  smooth  

boundary  is  a  natural  generalization  of  the  concept  of  

tetrahedralization

23

(2.1.7)

(2.1.8)

The  data  in  the  last  three  rows  of  the  table  correspond  to  the  tetrahedron,  which  is  obtained  

from  the  canonical  tetrahedron  by  changing  the  three  equal  dihedral  angles  at  the  vertex  v1  (see  

Fig.  2.3).  These  angles  can  vary  within  a  limited  range  ÿ  ÿ  (60ÿ,  180ÿ),  where  the  extreme  values  

correspond  to  degenerate  tetrahedra.  In  the  penultimate  row  of  the  table,  we  present  the  values  

of  ÿ  for  three  other  equal  dihedral  angles.  The  quality  of  a  rectangular  tetrahedron  is  about  0.8.  

Similarly,  Table.  2.1,  as  ÿ  tends  to  180ÿ,  the  quality  of  the  tetrahedron  also  decreases.  However,  

the  limited  dihedral  angles  in  a  tetrahedron  do  not  mean  its  high  quality:  in  the  limiting  case,  

when  ÿ  ÿ  60ÿ  and  ÿ  ÿ  90ÿ,  the  quality  Q  ÿ  tends  to  zero.  This  shows  a  significant  difference  

between  the  quality  of  a  tetrahedron  and  the  quality  of  a  triangle,  where  the  limited  angles  

means  its  high  quality.  The  tetrahedron  needs  both  dihedral  and  planar  angles  to  be  limited.

ÿ

1

Q  ÿ  1.0  0.785  0.398  0.148  0.046  0.013  0.003
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Rice.  2.3.  Canonical  and  regular  tetrahedra

just  write  "quality".  The  relationship  

between  the  value  of  the  quality  of  a  tetrahedron  and  its  shape  in  two  specific  examples  is  

shown  in  Table.  2.2.  The  data  in  the  first  two  lines  correspond  to  the  extrusion  of  a  regular  

tetrahedron  in  the  direction  of  one  of  its  heights.  The  stretch  factor  s  is  1  for  a  regular  

tetrahedron.  A  comparison  with  a  similar  table  for  triangles  shows  a  much  faster  decrease  in  

quality  with  increasing  s.  For  larger  values  of  s,  doubling  s  results  in

4

70ÿ  90ÿ  110ÿ  130ÿ  150ÿ  170ÿ

P3

|Vÿ|  =  64  ÿ  2

T  a  b  l  e  2.2  

Changes  in  quality  upon  modification  of  regular  (second  row)  and  
canonical  (fifth  row)  tetrahedra

§  2.1.  Triangular  and  tetrahedral  meshes

16

Q  ÿ  0.468  0.999  0.804  0.575  0.386  0.223  0.073

.

1i  N Q  ÿi .

to  a  decrease  in  the  quality  of  the  tetrahedron  by  a  factor  of  3–4.  Therefore,  in  practice,  we  

recommend  constructing  meshes  with  quality  Q(ÿh)  0.2.

64s

A  polyhedral  (polyhedral)  region  is  a  region  with  a  piecewise  smooth  boundary  represented  

by  a  finite  set  of  flat  faces.  A  tetrahedral  mesh  or  tetrahedralization  ÿh  of  a  polyhedral  region  ÿ  is  

a  finite  set  of  tetrahedra  ÿi,  i  =  1, ... ,  N,  such  that:  —  the  region  ÿ  is  completely  covered  by  

these  tetrahedra;  —  the  boundary  of  the  region  is  completely  covered  by  the  faces  of  tetrahedra;  
—  the  interiors  

of  the  tetrahedra  do  not  intersect.  This  mesh  definition  includes  both  

conformal  and  non-conformal  meshes.  A  tetrahedralization  is  said  to  be  conformal  

if  the  intersection  of  any  two  tetrahedra  is  either  their  common  

vertex,  or  their  common  edge,  or  their  common  face,  or  the  empty  set.  A  tetrahedralization  

is  said  to  be  quasi-uniform  with  step  h  if  all  its  tetrahedra  are  close  in  measure  Q  ÿ  to  a  regular  

tetrahedron  of  diameter  h.  Note  that  space  cannot  be  covered  by  regular  tetrahedra,  i.e.,  there  

are  no  uniform  tetrahedral  grids.

It  follows  from  the  definition  of  Q  ÿ  that  the  quality  of  the  shape  of  a  tetrahedron  is  a  positive  

value  not  exceeding  1.  It  can  be  shown  that  Q  ÿ  =  1  only  for  a  regular  tetrahedron.  In  what  

follows  (chaps.  2–5)  sometimes  instead  of  “quality  of  form”  

we  will

2

ÿ  61ÿ
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(2.2.1)

5

as  a  vector

Therefore,  for  a  conformal  triangulation  of  a  simply  connected  domain,

In  the  case  of  a  nonsimply  connected  domain,  the  conformal  triangulation  will  contain  Nh  

nontriangulated  polygons,  each  of  which  corresponds  to  a  region  cut  out  from  the  domain.  Such  

regions

ÿ(vi).

1

5

v  vi

§  2.2.  Properties  of  grids  and  elements  of  graph  theory

24

1

e  eij  ÿ  vj  ÿ  vi

The  relationship  between  graphs  and  grids  makes  it  possible  to  use  some  results  of  graph  

theory  in  studying  the  properties  of  grids  and  performing  operations  on  grids.  Approximate  ratios  

between  the  numbers  of  nodes,  edges  and  mesh  elements  given

§  2.2.  Grid  Properties  and  Elements  of  Graph  Theory

Similarly,  the  superelement  ÿ(e)  denotes  the  set  of  simplices  with  a  common  edge  e.  If  v  ÿ  e  ÿ  ÿ,  

then

4

At  the  end  of  the  section,  we  present  the  notation  used  in  what  follows  for  various  grid  

elements.  The  term  "simplex"  is  used  for  the  common  name  for  the  triangle  and  tetrahedron.  The  

symbol  ÿ  is  used  to  denote  the  computational  domain,  and  ÿh  is  used  for  its  triangulation  or  

tetrahedrization.  The  superelement  ÿ(v)  denotes  the  set  of  simplices  with  a  common  vertex  v.  

The  symbol  ÿ(ÿ)  denotes  the  superelement,  or  the  set  of  simplices  intersecting  with  the  simplex  

ÿ.  Thus,

Let  d  denote  the  dimension  of  the  space:  d  =  2  for  the  plane  and  d  =  3  for  the  space.  A  grid  

element  (simplex)  with  vertex  d  +  1  is  denoted  as  ÿ(vk1 , ...,  vkd+1 ),  or  i  =  1, ...  for  short,  

ÿk1...kd+1 .  Similarly,  we  will  use  f(vk1 ,  vk2 ,  vk3 )  or  fk1  k2  k3  to  denote  a  

triangular  face  in  space,  and  e(vk1 ,  vk2 )  or  ek1  k2  to  denote  an  edge.  For  each  type  of  grid  
element,  depending  on  the  context,  we  will  use  the  notation  given  in  Table.  2.3:

4

vertex

2
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Nf  =  Ne  ÿ  Nv  +  2.  For  

example,  for  a  tetrahedron  Nv  =  Nf  =  4,  Ne  =  6,  and  for  a  cube  Nv  =  8,  Nf  =  6,  Ne  =  12.  Based  on  

the  Euler  formula  
(2.2.1),  we  derive  the  relation  between  the  number  of  nodes,  edges  and  triangles  in  an  

arbitrary  two-dimensional  conformal  triangulation.  To  do  this,  we  note  that  any  conformal  

triangulation  of  some  simply  connected  domain  can  be  represented  as  a  surface  of  some  

polyhedron  spread  out  on  a  plane,  in  which  one  of  the  faces  has  been  removed  (see  Fig.  2.4).  

The  polyhedron  shown  is  the  union  of  a  ÿ4567  tetrahedron  and  a  triangular  prism.  With  such  

spreading,  it  is  assumed  that  the  removed  face  corresponds  to  the  addition  of  the  considered  

triangulation  to  a  plane  or  an  infinite  cell.

b

7

facet fijk

Ch.  2.  Basic  concepts

ÿ(ÿ)  =

mi  vki,

viÿÿ

T  a  b  l  e  2.3  
Symbol  table  for  grid  elements

v  vi

Nf  =  Ne  ÿ  Nv  +  1.

ÿ(v)  ÿ  ÿ(e)  ÿ  ÿ(ÿ).

6

3

3

polyhedral  region,  in  which  the  boundary  of  the  region  is  approached  by  the  boundary  faces  of  

the  mesh.  In  this  case,  both  incomplete  coverage  of  the  border  part  of  the  region  and  the  grid  

going  beyond  the  boundaries  of  the  region  are  allowed.  In  practice,  as  a  rule,  the  boundary  nodes  

of  tetrahedralization  lie  on  the  boundary  of  the  region,  which  makes  it  possible  to  approximate  

this  boundary  with  the  second  order  of  accuracy  with  respect  to  the  face  diameter.

Grid  element  as  an  object

e  eij

below  are  useful  for  estimating  the  computer  memory  required  to  store  the  grid.  The  most  famous  

result  of  graph  theory  

applicable  to  the  analysis  of  grids  is  Euler's  formula  relating  the  numbers  of  vertices,  edges,  

and  faces  of  any  convex  polyhedron.  Let  Nv,  Ne,  Nf  denote,  respectively,  the  numbers  of  vertices,  

edges,  and  faces  of  some  polyhedron.  Note  that  the  faces  of  a  polyhedron  can  be  arbitrary  

polygons.  Then

6

edge

nf  nijk  ÿ  eij  ×  eik 2  Fig.  2.4.  Polyhedron  (a)  and  its  flattened  surface,  lower  face  removed  (b)

ratio

7 a
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Ne  3Nv  ÿ  6.

Let  us  now  consider  tetrahedral  meshes  and  use  the  Euler  formula  (2.2.1)  
to  derive  the  relation  between  the  number  of  tetrahedra  Nt,  edges  Ne,  and  nodes  
Nv  in  a  tetrahedralization  of  a  connected  domain  satisfying  the  following  
constraint:  for  each  node  v,  the  set  of  tetrahedra  containing  v  (incident  to  v )  
forms  a  polyhedron  homeomorphic  to  a  sphere.  Recall  that  each  such  polyhedron  
is  called  a  superelement  and  is  denoted  by  ÿ(v),  or  ÿ  for  short.  The  introduced  
restriction  is  not  burdensome  in  practice.  Let  us  define  the  characteristic  function  
ÿb  for  the  boundary  of  the  grid  domain.  Let  ÿb(v)  =  1  if  the  node  v  lies  on  the  

boundary  of  ÿh,  and  ÿb(v)  =  0  for  an  internal  node  of  the  domain.  Let  us  
introduce  the  number  of  faces  Nf  (ÿ),  edges

Nf  2Nv  ÿ  5.

(2.2.2)

2Nei  +  Neb  =  3Nf .

Nv(ÿ)  =  Ne(v)  +  ÿb(v),  Nf  (ÿ)  =  Nt(ÿ)  +  Nb(ÿ),

Ch.  2.  Basic  concepts

Nt(ÿ)  +  Nb(ÿ)  +  Ne(v)  +  ÿb(v)  =  Ne(ÿ)  +  2.

27

Nf  ÿ  2Nv  and  Ne  ÿ  3Nv,

Using  formulas  (2.2.2)  and  (2.2.3),  we  obtain  the  relation  for  the  number  Nf :

allocate  the  memory  necessary  for  operation,  using  only  one  parameter  -  the  
maximum  allowable  number  of  triangulation  nodes.

Rice.  2.5.  Triangular  mesh  in  square  hole  area:  Nv  =  8,  Ne  =  16,  Nf  =  8,  Nh  =  1,  
Nei  =  8  and  Neb  =  8

(2.2.4)

(2.2.7)

26

(2.2.6)

Formula  (2.2.2)  can  be  rewritten  using  the  number  of  boundary  edges  
instead  of  the  number  of  all  triangulation  edges.  The  boundary  edge  eb  belongs  
to  only  one  triangle,  in  contrast  to  the  interior  edge  ei,  which  belongs  to  two  
triangles.  Therefore,  between  the  numbers  of  boundary  edges  Neb,  internal  
edges  Nei,  and  the  number  of  triangles  Nf  in  a  conformal  triangulation,  there  is  
the  following  relationship:

an  estimate  of  the  number  of  triangles  for  Nh  =  0:

§  2.2.  Grid  Properties  and  Elements  of  Graph  Theory

In  the  vast  majority  of  practical  cases,  the  number  of  nodes  in  a  conformal  
triangulation  significantly  exceeds  the  number  of  boundary  edges  Neb  and  the  
number  of  cut  components  Nh;  therefore,  in  practice,  there  are  approximate  
relations

Ne(ÿ),  nodes  Nv(ÿ)  on  the  surface  of  the  polyhedron  ÿ,  the  number  of  tetrahedra  
Nt(ÿ)  in  ÿ,  the  number  of  edges  Ne(v)  incident  to  v,  and  the  number  of  faces  
Nb(ÿ)  in  ÿ  lying  on  the  boundary  ÿh  and  containing  v.  Then:

Nf  +  Nh  =  Ne  ÿ  Nv  +  1.  As  

an  illustration,  we  will  use  the  triangular  grid  shown  in  fig.  2.5.

(2.2.5)

expressing  the  asymptotic  dependence  between  the  numbers  of  triangles,  
edges,  and  nodes  of  the  conformal  triangulation.  Note  that  

formula  (2.2.4)  was  derived  under  the  assumption  that  ÿh  is  a  triangulation  
of  a  connected  domain  defined  on  the  plane.  For  triangulations  of  closed  
surfaces  defined  in  space,  such  as  the  boundaries  of  three-dimensional  bodies,  
this  formula  may  not  be  true.  In  this  case,  it  is  necessary  to  use  the  topological  
characteristics  of  the  surface  based  on  the  classification  of  closed  two  dimensional  
surfaces  as  a  finite  sum  of  spheres  and  tori.  For  example,  if  on  a  connected  
closed  surface  it  is  possible  to  draw  Ng  nonintersecting  closed  curves  that  do  
not  cut  the  surface  into  disconnected  components,  then  such  a  surface  is  
homeomorphic  to  a  sphere  with  Ng  handles,  and  its  triangulation  is  true  [3,  17]

Nf  =  2Nv  ÿ  Neb  +  2Nh  ÿ  2.

(2.2.3)

are  given,  for  example,  by  obstacles  in  flow  problems  or  voids  in  a  sample  in  
problems  of  solid  body  mechanics.  Each  of  these  polygons  contributes  to  the  
number  of  faces  in  the  Euler  formula,  but  must  not  contain  triangles  of  the  
considered  triangulation.  Thus,  the  modification  of  the  Euler  formula  (2.2.1)  for  
the  case  of  conformal  triangulation  of  a  nonsimply  connected  domain  has  the  
form

and  formula  (2.2.1)  is  written  for  ÿ  as  follows:Since  the  number  of  triangles  in  a  grid  with  Nh  >  0  is  less  than  in  a  grid  with  
triangulated  voids,  estimate  (2.2.5)  is  also  valid  for  the  general  case  Nh  0.  When  
constructing  dynamic  grids,  we  can

From  formulas  (2.2.2)  and  (2.2.5)  we  obtain  an  unimprovable  estimate  for  
the  number  of  edges

Nf  =  2Nv  +  4  Ng  ÿ  4.

Since  Neb  3  and  Nv  3,  from  (2.2.4)  we  obtain  an  unimprovable
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Nv

2

d

Nv(Nv  ÿ  1),

3

2

And

ratio

ÿb(v)  +  Nv.

Nvb.

1

2

v

Graph  theory  is  applicable  to  the  analysis  of  the  properties  of  triangular  grids.  One  of  the  

consequences  of  the  theory  of  planar  graphs  is  the  statement  about  the  possibility  of  

unraveling  any  triangulation,  which  is  a  "tangled"  network  of  triangles  bordering  in  pairs  

through  their  integer  edges,  into  a  conformal  triangulation.  Let  us  explain  this  statement  and  

also  explain  the  term  "disentanglement  of  triangulation".  A  graph  G  =  ( V ,  E)  is  a  set  of  

vertices  V  and  a  set  of  edges  E,  not  necessarily  straight  lines,  where  each  edge  from  

E  connects  a  pair  of  vertices  from  V .  A  planar  graph  is  an  undirected  graph  that  can  be  
laid  on  a  plane  without  self-intersections.  A  planar  graph  drawn  on  a  plane  is  called  a  planar  

graph.  A  face  of  a  planar  graph  is  a  bounded  singly  connected  region  whose  boundary  is  

given  by  the  edges  of  the  graph  in  the  form  of  a  simple  cycle  v1v2,  v2v3, ...,  vkv1,  where  all  

vertices  enter  twice.  If  all  faces  of  a  planar  graph  are  triangles  (i.e.,  k  =  3),  then  such  a  graph  

is  called  triangulated.  Graph  triangulation  is  a  procedure  for  complementing  the  set  of  edges  

E  to  obtain  a  triangulated  graph.  According  to  Rado's  theorem  [80],  any  polygon  with  a  

boundary  that  has  the  form  of  a  simple  closed  broken  line  with  a  finite  number  of  links,

Ne

where  the  vast  majority  of  vertices  are  internal,  the  approximate  is  true

v

and  the  maximum  possible

(2.2.9)

Nt(ÿ)  +

Let  Nfb  and  Nvb  be  the  number  of  boundary  faces  and  the  number  of  boundary  nodes  
Nb(ÿ(v))  =  3Nfb  of  the  tetrahedralization  ÿh,  respectively.  Because  the

4

2

ÿb(v)  =  Nvb ,

1

§  2.2.  Grid  Properties  and  Elements  of  Graph  Theory

1

Nb(ÿ(v))  ÿ

Ne  =  Nt  +  Nv  +

1

ÿ  1Nv.

Ne(v)  =

v

Nt(ÿ)  =  4  Nt,

(ÿ1)knk  =  0.

2

ÿ

Using  formula  (2.2.3),  on  the  surface  ÿ  we  have  the  identity

1

Nfb-

Since  Nv  4,  Nfb  Nvb ,  the  set  of  edges  
Ne  is  bounded  by  the  pessimistic  estimate

Nv(Nv  ÿ  3).

which,  taking  into  account  (2.2.7),  gives

2

2

Nv(Nv  ÿ  3)  ÿ2

Ne(v)  =  2Ne,

That

(2.2.8)

However,  by  imposing  additional  restrictions,  one  can  obtain  a  more  optimistic  estimate.  
If  for  each  node  v  its  degree  (the  number  of  edges  incident  or  converging  in  it)  is  bounded  by  

some  value  ÿ,  i.e.,  Ne(v)  ÿ,  then

Nt

Ch.  2.  Basic  concepts

v

The  relationship  between  d-dimensional  and  3-dimensional  definitions  is:

Nvb

v ,

1

1

2

29

we  get

3

ÿ

28

2Ne(ÿ)  =  3(Nt(ÿ)  +  Nb(ÿ)),

1

1

Nfb  +

Euler's  formula  can  be  generalized  to  the  multidimensional  case  as  follows.  Consider  a  

d-dimensional  convex  polytope  (polytope)  consisting  of  a  set  of  k-dimensional  faces,  k  =  

0, ... ,  d  ÿ  1.  By  a  k-dimensional  face  we  mean  here  a  convex  open  set  lying  in  some  k-

dimensional  hyperplane.  The  vertex  of  the  polyhedron  is  a  0-dimensional  face,  the  edge  is  

a  1-dimensional  face,  and  the  polyhedron  itself  is  a  d-dimensional  face.  For  convenience,  we  

introduce  a  (ÿ1)-dimensional  face.  Let  nk  denote  the  number  of  k-dimensional  faces  of  a  

polyhedron,  where  each  polyhedron  corresponds  to  exactly  one  (ÿ1)-dimensional  face,  and  
the  d-dimensional  face  coincides  with  the  polytope  itself.  Thus,  by  definition,  n  ÿ1  =  1  and  

nd  =  1.  The  generalized  Euler  formula  for  d-dimensional  polytopes  is  as  follows:

Summing  over  all  grid  nodes  ÿh  and  taking  into  account  that

And

Ne

2

Nt  ÿ  5.5  Nv.

v

Ne  =  Nt  +  4

4

Nt

Thus,  in  tetrahedralizations  with  a  uniformly  limited  degree  of  sites,  the  number  of  tetrahedra  
is  estimated  from  above  in  terms  of  a  linear  function  of  the  number  of  sites.  We  note  that  
there  are  tetrahedralizations  in  which  Nt  N2,  however,  the  methods  considered  in  this  book  
generate  grids  with  a  uniformly  bounded  degree  of  knots.  Here  ab  means  that  the  ratio  a/b  
is  about  1.  In  unstructured  tetrahedra  with  a  large  number  of  tetrahedra  and  nodes,

Nb(ÿ)  ÿ  ÿb(v)  +  2.

n2  =  Nf ,  n1  =  Ne,  n0  =  Nv.

v

k=  ÿ1

That
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definition  of  conformal  triangulation  for  polygonal  regions.

To  store  the  grid  and  perform  any  operations  on  it,  you  need  to  use  various  
data  structures.  There  are  a  large  number  of  different  data  structures  for  storing  a  
grid,  oriented  to  different  purposes  [18,  50,  54].  The  enumeration  and  comparative  
analysis  of  these  data  structures  is  beyond  the  scope  of  this  book,  and  we  will  limit  
ourselves  to  only  those  structures  that  are  often  used  when  working  with  
triangulations  and  are  easily  transferred  to  tetrahedralizations.  The  minimal  and  
simplest  representation  of  a  triangular  grid  is  a  list  of  coordinates  of  numbered  
nodes  (xi,  yi)  and  a  

list  of  numbered  triangles,  each  of  which  is  given  by  the  indices  of  three  nodes  
(i1,  i2,  i3).  In  this  case,  the  coordinates  are  stored  in  a  real  two-dimensional  array  
V  rt(2,  Nv),  and  the  triangles  are  stored  in  an  integer  two-dimensional  array  Tri(3,  
Nf ).

Ch.  2.  Basic  concepts

Building  or  rebuilding  a  triangulation  can  lead  to  a  non-conformal  mesh.  Under  
the  simple  unraveling  of  the  mesh,  we  mean  the  movement  of  its  nodes,  preserving  
the  edge  connections  between  the  nodes,  in  order  to  obtain  a  conformal  
triangulation.  Farey's  theorem  [47]  guarantees  the  existence  of  such  a  displacement  
of  nodes  for  a  grid  defined  by  a  planar  triangulated  graph.

§  2.3.  Data  structures  and  fast  algorithms

Theorem  2.2.2.  Any  planar  graph  has  a  planar  representation  in  which  all  
edges  are  represented  as  line  segments.

Another  important  concept  in  the  theory  of  planar  graphs  is  the  concept  of  a  
dual  graph.  For  a  planar  graph  G,  the  dual  graph  is  Gdual  with  the  following  
properties:  —  each  vertex  of  Gdual  is  

associated  with  a  face  of  G;  —  each  edge  Gdual  is  
associated  with  the  edge  G;  —  if  the  edge  G  separates  
two  faces  fi  and  fj , then  the  corresponding  

edge  of  the  dual  graph  Gdual  connects  the  vertices  Gdual  associated  with  fi  and  
fj .  The  

concept  of  a  dual  graph  is  used  both  in  some  methods  for  constructing  
triangular  grids  and  Voronoi  grids,  and  in  methods  for  discretizing  differential  
equations  [45,  74].
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There  are  criteria  for  the  planarity  of  graphs  [63];  therefore,  for  triangular  grids  
that  satisfy  such  criteria,  there  is  a  procedure  for  simply  unraveling  the  grid  into  a  
conformal  triangulation.

Finite  element  methods  can  also  use  two-dimensional  integer  arrays  of  edges  
Edge(2,  Ne)  and  boundary  edges  Bnd(2,  Neb )  that  store  node  indices.  These  
structures  are  auxiliary  as  they  can  be  created  automatically  from  the  Tri  array.

Unfortunately,  the  above  analysis  cannot  be  extended  to  the  case  of  conformal  
tetrahedrizations.  For  example,  in  the  area  with  a  given  surface  grid  shown  in  Fig.  
2.6,  it  is  impossible  to  construct  a  conformal  tetrahedralization  without  adding  
additional  internal  nodes.  Vgl.  In  Section  6,  we  consider  more  complex  mesh  
disentanglement  algorithms  that  change  its  topology  and  are  therefore  applicable  
to  disentangle  both  triangulations  and  tetrahedrals.

Rice.  2.6.  Schonhardt  prism  with  triangular  base  v1  v2  v3
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allows  conformal  triangulation  without  adding  new  points.  In  terms  of  graph  theory,  
this  statement  looks  as  follows.  Theorem  2.2.1.  Any  planar  graph  with  straight  
edges  

can  be  triangulated.  This  assertion,  like  Rado's  theorem,  proves  the  existence
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Algorithm  2.  Iterating  over  the  elements  of  an  unstructured  list  iV  T,  nV  T  1:  Let  n1  =  1  2:  for  i  =  1,  
Nv  do  

n2  =  nV  T(i)  3:  for  n  
=  n1,  n2  do  k  =  n  ÿ  n1  +  

1  return  iV  T(n)  
is  the  number  of  the  kth  triangle  

containing  node  i

Rice.  2.8.  An  unstructured  list  for  holding  triangles  that  share  a  common  vertex.  Array  nV  T(Nv)  
on  top,  array  iV  T(3Nf )  on  bottom

7:  end  for  n1  =  n2  

+  1  9:  end  for

.

nNv

...

The  number  of  non-zero  elements  in  each  row  of  the  VT  array

Ch.  2.  Basic  concepts

In  what  follows,  we  will  use  the  notation  XY  for  an  array,  where  a  grid  object  x  ÿ  X  contains  

references  to  the  nearest  grid  objects  y  ÿ  Y  such  that  x  ÿ  y  =  ÿ.  For  example,  TV  is  another  notation  

for  the  two-dimensional  array  Tri(3,  Nf ),  where  T  is  a  triangle  and  V  is  a  grid  point.

A  number  of  applications  need  data  that  is  reasonable  to  store  as  a  flat  list.  For  example,  

data  on  the  numbers  of  triangles  containing  a  grid  node  (converging  at  a  common  vertex)  are  

characterized  by  the  variability  in  the  number  of  triangles  assigned  to  each  node.  Of  course,  such  

data  can  also  be  stored  as  a  two-dimensional  array  VT(Kmax,  Nv),  where  Kmax  is  the  maximum  

possible  number  of  triangles  converging  at  a  common  vertex.  However,  such  a  strategy  can  

significantly  increase  the  amount  of  computer  RAM  reserved  for  data,  since  Kmax  can  significantly  

exceed  the  grid  average  value,  and  most  of  the  VT  array  will  be  filled  with  zeros.

33

.

1  i  k1

x1

xNv  yNv

2  i  k2 ...

4:

The  algorithm  for  iterating  over  the  elements  of  an  unstructured  list  consists  of  two  nested  loops,  

presented  in  Algorithm  2.

32

x2  y2

All  the  listed  arrays  are  structured  lists  or  tables  with  a  given  row  length  (see  Figure  2.7).  

Structured  lists  also  include  information  about  the  numbers  of  triangles  adjacent  to  each  triangle.  

The  construction  of  such  a  list  is  discussed  in  Chap.  4.  The  algorithm  for  iterating  over  the  elements  

of  a  structured  list  is  very  simple.  It  consists  of  two  nested  loops  over  the  rows  and  columns  of  the  

corresponding  two-dimensional  array,  

as  shown  in  Algorithm  1  for  a  Tri  structured  list.

Nv  i  
kNv

6:

,

§  2.3.  Data  structures  and  fast  algorithms

.

n1  n2 ...

.

...

8:

.

2  
i  11  i  1 ...

The  flat  list  is  represented  by  two  linear  integer  arrays.  In  the  case  under  consideration,  the  

first  linear  array  iV  T(3Nf )  contains  only  nonzero  values  from  the  array  VT,  sorted  by  rows.  The  

second  linear  array  nV  T(Nv)  contains  the  indices  of  the  elements  of  the  array  iV  T,  which  are  the  

last  in  each  row  of  the  array  VT  (see  Fig.  2.8).  This  format  is  similar  to  the  sparse  string  format  

commonly  used  for  storing  sparse  matrices.

Algorithm  1.  Enumeration  of  elements  of  the  structured  list  Tri  1:  for  i  =  1,  Nf  do  for  j  =  1,  3  

do  return  Tri(j,  i)  –  
number  of  j-th  vertex  

of  triangle  i  3:  4:  end  for  5:  end  for

2:

is  calculated  as  follows:

y1

Rice.  2.7.  Structured  list  V  rt(2,  Nv)  to  store  node  coordinates

Nv  i  1

5:

nV  T(i)  ÿ  nV  T(i  ÿ  1),  i  >  1;  nV  T(1),  i  =  1.

Note  that  the  number  of  elements  in  the  iV  T  array  is  equal  to  the  number  of  elements  in  the  

TV  array,  and  this  is  not  accidental.  The  unstructured  list  iV  T,  nV  T  is  the  inverse  of  the  structured  

list  TV  and  must  therefore  contain  the  same  number  of  elements.  Similarly,  the  structured  list  TV  

can  be  viewed  as  the  inverse  of  the  unstructured  list  iV  T,  nV  T.
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Algorithm  3.  Building  an  unstructured  list  iV  T,  nV  T  1:  Initialize  nV  T(1)  =  2:  for  n  =  1,  

Nf  do  for  i  =  1,3  do  i1  =  TV  (i,n)  nV  

T(i1)  =  nV  T(i1)  +  1  5:  
6:  end  for  7:  end  

for  8:  for  n  =  2,  
Nv  do  9:  nV  T(n)  =  nV  T(n)  +  

nV  T(n  ÿ  1)  10:  
end  for  11:  

store  nLast  =  nV  T(Nv)  

12:  for  n  =  1,  Nf  do  for  i  =  1,3  do  i1  =  TV  (i,n)  
and  k  =  nV  

T(i1)  iV  T(k)  =  n  nV  T(i1)  =  k  ÿ  1  end  for  
17:  18:  end  for  19:  for  

n  =  1,  Nv  ÿ  1  do  

20:  nV  T(n)  =  nV  T(n  +  1)  21:  end  for  
22:  restore  nV  
T(Nv)  =  nLast

4:

Q(i)  Q(i  +  1).

3:

14:

Recall  the  classical  Algorithm  4  for  searching  for  an  interval  containing  the  value  x  in  an  

ordered  array  of  numbers  Q(N).  This  algorithm  is  based  on  the  bisection  (or  bisection,  or  
dichotomy)  method.  The  arithmetic  complexity  of  the  bisection  method  is  proportional  to  

log2  N.

§  2.3.  Data  structures  and  fast  algorithms34

if  x  Q(i)  then  r  =  i  else  l  =  i  
5:  6:  end  if  

7:  end  while  
8:  if  Q(l)  x  Q(r)  

then  found=.TRUE.  9:  else  found=.FALSE.  10:  end  
if

16:

There  are  simple  algorithms  with  linear  complexity  for  creating  reverse  lists.  For  
example,  the  construction  of  the  list  iV  T,  nV  T  is  described  in  Algorithm  3.

4:

1<i<N,
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1:  l  =  1,  r  =  N  2:  
while  r  ÿ  l  =  1  do  l  +  r  2

3:

The  process  of  building  or  rebuilding  a  grid  is  associated  with  its  constant  modifications,  
and,  consequently,  with  constant  changes  in  data  structures.  One  of  the  important  

problems  that  arise  in  the  implementation  of  grid  algorithms  is  the  problem  of  fast  search  
within  a  dynamic  data  structure.  Let  us  first  consider  the  problem  of  maintaining  an  ordered  
list  of  elements  of  some  one-dimensional  dynamic  

array  of  real  numbers  Q(N).  Suppose  this  array  is  sorted  in  ascending  order  of  
elements:

Algorithm  4.  Finding  an  interval  in  an  ordered  list  using  the  bi

i  =

13:

=  nV  T(Nv)  =  0

(2.3.1)

In  problems  where  the  size  of  the  array  Q  and  the  values  of  its  elements  are  constantly  

changing,  maintaining  its  physical  order  is  inefficient,  so  assumption  (2.3.1)  is  no  longer  

valid.  For  example,  inserting  a  new  element  in  the  second  position  requires  a  shift  of  (N  ÿ  

1)  elements.  To  specify  the  order,  a  linked  list  is  used,  based  on  a  two-dimensional  array  
Lst(2,  N)  such  that

Q(Lst(1,  i))  Q(i)  Q(Lst(2,  i)),

15:

Ch.  2.  Basic  concepts

Rice.  2.9.  Implicitly  ordered  list:  a  -  Lst(1,  i)  links,  b  -  Lst(2,  i)  links

sections

...

where  Q(Lst(1,  i))  and  Q(Lst(2,  i))  are  the  nearest  (in  value)  to  Q(i)  elements  of  the  real  
array  Q.  An  array  Q,  for  which  the  linked  list  Lst  is  known,  will  be  called  implicitly  ordered  

list.  The  beginning  Q(ib)  and  the  end  Q(ie)  of  an  implicitly  ordered  list  are  defined  by  the  

equalities  Lst(1,  ib)  =  0  and  Lst(2,  ie)  =  0.  The  example  shown  in  fig.  2.9  shows  that  the  

beginning  and  end  of  the  list  can  be  located  in  adjacent  cells  of  the  array  Q.
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The  procedure  for  adding  an  element  i  to  a  linked  list  is  also  simple  and  is  
presented  in  Algorithm  6.  The  procedure  for  transferring  an  element  of  a  linked  
list  from  one  position  to  another  is  obtained  by  successive  application  of  
Algorithms  5  and  6.

1:  p  =  Lst(1,  i),  n  =  Lst(2,  i)  2:  if  
p  =  0  then  Lst(2,  p)  =  n  3:  end  if  
4:  if  n  =  

0  then  Lst(1,  n )  =  p  5:  end  if

2:  i1  =  P  tr(i),  i2  =  Lst(2,  i1)  3:  
while  x>Q(i1)  and  i2  =  0  do  i1  =  

i2,  i2  =  Lst(2,  i1)  5:  end  
while  6:  
return  i1,  i2

Ch.  2.  Basic  concepts

6:  N  =  N  ÿ  1

1:  Lst(2,  i)  =  Lst(2,  p),  n  =  Lst(2,  i) 4:

§  2.3.  Data  structures  and  fast  algorithms

When  an  element  of  an  implicitly  ordered  list  is  removed,  the  corresponding  
memory  location  in  the  array  Q  remains  in  place.  Since  the  linked  list  Lst  no  
longer  refers  to  this  memory  location,  it  becomes  a  gap  in  the  array  Q.  To  avoid  
an  uncontrolled  increase  in  the  number  of  gaps,  you  need  to  constantly  fill  them  
when  new  elements  are  added  to  the  list  Q,  that  is,  you  need  to  store  the  gap  list  
in  an  additional  linear  array.

Algorithm  5.  Removing  element  i  from  the  linked  list  Lst

Q(P  tr(i))  x  Q(P  tr(i  +  1))

Changes  in  the  real  array  Q  require  periodic  updating  of  the  array  of  pointers  
P  tr  to  maintain  a  fixed  block  length.  These  pointers  are  shifted  to  the  preceding  
or  following  elements  of  the  linked  list  Lst.  Changing  the  i-th  pointer  may  lead  to  
the  need  to  change  the  (i  ÿ  1)-th  and  (i  +  1)-th  pointers.  In  the  worst  case,  the  
total  number  of  assignment  operations  at  this  step  can  reach  M.  Significant  
reduction  in  calls  to  the  pointer  update  procedure  is  achieved  by  introducing  a  
floating  block  length.  As  long  as  all  block  lengths  are  in  the  interval  [0.75  log2  N,  
1.25  log2  N],  the  P  tr(i)  pointer  update  procedure  is  not  applied.  Efficiency  of  the  
proposed  method

For  convenience,  we  assume  that  P  tr(1)  =  ib  and  P  tr(M)  =  ie.  Thus,  the  number  
of  pointers  M  is  approximately  equal  to  N/  log2  N.  The  array  P  tr  specifies  some  
order  in  the  implicitly  ordered  list  Q.  The  array  of  elements  Q(P  tr(i))  is  an  
explicitly  ordered  subset  of  the  array  Q,  so  the  bisection  method  can  be  applied  
to  it.  The  list  of  pointers  P  tr  specifies  a  block  ordering  for  Q.  An  array  Q  for  which  
P  tr  and  Lst  are  known  will  be  called  a  block  ordered  list.  The  fast  search  for  an  
interval  containing  the  value  x  in  a  block-ordered  list  of  real  numbers  Q  is  

performed  in  two  steps,  as  shown  in  Algorithm  7.  Step  1  of  this  algorithm  is  
a  bisection  method  for  an  array  of  pointers  Ptr,  and  its  arithmetic  cost  is  O(log2  
M)  =  O(log2N).  After  that,  all  elements  of  the  i-th  block  are  sequentially  traversed  
until  the  desired  interval  is  found.  Therefore,  the  arithmetic  cost  of  the  second  
stage  is  also  O(log2  N).

Algorithm  6.  Adding  element  i  after  the  p-th  element  of  the  linked  list  Lst

Quickly  finding  the  position  where  you  want  to  insert  or  move  an  element  of  
an  implicitly  ordered  list  requires  additional  structure.  Indeed,  sequential  
enumeration  of  the  elements  of  the  array  Q  using  Lst(2,  i)  pointers  to  the  next  
element,  until  finding  the  desired  position,  requires  O(N)  assignment  and  
comparison  operations,  which  is  an  unacceptably  expensive  procedure.  The  
bisection  method  is  not  applicable  to  the  array  Q  because  the  array  is  not  explicitly  
ordered.  The  bisection  method  is  also  not  applicable  to  the  linked  list  Lst,  since  
the  middle  of  the  list  is  unknown.

36

Our  fast  search  algorithm  is  based  on  the  introduction  of  additional  pointers  
to  the  elements  of  the  Lst(2,  N)  array.  These  pointers  are  stored  in  a  one-
dimensional  array  P  tr(M),  where  M  is  the  number  of  pointers.  The  pointers  P  tr(i)  
split  the  array  Q  into  blocks  with  lengths  approximately  equal  to  log2  N,  so  that

Algorithm  7.  Finding  an  interval  in  a  block-ordered  list

5:  end  if

Q(P  tr(i))  Q(P  tr(j)),  1  i<j  M.

1:  Apply  Algorithm  4  to  find  the  i-th  block  containing  x,  i.e.

6:N=N+1

2:  Lst(1,  i)  =  p

37

´

3:  Lst(2,  p)  =  i  4:  
if  n  =  0  then  Lst(1,  n)  =  i

Changes  in  the  array  of  numbers  Q  involve  adding  or  removing  an  element  
and,  accordingly,  increasing  or  decreasing  N  by  one,  as  well  as  changing  the  
value  of  some  element  without  changing  N.  These  operations  are  easily  
implemented  using  the  linked  list  Lst,  if  you  know  what  position  you  need  place  a  
new  element  or  move  a  modified  element.  For  example,  the  procedure  for  
removing  element  i  from  a  linked  list  is  presented  in  Algorithm  5.
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A  quaternary  tree  is  structured  like  a  normal  binary  tree;  the  difference  is  that  
each  vertex  does  not  have  a  pair  of  children,  but  four.  Each  vertex  of  such  a  tree  
is  responsible  for  some  part  of  the  unit  square  [0,  1]  ×  [0,  1].  In  this  case,  the  root  
of  the  tree  is  responsible  for  the  entire  square,  and  its  descendants  are  each  
responsible  for  their  quarter  of  the  parent  square.  When  passing  from  the  parent  
to  the  children,  the  square  cell  of  the  parent  is  divided  into  4  equal  parts  and  
distributed  among  the  children.  The  level  of  a  vertex  is  the  number  of  edges  in  
the  path  from  this  vertex  to  the  root  of  the  tree.  Thus,  the  level  of  the  root  is  0,  
and  the  level  of  its  direct  descendants  is  1.  At  each  vertex,  we  store  the  list  of  
triangulation  elements  assigned  to  it,  which  is  assumed  to  belong  to  [0,  1]  ×  [0,  
1].  To  select  the  vertex  to  which  the  element  should  be  assigned,  we  apply  
Algorithm  8.

Let  us  consider  the  advantages  of  such  a  structure  when  searching  for  an  
element  of  a  triangular  grid  that  intersects  with  some  given  circle  B  lying  inside  
the  unit  square.  For  each  triangle  ÿi,  we  define  the  minimal  circle  Bi  containing  
it.  Then  if  ÿi  intersects  B,  then  Bi  intersects  B.  Obviously,  B  and  Bi  intersect  if  and  
only  if  the  distance  between  their  centers  ÿi  is  less  than  the  sum  of  their  radii  R  
and  Ri.  Note  that  Ri  2ÿni  where  ni  is  the  level  of  the  vertex  of  the  quaternary  tree  
to  which  the  triangle  ÿi  is  assigned.  The  quaternary  tree  structure  makes  it  
possible  to  very  quickly  find  all  triangles  for  which  ÿiR  +  2ÿni ,  since  the  cost  of  
finding  one  element  of  the  grid  is  proportional  to  log4  Nf  actions.  Only  for  such  
triangles  does  it  make  sense  to  check  their  intersection  with  the  circle  B.  If  the  
considered  triangulation  does  not  belong  to  the  unit  square,  then  it  can  be  
displayed  by  translating  and  scaling  into  the  unit  square  before  performing  any  
actions.  Algorithms  for  fast  localization  of  grid  elements  based  on  quaternary  and  
octal  trees  are  effective  for  regular  triangulations  and  tetrahedralizations.  The  
efficiency  of  using  these  data  structures  for  operations  with  adaptive  grids  is  
discussed  

in  Chap.  3.

Ch.  2.  Basic  concepts

Algorithm  8.  Choice  of  vertex  of  a  quaternary  tree

Many  operations  with  unstructured  meshes  are  based  on  the  rapid  localization  
of  various  mesh  elements  (edges,  faces,  cells)  in  a  given  neighborhood.  The  
most  convenient  auxiliary  data  structure  for  quickly  searching  for  triangulation  
(or  tetrahedralization)  elements  is  a  quaternary  (or  octal)  tree  structure.  Grid  
analogues  of  quaternary  and  octal  trees  are  shown  in  Figs.  2.10.  Let's  consider  
a  quaternary  tree  in  more  detail.

§  2.3.  Data  structures  and  fast  algorithms

1:  Find  the  midpoint  x  and  diameter  d  of  the  grid  element  2:  
Find  the  smallest  number  n  such  that  d  2ÿn  3:  Find  the  
vertex  of  the  quaternary  tree  at  level  n  that  is  responsible  for  the  square  

containing  x

,
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Rice.  2.10.  Grid  analogues  of  quaternary  (a)  and  octal  (b)  trees

maintaining  a  dynamic  block-ordered  list  of  real  numbers  is  discussed  in  Chap.  
5  when  constructing  adaptive  grids.
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§  3.1.  Methods  for  defining  a  computational  area

For  automatic  construction  of  a  simplicial  (triangular  or  tetrahedral)  mesh,  
information  about  the  geometric  model  of  the  computational  domain  is  required.  
Currently,  several  approaches  are  used  to  represent  geometric  models  in  
computer  memory.  The  most  universal  approach  is  used  in  design  work  
automation  systems  (CAD).  A  geometric  model  within  a  CAD  system  can  be  
represented  in  many  ways.  The  model  can  be  composed  of  simple  shapes  -  
geometric  primitives,  such  as  a  circle,  a  square,  a  ball,  a  cube,  a  cylinder.  The  
model  can  also  be  represented  as  a  polygon  or  polyhedron,  in  which  case  only  
the  boundary  of  the  object  is  specified  as  a  broken  line  on  the  plane  or  a  set  of  
triangles  in  space.  The  division  of  the  boundary  into  segments  or  triangles  is  
called  the  discretization  of  the  domain  boundary.  Curved  lines  can  be  used  
instead  of  segments,  and  curved  surfaces  can  be  used  instead  of  flat  triangles.  
To  store  geometric  information  about  the  curvilinear  components  of  an  object,  
as  a  rule,  parametrizations  are  used

GRID  IN  ARBITRARY  AREAS
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From  the  point  of  view  of  automating  the  meshing  process,  a  universal  
approach  is  to  accurately  preserve  the  trace  of  the  mesh  at  the  boundary  of  the  
region.  In  this  case,  the  quality  of  the  resulting  simplicial  mesh  can  be  limited  by  
the  quality  of  the  boundary  discretization.  For  example,  in  the  three-dimensional  
case,  prolate  triangles  at  the  boundary  of  the  domain  significantly  limit  the  quality  
of  the  adjacent  tetrahedra.  To  obtain  high  quality  tetrahedral  meshes,  high  quality  
surface  triangulation  is  required.  In  the  two-dimensional  case,  the  boundary  of  
the  region  is  a  set  of  several  lines,  in  the  

general  case,  curves.  The  discretization  of  a  curved  line  parametrized  by  a  
function  ÿ :  t  ÿ  (x,  y),  t  ÿ  [t0,  t1]  is  constructed  using  standard  methods.  Sample  
step  along  the  curve

The  classical  approach  to  the  construction  of  simplicial  grids  is  reduced  to  
the  initial  construction  of  a  discrete  boundary  of  the  domain,  followed  by  the  
construction  of  a  simplicial  grid  inside  the  domain  based  on  the  available  boundary  
discretization.  Thus,  the  problem  of  constructing  simplicial  grids  is  reduced  to  two  
separate  problems:  constructing  a  discrete  boundary  for  a  given  geometric  
model  and  constructing  a  simplicial  grid  inside  a  domain  with  a  given  discrete  
boundary.  The  task  of  constructing  boundary  discretization  can  be  solved  in  
different  ways,  depending  on  the  form  in  which  the  geometric  model  is  specified.  
Generally  speaking,  at  the  second  stage,  information  about  the  geometric  model  
may  not  be  available.  When  solving  the  second  problem,  an  important  requirement  
is  the  preservation  of  the  trace  of  the  simplicial  grid  on  

the  boundary  of  the  domain.  Failure  to  comply  with  this  condition  may  lead  
to  the  impossibility  of  performing  calculations  on  the  resulting  grid  or  require  
additional  work  on  the  processing  of  the  resulting  grid  from  the  user.  For  example,  
if  the  constructed  mesh  is  later  merged  with  another  mesh,  then  keeping  a  trace  
of  the  mesh  on  their  common  boundary  will  allow  us  to  obtain  a  conformal  
common  mesh.  When  specifying  the  boundary  conditions  in  the  model  problem,  
keeping  the  trace  of  the  grid  will  make  it  possible  to  avoid  additional  reinterpolation  
of  the  boundary  data.  In  some  cases,  it  may  be  acceptable  for  the  user  to  slightly  
deviate  from  the  specified  trail  at  the  boundary.  The  trace  of  the  built  grid  on  the  
boundary  can  be  smaller  than  

the  one  specified  initially.  In  this  case,  refinement  is  allowed  only  by  adding  
new  nodes  on  the  boundary  and  splitting  the  elements  into  smaller  ones.  In  this  
case,  if  necessary,  the  user  can  restore  conformity  at  the  junction  with  a  
neighboring  mesh  using  an  appropriate  partition  of  the  boundary  elements  of  the  
second  mesh.

NURBS,  the  other  part  is  given  by  the  discretization  of  its  boundary,  and  the  
third  part  is  defined  by  primitives.  Through  the  operations  of  union,  intersection,  
addition  and  subtraction,  the  final  geometric  model  is  obtained.

ÿ :  t  ÿ  (x,  y,  z),  ÿ :  (p,  s)  ÿ  (x,  y,  z).

In  this  chapter,  we  describe  two  methods  for  constructing  unstructured  
simplicial  meshes:  the  advancing  front  method  and  the  Delaunay  triangulation  
method.  When  constructing  tetrahedral  meshes,  each  method  has  its  own  
advantages  and  disadvantages,  so  the  most  effective  strategy  for  constructing  
such  meshes  is  to  combine  both  methods.  Particular  attention  will  also  be  paid  
to  methods  for  improving  a  given  surface  mesh,  since  its  quality  strongly  affects  
the  operation  of  methods  for  constructing  a  spatial  mesh.

Chapter  3

A  widely  used  way  to  specify  parameterization  in  CAD  is  to  use  non-uniform  
rational  B-splines  (NURBS  -  non-uniform  rational  B-spline).  A  combination  of  
three  approaches  is  possible:  part  of  the  model  can  be  parameterized  using

§  3.1.  Methods  for  defining  a  computational  domain

CONSTRUCTION  OF  UNSTRUCTURED
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In  the  mentioned  algorithm,  the  position  of  the  new  node  relative  to  the  existing  
triangulation  is  first  determined,  and  then,  depending  on  the  result,  certain  actions  are  
performed.  If  the  new  node  hits  some  edge,  then  it  is  split  into  two  edges  and  adjacent  
triangles  are  split  into  two  smaller  ones.  If  a  new  node  falls  inside  any  triangle,  then  the  
latter  is  split  into  three  smaller  triangles.  If  the  node  does  not  fall  inside  the  triangulation,  
then  the  boundary  edges  of  the  current  triangulation  are  found,  with  which  it  can  form  new  
triangles.  The  proposed  algorithm  can  be  simplified  (see  Algorithm  9)  by  adding  several  
auxiliary  nodes  in  advance  and  constructing  an  initial  Delaunay  triangulation  that  completely  
covers  the  set  of  nodes  V.  In  this  case,  each  new  node  will  lie  inside  the  Delaunay  
triangulation.  In  all  cases,  the  new  triangles  and  their  neighbors  are  tested  for  the  Delaunay  
condition.  If  this  condition  is  violated,  a  local  reconstruction  of  the  triangulation  is  performed,  
which  consists  in  the  following.  When  a  new  node  is  added,  all  triangles  for  which  the  
Delaunay  condition  is  violated  are  found  and  removed,  and  

new  triangles  are  constructed  inside  the  resulting  polygon  with  the  participation  of  the  
new  node  (see  Fig.  3.1).  The  resulting  triangulation  will  satisfy  the  Delaunay  condition  
[18].  When  constructing  a  Delaunay  triangulation  for  a  given  two-dimensional  region,  it  is  
necessary  to  determine  the  set  of  nodes  V  lying  inside  and  on  the  boundary  of  this  region;  
for  this  set,  the  Delaunay  triangulation  is  constructed.  In  this  case,  the  following  simple  
algorithm  can  be  used  as  an  iterative  algorithm  for  adding  a  new  node  inside  the  region:  
we  choose  the  longest  edge  in  the  current  triangulation

§  3.2.  Construction  of  the  Delaunay  triangulation

Ch.  3.  Construction  of  unstructured  grids

based  on  what  is  available.

Consider  the  problem  of  constructing  a  triangulation  on  a  given  set  of  nodes  V  =  
{v1, ...,  vn}.  We  will  say  that  a  triangulation  satisfies  the  Delaunay  condition  if  for  any  
triangle  inside  the  circle  circumscribed  around  it  there  are  no  vertices  of  other  triangles.  By  
a  Delaunay  triangulation  we  mean  a  convex  triangulation  satisfying  the  Delaunay  condition.  
A  Delaunay  triangulation  is  unique  if  no  four  nodes  in  V  lie  on  the  same  circle.

The  point  is  inside  the  model  if  ÿ(x,  y,  z)  =  1.  There  are  methods  [64]  for  obtaining  the  
polyhedral  boundary  of  the  region  specified  using  the  indicator  function.  As  a  rule,  to  
improve  the  quality  of  the  obtained  discrete  boundary,  its  additional  processing  is  
necessary.  The  convex  region  can  also  be  defined  by  a  cloud  of  points  in  space.  Often  in  

this  case  the  user  is  interested  in  a  simplicial  mesh  with  nodes  at  given  points.  If  the  
initial  data  of  the  model  problem  are  known  and  given  at  specific  points,  then  a  grid  with  
nodes  at  these  points  will  allow  one  to  avoid  additional  reinterpolation  of  the  initial  data.  As  
a  rule,  in  this  case,  the  algorithms  for  constructing  the  Delaunay  triangulation  are  used,  
which  are  considered  in  the  next  section.

§  3.2.  Construction  of  the  Delaunay  triangulation

As  an  alternative  way  of  specifying  the  geometric  model,  the  indicator  or  characteristic  
function  can  be  used

There  are  several  methods  for  constructing  the  Delaunay  triangulation.  In  addition  to  
direct  methods  for  constructing  a  Delaunay  triangulation,  it  can  also  be  obtained  from  any  
other  triangulation  by  successively  rearranging  adjacent  pairs  of  triangles  that  do  not  
satisfy  the  Delaunay  condition  into  pairs  of  triangles  that  satisfy  this  condition.

43

ÿ :  (x,  y,  z)  ÿ  {0,  1}.

In  this  section,  a  simple  iterative  algorithm  for  constructing  a  Delaunay  triangulation  
will  be  briefly  considered.  The  triangulation  problem  can  be  formulated  as  follows:  let  there  
be  a  partially  constructed  triangulation  in  the  domain,  to  which  a  new  node  is  added;  it  is  
required  to  complete  the  triangulation  in  the  entire  area.

either  selected  by  the  user  or  calculated  automatically,  for  example,  based  on  an  estimate  
of  the  local  curvature.  In  the  3D  case,  constructing  a  good  

surface  triangulation  is  a  more  difficult  problem.  In  most  cases,  the  entire  surface  of  
an  object  can  be  divided  into  several  parts,  each  of  which  is  either  a  part  of  a  plane  or  a  
part  of  a  parameterized  surface  ÿ:  (p,  s)  ÿ  (x,  y,  z).  The  boundaries  of  these  parts  are  
generally  curved  lines  in  three-dimensional  space  that  have  their  own  parametrization  ÿ :  

t  ÿ  (x,  y,  z).  At  the  first  stage,  discretization  of  curved  boundaries  (lines)  in  three-dimensional  
space  is  constructed.  Next,  for  each  piece  of  the  surface,  three  angulations  are  constructed  

with  a  trace  on  the  boundary  coinciding  with  the  constructed  discretization.  By  preserving  
the  trace  of  surface  meshes  of  different  pieces  of  the  surface  on  a  common  curvilinear  
edge,  the  conformality  of  the  common  surface  mesh  is  guaranteed.  The  method  of  
constructing  a  surface  triangulation  using  the  advancing  front  method  will  be  discussed  in  
detail  in  §  3.4.  In  some  cases,  the  geometric  model  of  the  area  may  already  be  defined  as  
a  surface  triangulation.  The  quality  of  elements  in  surface  triangulation  can  be  very  low,  
which  is  especially  true  for  meshes  obtained  by  exporting  a  CAD  model.  Further  
construction  of  a  tetrahedral  mesh  with  poor  surface  triangulation  will  inevitably  lead  to  the  
appearance  of  bad  

tetrahedra  in  the  final  mesh.  In  §  3.5  we  will  consider  an  approach  that  makes  it  
possible  to  reconstruct  surface  meshes  while  preserving  the  geometric  features  of  the  
region.  The  same  approach  can  be  used  to  obtain  finer  or  coarser  surface  meshes.
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and  put  a  new  node  in  its  middle.  To  control  the  uniformity  and  density  of  nodes  
in  the  area,  more

5:
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A  distinctive  feature  of  the  Delaunay  tetrahedrization  is  the  presence  of  so-
called  slivers  —strongly  degenerate  tetrahedra  whose  vertices  lie  almost  in  the  
same  plane  and  almost  on  the  same  circle.  For  such  tetrahedra,  the  Delaunay  
condition  can  be  satisfied,  but  the  tetrahedra  themselves  will  be  of  very  poor  
quality.  To  improve  the  quality  of  the  mesh,  local  displacements  of  nodes  are  
used.  In  practice,  when  implementing  the  algorithms  for  constructing  the  Delaunay  
triangulation,  it  is  

necessary  to  pay  special  attention  to  data  structures  and  algorithms  for  
quickly  searching  for  triangles  or  tetrahedra  near  a  given  point.  A  good  overview  
of  data  structures  and  algorithms  is  given  in  the  book  [18]  and  in  §  2.3.  Special  
attention  also  deserves  the  accuracy  of  calculations  when  checking  the  fulfillment  
of  the  Delaunay  condition.  Some  of  these  issues  will  be  considered  in  the  next  
paragraph.

The  positive  half-plane  with  respect  to  the  directed  edge  e12  =  v2  ÿ  v1  is  the  
set  of  points  v  for  which  the  algebraic  area  is  positive  [see.  formula  (3.3.1)].  Using  
the  tensor  product  of  vectors,  it  is  convenient  to  write  the  algebraic  area  as  a  
vector  product:

§  3.3.  Construction  of  a  triangulation  by  the  
advancing  front  method

Ch.  3.  Construction  of  unstructured  grids

Nicky

triangle  of  set  V

The  Delaunay  condition  naturally  generalizes  to  tetrahedralization  in  three  
dimensions.  The  Delaunay  tetrahedrization  for  a  finite  set  of  knots  V  =  {v1, ...,  
vn}  is  such  a  conformal  partition  of  the  convex  hull  of  the  set  V  into  tetrahedra  
such  that  for  any  tetrahedron  inside  the  sphere  circumscribed  around  it  there  are  
no  other  knots  from  V.  A  simple  iterative  algorithm  for  constructing  a  triangulation  
Delaunay  can  also  be  used  to  construct  Delaunay  tetrahedra  in  three  dimensions  
[54].  In  contrast  to  2D  triangular  meshes,  in  the  3D  case  there  are  such  polyhedral

1

Below,  we  consider  the  classical  advancing  front  algorithm  and  study  the  
influence  of  computational  errors  on  it,  as  well  as  the  finiteness  and  running  time  
of  the  algorithm.  We  need  the  following  concepts  and  notation.

2:  for  all  nodes  v  ÿ  V  do  Add  
a  node  v  to  the  triangulation  ÿh  3:  4:  Find  

the  set  of  triangles  ÿ  for  which  the  Delaunay  condition  is  violated  and  remove  
them  from  ÿh  Construct  new  triangles  
connecting  v  with  the  edges  of  the  boundary  ÿ  ÿ  6:  end  for  7:  Delete  
auxiliary  

nodes  and  

their  corresponding  triangle
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Rice.  3.1.  Building  a  Delaunay  triangulation  by  an  iterative  algorithm:  a  -  adding  a  
new  node,  b  -  deleting  triangles,  c  -  building  new  triangles

Algorithm  9.  Building  a  Delaunay  triangulation  1:  Add  

three  auxiliary  nodes  that  form  the  enclosing

complex  methods.

The  proposed  algorithm  for  constructing  a  Delaunay  triangulation  constructs  
a  triangulation  for  the  convex  hull  of  a  set  of  nodes.  If  the  desired  region  is  
nonconvex,  then  it  is  necessary  either  to  use  the  methods  of  constructing  
Delaunay  triangulations  with  restrictions  [18]  or  artificially  complete  the  triangulation  
by  adding  new  nodes  to  the  boundary  of  the  region  and  then  deleting  triangles  
lying  outside  the  desired  region.  When  using  the  second  approach,  the  trace  of  
the  mesh  for  convex  regions  is  preserved,  while  for  non-convex  regions  it  can  be  
refined.

Sÿ(v1,v2,v)  ÿ

In  this  section,  we  will  propose  an  algorithm  that  constructs  conformal  
triangular  grids  for  two-dimensional  domains  given  by  discretizations  of  their  
boundaries.  When  constructing  the  grid,  the  algorithm  preserves  the  given  trace  
on  the  boundary.  The  proposed  algorithm  is  applicable  both  to  simple  polygons  
and  to  arbitrary  multicomponent  multiply  connected  polygonal  regions  whose  
boundaries  may  not  be  one-dimensional  manifolds.  The  question  of  constructing  
a  discrete  boundary  for  an  arbitrary  region  with  curvilinear  boundaries  will  not  be  
discussed  here,  but  we  will  return  to  it  in  §  3.4.

domains  for  which  it  is  impossible  to  construct  a  conformal  tetrahedral  mesh  with  
a  given  trace  on  the  boundary  without  adding  new  nodes.  An  example  of  such  a  
region  is  given  in  §  2.2  in  fig.  2.6.  Several  methods  are  known  for  preserving  the  
boundary  of  a  nonconvex  domain  in  3D  space:  local  modifications  of  the  mesh  
[34],  mesh  refinement  [42],  and  construction  of  a  constrained  Delaunay  
tetrahedralization  [81].

(v1  ÿ  v)  ×  (v2  ÿ  v)  >  0.  2
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A  polygon  on  a  plane  is  a  bounded  open  part  of  the  plane  whose  boundary  
consists  of  one  or  more  non-intersecting  broken  lines  without  self-intersections.  A  
simple  polygon  is  a  polygon  bounded  by  one  closed  broken  line.  The  vertices  of  the  
polygon  will  be  called  the  vertices  of  the  broken  lines,  and  its  sides,  the  segments  of  
the  broken  lines.  On  fig.  3.2  illustrates  several  types  of  polygons.

3.3.1.  Advance  Front  Algorithm

A  front  on  a  plane  is  a  set  of  directed  edges  without  self-intersections.  Each  
polygon  P  can  be  assigned  a  front  F(P).  To  do  this,  on  the  outer  sides  of  the  polygon,  
we  introduce  a  counterclockwise  direction  of  traversal,  and  assign  to  each  inner  side  
v1v2  a  pair  of  directed  edges  e12  and  e21.  The  totality  of  all  these  directed  edges  
forms  the  front  F(P).  We  will  call  a  front  F  closed  if  there  exists  a  polygon  P  such  that  
F  =  F(P).

Ch.  3.  Construction  of  unstructured  grids

e

b
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A

A

e  Fig.  3.2.  Types  of  polygons:  a  -  strictly  convex,  b  -  non-strictly  convex,  c  -  non-
convex,  d  -  multiply  connected,  e  -  multicomponent,  f  -  with  internal  cuts

The  sides  of  a  polygon  can  be  divided  into  two  types:  external  and  internal.  Let  
v1v2  be  a  side  of  P,  v  the  midpoint  of  v1v2,  and  ÿÿ(v)  an  ÿ-neighborhood  of  v.  Consider  
Pÿ  =  P  ÿ  ÿÿ(v).  If  for  any  ÿ  >  0  the  set  Pÿ  lies  on  both  sides  of  the  segment  v1v2,  then  
we  will  call  v1v2  the  inner  side,  or  cut.  If,  for  some  ÿ  >  0,  a  part  of  the  polygon  Pÿ  lies  
only  on  one  side  of  the  segment  v1v2,  then  v1v2  will  be  called  the  outer  side  of  the  
polygon  P.  In  the  latter  case,  a  direction  can  be  introduced  on  the  edge  e12  so  that  
the  part  of  the  polygon  Pÿ  is  in  the  positive  half-plane  with  respect  to  v1v2.  We  will  call  
this  direction  the  counterclockwise  direction  of  the  polygon.

G

V
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arrows.  On  fig.  3.3  shows  the  directions  of  bypassing  the  outer  sides  of  several  
polygons.  Note  that  the  totality  of  all  external  sides  forms  one  or  more  closed  broken  
lines.

b  Fig.  3.3.  Bypassing  the  polygon  counterclockwise:  a  -  multiply  connected  polygon,  b  
-  multicomponent  polygon,  c  -  polygon  with  internal  cuts

In  this  subsection,  we  consider  the  advanced  front  algorithm  for  constructing  in  a  
given  polygonal  domain  P  a  conformal  triangular  mesh  consistent  with  the  boundary  
P.

When  Fk+1  =  F(Pk+1)  becomes  the  empty  set,  or  equivalently,  Pk+1  =  ÿ,  we  can  say  
that  the  set  of  triangles  T  =  T  k+1  completely  covers  P.

By  the  current  front  Fk  we  mean  some  closed  front,  the  boundary  of  the  polygonal  
region  Pk,  in  which  the  triangular  grid  is  to  be  constructed.  The  symbol  T  k  will  denote  
the  set  of  constructed  triangles.  We  set  the  initial  moment  of  time  P0  =  P,  F0  =  F(P0)  
and  T  0  =  ÿ.  Next,  at  the  kth  step,  we  will  build  a  new  triangle  ÿ123  ÿ  Pk,  add  it  to  the  
triangular  grid,  and  subtract  it  from  the  area  where  the  grid  has  not  yet  been  built:

Recall  that,  according  to  our  notation,  ÿ123  denotes  a  triangle  with  vertices  v1,  
v2,  and  v3,  while  e12  denotes  an  edge  with  vertices  v1  and  v2.  The  triangle  ÿ123  will  
be  constructed  in  such  a  way  that  one  of  its  sides  will  be  one  of  the  segments  of  the  
current  front  Fk.  Then  after  subtracting  the  new  triangle  from  the  polygonal  area,  the  
current  front  will  change

T  k+1  k

V

Similarly,  a  negative  half  plane  is  a  set  of  points  for  which  Sÿ(v1,v2,v)  <  0.  A  broken  

line  in  the  plane  is  a  finite  set  of  segments  
connected  in  series  by  their  ends.  This  does  not  exclude  the  location  of  two  

consecutive  segments  of  the  broken  line  on  one  straight  line.  If  the  first  and  last  
points  of  the  polyline  coincide,  then  such  a  polyline  will  be  called  closed.  A  broken  line  
whose  segments  do  not  intersect  each  other  will  be  called  a  broken  line  without  self-
intersections.

=  T ÿ  { ÿ123},  Pk+1  =  Pk  \  ÿ123.
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Consider  some  directed  edge  e12  of  the  current  front.  For  ÿ123  to  lie  inside  Pk,  it  suffices  

to  fulfill  two  conditions:  1)  the  algebraic  area  of  ÿ123  is  positive,  i.e.,  S  ÿ123  >  0;  2)  the  triangle  

ÿ123  does  

not  intersect  the  front  Fk.  In  this  case,  it  is  allowed  that  the  vertex  v3  is  the  vertex  of  
the  front,  and  the  sides  of  the  triangle  coincide  with  the  

segments  Fk.  We  will  call  the  triangle  ÿ123  that  satisfies  these  conditions  suitable.  This  choice  

of  ÿ123  guarantees  that  after  adding  it  to  the  grid,  it  will  retain  the  

conformality  property.  In  this  case,  the  consistency  of  the  final  grid  T  with  the  initial  domain  

P  will  be  ensured.  For  definiteness,  we  will  choose  at  each  step  the  directed  edge  e12  with  the  

smallest  length  and  construct  a  new  triangle  ÿ123  on  it.  When  constructing  ÿ123,  the  choice  of  
the  third  vertex  v3  is  not  unique.  We  can  be  guided  both  by  the  desired  size  of  the  triangle  in  

this  area,  and  by  some  other  heuristic  criteria.  The  vertex  v3  will  be  chosen  only  from  

some  finite  set  ÿ  of  candidate  vertices.  This  set  includes  the  point  v0,  equidistant  from  the  

points  v1  and  v2  at  some  distance  s,  and  also  add  all  the  front  vertices  lying  in  the  positive  half-

plane  with  respect  to  the  directed  edge  e12.  Since  the  set  ÿ  is  finite,  we  can  simply  iterate  over  

all  triangles  ÿ123,  where  v3  ÿ  ÿ,  until  the  next  one  is  suitable  (see  Fig.  3.4b ).  Vp.  3.3.3  it  will  be  

proved  that  there  is  always  at  least  one  suitable  triangle.

i

Ch.  3.  Construction  of  unstructured  grids

errors,  its  finiteness  and  complexity.

i
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dots  v.

When  implementing  Algorithm  10  on  a  computer,  special  attention  should  be  paid  to  

computational  errors  that  arise  when  working  with  real  numbers.  Using  specialized  libraries  for  

arbitrary  precision  calculations  can  solve  the  problem  by  increasing  the  program  run  time.  In  

this  section,  we  will  analyze  the  impact  of  computational  errors  on  the  work

which  we  will  build  with  it.  To  do  this,  you  need  to  introduce  some  
restrictions  on  the  triangles  themselves,  on  the  edges  and  on  the  mesh  
vertices.  From  a  practical  point  of  view,  it  is  most  convenient  to  have  
a  lower  bound  on  the  minimum  pairwise  distance  between  grid  nodes.  
To  maintain  this  constraint,  we  will  exclude  the  point  v0  from  ÿ  if  it  lies  
close  to  the  front  vertices  or  to  the  already  constructed  mesh.  To  do  
this,  we  will  introduce  two  parameters:  h  is  a  restriction  on  the  minimum  
distance  to  the  current  front;  r  is  the  limit  on  the  distance  to  the  tops  of  
the  front  (see  Fig.  3.4,  a).  If  the  current  front  intersects  the  h-
neighbourhood  of  the  point  v0  or  the  vertices  of  the  front  lie  in  the  r-
neighborhood  of  the  point  v0,  then  we  exclude  the  point  v0  from  the  
set  of  candidate  vertices.  Note  that  in  Fig.  3.4  both  conditions  are  
violated,  so  the  third  vertex  v3  is  the  front  vertex.  More  details  about  
working  with  these  parameters  will  be  

described  in  section  3.3.3.  Taking  into  account  all  the  previous  
remarks,  we  compose  Algorithm  10.  We  will  use  the  following  additional  
notation.  At  the  kth  step  of  the  algorithm,  we  denote  the  set  of  vertices  
of  the  front  Fk  by  {pk },  and  the  set  of  nodes  of  the  constructed  grid  T  
k  by  {vk }.  For  some  R  >  0  and  a  point  v,  we  denote  by  ÿ  R(v)  the  open  convex  R-neighbourhood

48

The  complexity  of  such  an  algorithm  is  very  large,  and  in  practice  it  will  not  be  effective.  

Therefore,  we  consider  some  convex  open  neighborhood  ÿ  containing  the  points  v1,  v2  and  v0  

(see  Fig.  3.4).  As  the  region  ÿ,  one  can  choose  a  circle  of  radius  R>s  centered  at  v0.  We  select  

from  the  current  front  only  those  segments  that  have  at  least  one  common  point  with  ÿ.  The  

resulting  front  may  not  be  closed.  We  call  it  a  local  front  and  denote  it  by  Fÿ.  Any  subdomain  ÿ  

intersects  with  the  current  front  if  and  only  if  it  intersects  with  the  local  front.  Let  us  construct  the  

set  ÿ  =  ÿ  ÿ  ÿ.  Since  ÿ  is  convex,  any  triangle  ÿ123,  where  v3  ÿ  ÿ  ÿ,  will  lie  in  ÿ.  To  check  the  

intersection  of  this  triangle  with  the  current  front,  it  suffices  to  check  its  intersection  with  the  

local  front.  Local  enumeration  will  be  faster,  but  will  no  longer  guarantee  

the  existence  of  a  suitable  triangle.  Therefore,  it  is  necessary  to  provide  for  the  possibility  

to  return  to  the  full  enumeration  in  the  case  when  the  local  enumeration  fails.  To  prove  the  

finiteness  of  the  number  of  operations  during  the  operation  of  the  algorithm,  it  is  necessary  to  

somehow  estimate  the  maximum  number  of  triangles,

b  Fig.  3.4.  Front  advancement:  (a )  neighborhoods  of  the  candidate  vertex  
corresponding  to  different  values  of  R;  b  -  adding  a  suitable  triangle  to  the  grid

3.3.2.  Impact  of  computational  errors

Next,  we  will  study  the  stability  of  this  algorithm  to  computational

insignificant:  at  least  one  segment  from  the  front  will  be  removed  and  no  more  than  two  new  

ones  will  be  added.

A

ÿ
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10:

16:

v4

v5

v1

6:

Add  triangle  ÿ123  to  the  grid:  T  k+1

v3

v2

errors  is  to  check  the  intersection  of  a  triangle  with  a  segment.  Incorrect  definition  of  the  intersection  

due  to  computational  errors  can  lead  to  incorrect  operation  of  the  entire  algorithm.  Note  that  only  two  

situations  of  obtaining  an  incorrect  result  are  possible:  1)  a  non-intersecting  triangle  and  a  segment  

are  incorrectly  perceived  as  intersecting;  2)  the  intersecting  triangle  and  the  segment  are  incorrectly  

perceived  as

R

Algorithm  10.  Advancing  Front  Method  in  2D  Space  1:  Put  T  0  =  ÿ  and  F0  =  F(P)

v  5

13:

R

9:

From  the  point  of  view  of  Algorithm  10,  errors  of  the  first  type  are  not  critical:  a  false  intersection  

of  a  triangle  and  a  segment  means  that  the  new  triangle  will  not  pass  the  test  of  intersection  with  the  

current  front,  and  the  corresponding  candidate  vertex  will  be  rejected.  On  the  other  hand,  errors  of  

the  second  type  can  distort  the  check  of  the  intersection  of  the  triangle  with  the  current  front,  which  

can  lead  to  a  self-intersecting  front  or  to  a  nonconformal  mesh.  Thus,  errors  of  the  first  type  only  

increase  the  enumeration  of  candidate  vertices,  slightly  slowing  down  the  work

15:

Ch.  3.  Construction  of  unstructured  grids

S  ÿ123  >  0,

5:

v1

v3

Update  edge:  Pk+1  =  Pk  \  ÿ123,  Fk+1  =  F(Pk+1)  If  Fk+1  =  ÿ,  then  go  to  step  

20  Go  to  step  19  end  if  end  for  Put  R  =  ÿ,  go  to  7  18 :  

19:  end  for  20:  Put  T  =  T  
k+1

R

v2

i

One  of  the  main  operations  sensitive  to  computational

We  will  use  an  algorithm  for  checking  the  intersection  of  a  triangle–segment  pair,  which  excludes  

the  occurrence  of  errors  of  the  second  type,  but  allows  the  occurrence  of  errors  of  the  first  type.  In  

general,  two  planar  convex  objects  do  not  intersect  if  and  only  if  there  is  a  line  separating  them.  Under  

the  conditions  of  Algorithm  10,  common  vertices  and  common  edges  are  also  allowed:  for  example,  a  

segment  and  a  triangle  can  have  a  common  vertex,  or  a  segment  can  be  a  side  of  a  triangle.  In  these  

cases,  the  conformality  of  the  grid  will  not  be  violated,  so  they  must  be  considered  as  non-intersecting.  

Consider  the  triangle  ÿ123  and  the  edge  e45  (see  Fig.  3.5).  We  will

2)

then

Rice.  3.5.  Illustration  of  conditions  1),  2),  3)  and  4)  when  a  triangle  and  an  edge  do  not  intersect

v4

assume  that

4:

v  5

4)

algorithm,  and  we  will  also  propose  several  ideas  that  will  make  it  possible  to  minimize  this  influence.

12:

v5
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v4

since  only  such  triangles  will  be  tested  in  Algorithm  10.  First,  we  determine  how  many  vertices  a  

triangle  and  a  segment  have  in  common.  Consider  the  case  when  there  are  no  common  vertices.  The  

triangle  and  

the  sharp  edges  do  not  intersect  if  and  only  if  either  the  triangle  lies  entirely  in  one  of  the  half-

planes  with  respect  to  the  straight  line  e45,  or  e45  lies  on  the  other  side  of  the  triangle  with  respect  to  

one  of  its  sides  (see  Fig.  3.5).  Thus,  if  there  are  no  intersections,  then  at  least  one  of  the  following  

conditions  is  satisfied:  1)  S  ÿ451  >  0,  S  ÿ452  >  0,  S  ÿ453  >  0,  or  S  ÿ451  <  0,  S  ÿ452  <  0,  S  ÿ453  <  0;  

2)  S  ÿ124  <  0,  S  ÿ125  <  0;  3)  S  ÿ234  <  0,  S  ÿ235  <  0;  4)  S  ÿ314  <  0,  S  ÿ315  <  0.

v1

8:

v2

1)

program,  and  errors  of  the  second  type  can  lead  to  an  incorrect  result  of  the  program.

50

Choose  e12  ÿ  Fk  with  the  minimum  length  Determine  the  

desired  length  s  of  the  side  of  the  triangle  Construct  the  vertex  v0:  |e10|  =  |

e20|  =  s,  S  ÿ120  >  0  Choose  some  R>s,  h  >  0  and  r  >  0  Construct  a  

local  front  Fk  R:  Fk  ÿ  Fk  ÿ  ÿ  R(v0)  Determine  the  set  of  

candidate  vertices  ÿk  =  {pk }  ÿ  ÿ  ÿ  R( v0)  If  {pk }  ÿ  ÿr(v0)  =  ÿ  and  Fk  ÿ  

ÿh(v0)  =  ÿ,  then  add  v0  to  ÿk  for  all  v3  ÿ  ÿk  if  ÿ123  does  not  intersect  Fk

v3

R

3)

7:

17:

eleven:

v  4

do

2:  for  k  =  0,  1, ...  do  3:

v1

=  T  k  ÿ  ÿ  

{ÿ123}

v3

disjoint.

i

14:

The  converse  is  also  true:  if  one  of  these  conditions  is  satisfied,  then  there  are  no  intersections.  

These  conditions  can  be  written  in  a  more  convenient  form:  1)  sign( S  ÿ451 )  +  sign( S  ÿ452 )  

+  sign( S  ÿ453 )  =  ±3;  2)  sgn( S  ÿ124 )  +  sgn( S  ÿ125 )  =  ÿ2;  3)  

sgn( S  ÿ234 )  +  sgn( S  ÿ235 )  =  ÿ2;  4)  sgn( S  

ÿ314 )  +  sgn( S  ÿ315 )  =  ÿ2.

v2

R
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9:

=  ad  ÿ  bc  =  D.  (3.3.1)

In  Algorithm  12,  the  value  D  is  calculated  with  an  absolute  error  not  exceeding  r.  Therefore,  if  

d(v1,  v2,  v3)  =  0,  then  we  can  be  sure  that  the  sign  of  D  is  calculated  correctly  and  d(v1,  v2,  v3)  =  

=  sign( S  ÿ123 ).  In  practice,  if  the  type  of  real  numbers  with  single  precision  is  used  to  store  

coordinates  in  the  

computer  memory,  and  the  calculations  of  the  values  a,  b,  c,  d,  D  in  Algorithm  12  are  

performed  with  double  precision,  then  the  machine  precision  is  sufficient  for  the  exact  calculation  of  

both  all  intermediate  values ,  and  the  final  value  D.  In  this  case,  we  can  set  ÿ  =  0,  and  Algorithm  12  

will  calculate  sgn( S  ÿ123 )

exactly.
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cd

no

3.3.3.  Finiteness  of  Algorithm  10

Let's  move  on  to  the  case  when  the  triangle  and  the  segment  have  one  common  vertex.  In  this  

case,  the  triangle  and  the  segment  do  not  intersect  in  our  sense  if  and  only  if  e45  lies  in  the  negative  

half-plane  with  respect  to  one  of  the  sides  of  the  triangle,  while  their  common  vertex  lies  on  the  line,  

and  the  second  falls  into  the  negative  half-plane.  These  conditions  can  be  written  as  follows:  1)  

sgn( S  ÿ124 )  +  sgn( S  ÿ125 )  =  ÿ1;  2)  sgn( S  ÿ234 )  +  sgn( S  ÿ235 )  =  ÿ1;  3)  sgn( S  ÿ314 )  +  

sgn( S  ÿ315 )  =  ÿ1.  If  at  least  one  of  these  conditions  is  satisfied,  then  there  is  no  intersection;  

and  vice  versa,  if  there  is  no  intersection,  

then  at  least  one  of  the  conditions  is  satisfied.  

In  the  latter  case,  when  both  vertices  of  the  

segment  coincide  with  two  vertices  of  the  triangle,  the  edge  e45  is  a  side  of  the  triangle,  and  by  our  

agreement,  the  triangle  and  the  segment  are  considered  to  be  non-peripheral. When  calculating  the  elements  of  the  matrix,  we  already  introduce  some  relative  error.  In  addition  

to  this,  the  relative  error  is  again  introduced  in  the  expressions  ad  and  bc,  and  at  the  end  one  more  

error  is  introduced  into  D.  The  total  absolute  error  can  be  estimated  from  above  as  ÿ(|a|  +  |b|  +  |c|  +  |

d|  +  2|  ad|  +  2|bc|),  where  ÿ  depends  on  machine  precision.  Taking  this  allowable  error  into  account,  

we  write  an  algorithm  for  determining  sgn( S  ÿ123 ).  Algorithm  12.  Calculation  d(v1,  v2,  v3)

4:

repent

ab

Suppose  we  have  a  function  d(v1,  v2,  v3)  that  does  not  accurately  calculate  the  sign  of  the  

expression  S  ÿ123 .  But  at  the  same  time,  if  d(v1,  v2,  v3)  =  0,  then  d(v1,  v2,  v3)  =  sign( S  ÿ123 ),  

and  in  disputable  situations  d(v1,  v2,  v3)  =  0.  Then  the  intersection  test  can  be  performed  using  

algorithm  11.

If  d(v1,  v2,  v4)  +  d(v1,  v2,  v5)  =  ÿ1,  then  there  is  no  intersection  If  d(v2,  v3,  v4)  

+  d(v2,  v3,  v5)  =  ÿ1,  then  there  is  no  intersection  If  d(v3,  v1,  v4)  +  d(v3,  v1,  v5)  

=  ÿ1,  then  there  is  no  intersection  11:  12:  end  if  13 :  if  two  common  vertices  
then  No  

intersection  15:  end  if  16:  that  the  triangle  

and  the  segment  
intersect

We  note  that  the  admissible  inaccuracy  in  the  calculation  of  d(v1,  v2,  v3)  can  only  lead  to  

errors  of  the  first  type,  while  Algorithm  11  excludes  errors  of  the  second  type.

2S  ÿ123  =  e31  ×  e32  =

1:  Calculate  a  =  x1  ÿ  x3,  b  =  y1  ÿ  y3,  c  =  x2  ÿ  x3,  d  =  y2  ÿ  y3  2:  Estimate  the  error  r  =  

ÿ(|a|  +  |b|  +  |c|  +  |d|  +  2|ad|  +  2|bc|)  3:  Calculate  the  determinant  of  the  matrix  D  =  ad  ÿ  bc  

4:  If  D>r,  then  return  1  5:  If  D  <  ÿr,  then  return  ÿ1,  otherwise  return  
0

10:

52

ÿ

3:

14:
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x2  ÿ  x3  y2  ÿ  y3

If  d(v1,  v2,  v4)  +  d(v1,  v2,  v5)  =  ÿ2,  then  there  is  no  intersection  If  d(v2,  v3,  v4)  

+  d(v2,  v3,  v5)  =  ÿ2,  then  there  is  no  intersection  If  d(v3,  v1,  v4)  +  d(v3,  v1,  v5)  

=  ÿ2,  then  there  is  no  intersection  6:  7:  end  if  8:  if  one  common  vertex  then

Let  us  show  that  the  number  of  operations  in  Algorithm  10  is  finite.  In  the  proposed  algorithm,  

there  are  two  explicit  nested  loops  and  one  implicit  one  due  to  restarting  the  enumeration  at  step  

18.  The  enumeration  cycle  at  step  10  is  always  finite  due  to  the  finiteness  of  the  set  ÿk.  will  be  

found,  and  also  show  that  the  outer  loop  in  step  2  will  be  final.

The  operation  of  determining  the  sign  of  the  algebraic  area  S  ÿ123  is  the  main  operation  used  

in  both  Algorithm  10  and  Algorithm  11.  Let  us  propose  a  method  for  inexact  determination  of  the  

sign  of  d(v1,  v2,  v3)  with  the  following  property:  if  d(v1,  v2,  v3 )  =  0,  then  d(v1,  v2,  v3)  =  =  sgn( S  

ÿ123 ).  The  calculation  of  S  ÿ123  is  reduced  to  finding  the  determinant  of  the  2  ×  2  matrix:

split  ends.

5:

R.

x1  ÿ  x3  y1  ÿ  y3

Algorithm  11.  Checking  the  intersection  of  a  triangle  with  a  segment  1:  

Find  the  common  vertices  of  the  triangle  ÿ123  and  the  edge  e45  2:  
if  there  are  no  common  vertices  

then  If  d(v4,  v5,  v1)  +  d(v4,  v5,  v2)  +  d(v4,  v5 ,  v3)  =  ±3,  then  the  intersection
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(3.3.2)

Such  a  choice  guarantees  the  existence  of  the  point  v0  and  limits  you  to  ÿ19  the  

triangle  cell  from  below:  hc  l,  hc  18  for  the  rate  of  
increase  in  the  size  of  triangles:

1

,  s0  =  0,  ÿ  =  0.

2
2  

ÿ19  s  and  s>smin,  so  for  any  k

Ch.  3.  Construction  of  unstructured  grids

s  =  ÿl,

ÿ19  
10

2

Suppose  we  have  some  scalar  function  s(x,  y):  
P  ÿ  R  +  and  we  want  the  size  of  the  elements  in  the  

grid  to  change  according  to  this  function.  In  this  case,  we  will  say  that  the  size  of  the  
triangles

i .

Let  the  size  of  the  triangles  be  set  by  the  user.  Let's  put

s.  By  our  assumption,  s>smin,  hence  2  smin.  Then  dk  min  d0,

54

1

ÿ19  
ÿk  min  d0,  smin .  20

5  l,  s(x,  y) .  9

1

,

ÿ2

l  4

r=

i

1

r>

1

Lemma  3.3.1.  Let  P  be  a  polygon  with  vertices  v1,  v2, ... ... ,  vn  and  v1v2  the  
side  of  P.  Then  there  exists  a  third  vertex  of  v3  such  that  the  triangle  ÿ(v1,  v2,  v3)  
lies  entirely  inside  P.  If  algorithm  10  reaches  step  18,  then  the  enumeration  at  step  
10  becomes  complete.  From  Lemma  3.3.1,  

taking  into  account  the  previous  remarks  about  the  influence  of  computational  
errors  and  the  possibility  of  exact  calculation  in  Algorithm  12,  it  follows  that  after  
restarting  the  enumeration,  a  suitable  triangle  will  always  be  found. In  this  case,  we  will  say  that  the  grid  step  is  chosen  automatically.  Since  ÿ  >  then  

the  point  v0  always  exists,  and  hc  =  ÿ  3  l.

where  ÿ  >  0,  s0  0  and  ÿ  are  some  parameters.  Note  that  for  s>s0  the  value  r  ÿs,  and  
for  s<s0  the  value  r  ÿs0.  The  parameter  ÿ  can  be  chosen  so  that  r  =  s0  for  s  =  s0.  
The  constraint  r  ÿs  makes  it  possible  in  practice  to  avoid  the  appearance  of  sharp  
differences  in  the  sizes  of  neighboring  segments  in  a  new  front,  and  the  constraint  r  
ÿs0  allows  us  to  limit  the  value  of  r  from  below.  When  implementing  the  algorithm  on  
a  computer,  the  parameters  introduced  above  

can  be  selected  in  one  of  two  ways,  depending  on  whether  the  size  of  the  
triangles  is  specified  by  the  user  or  automatic  size  selection  is  used.  Let's  consider  
both  cases.
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h

2

s.

=  ÿ2  ÿ

Let  dk  be  the  minimum  of  pairwise  distances  between  points  of  the  front  pk  i ,  ÿk  
be  the  minimum  of  pairwise  distances  between  nodes  from  vk  i ,  ÿ0  =  ÿ.  When  
adding  a  new  triangle  ÿ123  to  T  k,  two  situations  are  possible:  v3  ÿ  { pk }  and  v3  =  
v0.  In  the  first  case,  the  minimum  distance  between  the  grid  vertices  will  not  
decrease  more  than  to  the  minimum  distance  between  the  front  vertices,  then  the  
minimum  distance  between  the  front  vertices  will  not  decrease:  ÿk+1  min( ÿk,dk),  

dk+1  dk.  Consider  the  case  v3  =  v0.  Since  ÿ120  
does  not  intersect  Fk,  the  distance  from  v0  to  the  
set  {vk }  is  not  less  than  the  distance  from  v0  to  Fk,  
which,  by  construction,  is  not  less  than  h  chosen  at  
Step  6.  The  distance  from  v0  to  {pk }  is  not  less  
than  r.  Accordingly,  ÿk+1  min( ÿk,  h),  dk+1  min( dk,  
r).  Let  us  propose  some  heuristic  method  for  
choosing  the  parameters  s,  r,  and  h.  Denote  by  l  =  |
v1v2|  the  length  of  the  segment  v1v2,  and  through  
hc  the  height  ÿ120  lowered  from  the  vertex  v0  (see  
Fig.  3.6).

smin  for  any  k.  By  construction

Let  us  show  that  the  outer  loop  at  step  2  will  be  finite,  i.e.,  the  number  of  
constructed  triangles  is  finite.  To  do  this,  we  will  estimate  the  number  of  triangles  in  
terms  of  the  number  of  grid  nodes,  and  we  will  limit  the  number  of  nodes  from  above  
due  to  the  boundedness  of  the  polygon  P  and  the  lower  limit  on  the  distance  between  
nodes  vk

s  =  max

s  +  s0  +  (s  ÿ  s0)2  +  ÿ2

ÿ  =

1

20

i

is  given  by  a  user-defined  function  s(x,  y).  We  require  that  the  function  s(x,  y)  be  
separated  from  zero  by  P:  s(x,  y)  >  smin  >  0.  Take

1

Let's  take  the  parameter  h  =  hc,  and  calculate  the  parameter  r  using  the  formula  2

Then  r  =

Rice.  3.6.  Triangle  with  
diameter  s,  base  l  and  height  

hc

ÿ  1.

Let  us  prove  that  when  searching  for  the  candidate  vertex  v3  at  step  10,  there  
will  always  be  at  least  one  suitable  triangle  after  restarting  the  search  at  step  18.  It  
follows  from  Rado's  theorem  [80]  that  any  polygon  can  be  divided  into  triangles  by  
diagonals.  It  follows  from  the  existence  of  a  triangulation  without  additional  points  
that  at  least  one  triangle  can  be  constructed  for  each  side  of  the  polygon.  Let's  
formulate  this  statement.

2

,

i
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node  circle  radius

R

+  K(P).  +  
ÿÿ2

1

i

how
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ÿ

v

ÿ2  p(P)  +  ÿ

Nk

d0,  i.e.,  dk  >  ÿ  

3  
d0.  Therefore,  for  any  k  8

+  2K(P)  ÿ  5.  +  
ÿÿ2  ÿÿ

1.  Selecting  a  segment  with  the  minimum  length  from  Fk  (line  3).  2.  
Construction  of  the  local  front  Fk  (line  7).  (line  8).

+  K(P).  ÿÿ

ÿ  =

Rice.  3.7.  Polygon  extension  by

Pÿ  =  v3 :  dist(v3,P)  <  circles.  
Let  us  

estimate  the  area  Pÿ.  Each  side  of  a  polygon  of  length  l  has  a  rectangle,  which  gives  
an  increase  in  area  no  more  than  ÿ  l.  Thus,  the  increase  in  area  due  to  rectangles  2

ÿ

4

This  estimate  limits  the  number  of  iterations  in  the  outer  loop  of  the  algorithm  to  10,  
which  in  turn  proves  that  the  number  of  operations  of  the  algorithm  is  finite.

3.  Constructing  a  list  of  candidates  ÿk  4.  
Checking  the  intersection  of  a  triangle  with  a  local  front  (str

Nk

1

limited:

ÿ  p(P),  where  p(P)  is  the  perimeter  of  the  polygon  P.  Circular  2  sectors  at  

the  vertices  with  an  internal  angle  ÿ  give  an  increase  in  area

number  of  vertices:

Let  now  the  size  of  the  triangles  is  selected  automatically.  Let's  take

2

4

K(P).  From  here,  one  can  estimate  the

(3.3.3)

d0  for  any  k.  By  construction  h

i

ÿ2  is  not  greater  than  (ÿ  ÿ  ÿ) ,  and  this  estimate  is  also  true  for  interior  angles  greater  

than  8  ÿ;  in  this  case,  the  gain  becomes  negative,  but  it  is  completely  covered  by  the  
overlap  of  the  two  rectangles  that  we  considered  earlier.  From  the  formula  for  the  sum  
of  the  angles  of  a  polygon,  the  contribution  of  all  circular  sectors  can  be  estimated  as

Note  that  a  similar  estimate  is  also  true  for  the  number  of  vertices  in  the  front  Fk:

2

From  (2.2.5)  it  follows  that  the  number  of  triangles  in  T  k

(See  Figure  3.7).  Then  Pÿ  will  completely  cover

S(Pÿ)  S(P)  +

56

ÿ  
3d0.  8

spare  equal  to  Nk

ka  11).  
5.  Front  update  (line  13).

+

Then  r

(3.3.4)

R

4S(P)  
ÿÿ2

1

We  have  just  shown  that  there  exists  ÿ  >  0  such  that  ÿk  >  ÿ  is  true  for  any  k.  With  
this  condition,  we  can  estimate  the  maximum  number  of  mesh  nodes.  The  set  of  mesh  
nodes  {vk }  lies  in  the  closure  of  P,  and  the  pairwise  distance  between  them  is  greater  
than  ÿ.  Let  Nk  be  the  number  of  nodes  in  the  set  {vk }.  Let's  build  in  each

ÿ

Operation  4  is  performed  in  Ne(Fk  R)  operations  of  checking  the  intersection  of  a  triangle  
with  a  segment  (see  Algorithm  11).  Operation  3  can  be  performed  in  2  Ne(Fk  R)  
operations  to  check  whether  vertices  from  Fk  R  belong  to  the  neighborhood  ÿ  R(v0).  
The  complexity  of  operations  1,  

2,  and  5  depends  on  the  data  structures  used.  To  store  the  front,  we  introduce  an  
ordered  list  with  the  minimum  length  element  at  the  root.  To  quickly  find  a  local  front,  
we  will  use  a  quaternary  search  tree.  In  this  case,  operation  1  becomes  trivial,  and  the  
complexity  of  operation  2  will,  on  average,  be  proportional  to  the  sum  log  Ne(Fk)  +  
Ne(Fk  R).  Operation  5  consists  of  three  operations  of  adding  or  removing  a  segment  
from  the  front,  the  complexity

p

2

v

R

4S(P)  2p(P)

ÿ  3  
l,

Nk  f

3.3.4.  Speed  of  the  Advanced  Front  Algorithm  Let  us  briefly  analyze  the  

speed  of  Algorithm  10.  Formula  (3.3.4)  estimates  from  above  the  number  of  
iterations  of  the  outer  loop  at  step  2.  Denote  by  Ne(Fk)  and  Ne(Fk  R)  the  numbers  of  
segments  in  Fk  and  Fk,  respectively.  Let  us  write  down  all  non-trivial  operations  that  are  
used  in  Algorithm  10.

2
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ÿk

ÿ

ÿ2  K(P),  where  K(P)  is  the  number  of  connected  components  in  P.  We  have

v

a  l  dk,  so  h

8S(P)  4p(P)

will  be

2p(P)

,  s0  =  d0,  ÿ  =  2s0(1  ÿ  ÿ)/ÿ.

ÿ.  These  circles  do  not  intersect  and  cover  the  plane  2  ÿ2 .  

We  extend  the  original  polygon  P  by  ÿ/2,

2

ÿ  
4

ÿÿ
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In  this  section,  we  will  illustrate  the  behavior  of  Algorithm  10  with  several  examples.  
First,  we  experimentally  estimate  the  average  complexity  of  the  algorithm,  and  then  we  
present  the  results  of  using  different  methods  for  setting  the  desired  grid  spacing.  To  
experimentally  measure  the  speed  of  the  advanced  front  algorithm,  

we  will  take  a  unit  square  and  build  unstructured  quasi  uniform  grids  in  it  with  step  
h.  Decreasing  the  grid  step  h,  we  will  monitor  the  number  of  triangles  in  the  grid  Nf  and  
the  grid  construction  time  t.  The  results  of  the  experiments  are  presented  in  table.  3.1.

4S(P)  
ÿÿ2  

In  the  rare  worst  case,  it  is  proportional  to

1.28
In  conclusion,  we  present  several  areas  for  which  the  complexity  of  the  algorithm  is  

much  worse  than  the  average  estimate.  Consider  the  area  in  the  form  of  a  comb,  shown  
in  fig.  3.8.  We  will  increase  the  number  of  teeth  N  in  it  so  that  the  area  will  remain  
approximately  the  same,  and  the  perimeter  will  be  proportional  to  N.  The  parameter  ÿ  
will  decrease  inversely  proportional  to  N.  The  number  of  segments  in  the  initial  front  will  
be  2  N  +  1.  At  each  step  local

Ch.  3.  Construction  of  unstructured  grids

front  is  on  average  proportional  to  Ne(Fk  R)  +  log2

3.3.5.  Experimental  results

The  overall  complexity  of  the  algorithm  is  on  average  proportional  to

t,  s  Nf /t,  sÿ1  t/(Nf  log  Nf ),  µs

1.33

.
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2p  (P)

the  neighborhood  will  almost  completely  cover  the  entire  area,  so  the  complexity  of  one  

iteration  of  the  outer  loop  will  be  proportional  to  N2.  In  total,  (2N  ÿ  1)  triangles  will  be  
built.  The  total  complexity  of  the  work  will  be  proportional  to  N3,  which  is  much  worse  
than  the  average  estimate  of  the  order  of  N  log  N.

wbad=

The  exhaustive  search,  when  algorithm  10  goes  to  step  18,  corresponds  to  the  
worst  estimate  for  the  local  search.

.+  K(P)  log2  +  ÿÿ

0.01

0.0025  512956  8.96  57250

3

ÿ

Let  us  summarize  the  available  results  on  the  computational  complexity  of  Algorithm  
10.  Let  the  input  be  a  polygon  P  completely  covered  by  a  square  with  side  H.  If  the  local  
grid  step  is  given  by  a  custom  function  of  the  desired  triangle  size  s(x,  y),  then  assume  
again  that  it  is  separated  from  zero:  s(x,  y)  smin  >  0.  Vp.  3.3.3  it  was  shown  that  there  
is  a  parameter  ÿ,  which  can  be  used  to  estimate  the  maximum  number  of  triangles  in  an  
area  using  formula  

(3.3.4).  Let  us  estimate  from  above  the  computational  complexity  of  one  iteration  of  
the  outer  loop  in  Algorithm  10.  We  will  be  interested  in  the  dependence  of  the  complexity  
of  the  algorithm  on  the  grid  step  and,  accordingly,  on  ÿ.  Assume  that  a  suitable  triangle  
has  been  found  in  a  local  enumeration.  In  practice,  R  is  chosen  in  the  range  from  s  to  
2s,  and  the  lengths  of  the  front  segments  in  this  neighborhood  are  comparable  to  s.  
The  

average  estimate  for  the  number  of  segments  in  the  local  front  Ne(Fk  R)  turns  out  
to  be  independent  of  ÿ.  However,  in  the  worst  case,  it  can  be  proportional  to  Ne(Fk),  
which,  in  turn,  worse

ÿ

128334  2.08  61699
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h

H

2p  (P)

1.52

It  can  be  seen  from  the  calculation  results  that  the  operating  time  is  proportional  to  

the  value  of  Nf  log  Nf .  Note  that  the  proportionality  factor  is  close  to  1.  The  table  also  
includes  a  column  for  the  meshing  speed  (triangles  per  second).

T  a  b  l  e  3.1  
Speed  of  the  advanced  edge  algorithm

In  our  case,  it  reaches  4ÿÿ2  S(P)  +  2ÿÿ  p(P)  +  K(P).  Search  local

Nf

0.00125  2019486  37.67  53610

ÿÿ
1.38

Rice.  3.8.  Worst  edge  configuration  example

Further,  for  each  vertex  of  the  local  front,  it  is  required  to  check  the  intersection  of  
the  candidate  triangle  with  the  local  front.  The  complexity  of  this  operation  is  on  average  

proportional  to  (Ne(Fk  R))2,  which  is  a  quantity  independent  of  ÿ.  But  in  the  worst  case,  
the  complexity  of  the  operation  can  reach  a  value  proportional  to  (Ne(Fk))2.

Wavg=

+  K(P)  +

.

each  of  them  is  on  average  proportional  to  log  Ne(Fk).  The  structure  of  the  search  tree  
is  discussed  in  more  detail  in  §  2.3.

H

0.0054S(P)  
ÿÿ2
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0.829  0.633  0.877

ÿ  =  20

Rice.  3.9.  Different  ways  to  choose  the  grid  step:  a  —  non-trivial  function  s1(x,  y);  b  is  a  
constant  function  s2(x,  y);  (c–f )  automatic  selection  with  ÿ  =  1;  1.05;  1.25  and  20

232

A
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Nf  3636

G
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T  a  b  l  e  3.2  The  
number  of  triangles  and  the  worst  quality  of  triangles  for  different  methods  of  

choosing  the  grid  step

Q(ÿh)  0.732 0.778  0.641  10ÿ2

s1(x,  y)  s2(x,  y)  ÿ  =  1  ÿ  =  1.05  ÿ  =  1.25

We  now  analyze  how  the  choice  of  the  local  grid  spacing,  or  parameter  s,  when  
constructing  a  new  triangle  in  Algorithm  10  affects  the  grid  and  its  quality.

In  addition  to  the  considered  grids  with  a  uniform  trace  on  the  boundary,  let  us  check  
Algorithm  10  for  nonuniform  boundary  discretization.  As  such  a  discretization,  we  
choose  the  trace  of  the  triangulation  obtained  using  the  function  s1(x,  y)  (see  Fig.  3.9,  
a).  Boundary  discretization  has  a  non-constant,  but  smoothly  varying  step.  Results  of  
automatic  step  selection  with  parameters  ÿ  =  1.05

d

Consider  a  unit  square  with  a  circle  of  radius  0.1  cut  out  in  the  center.  The  algorithms  
proposed  in  this  subsection  make  it  possible  to  specify  the  desired  size  of  grid  elements  
using  the  scalar  function  s(x,  y).  Using  the  same  function,  one  can  construct  a  discrete  
boundary  of  a  region  given  analytically.  This  will  be  discussed  in  more  detail  in  the  next  
paragraph.  When  constructing  the  grids,  two  scalar  functions  were  used:  s1(x,  y)  and  
s2(x,  y),  which  are  responsible  for  the  desired  

size  of  the  triangles.  The  first  function  decreased  near  two  semicircles  resembling  in  
shape  the  graph  of  the  function  sin(2ÿx).  The  second  function  was  identically  equal  to  a  
constant  on  the  entire  region.  The  grids  obtained  with  their  help  are  shown  in  Figs.  3.9,  
a  and  b,  respectively.

6212  5386  2596

Next,  we  will  test  the  automatic  selection  of  the  grid  size  for  a  given  discrete  area  
boundary.  As  a  discrete  boundary,  we  take  the  boundary  obtained  in  the  previous  
experiment  with  a  constant  function  s2(x,  y).  Let  us  test  the  operation  of  the  algorithm  
with  automatic  step  increase  for  different  values  of  ÿ  =  1;  1.05;  1.25;  20.  The  resulting  
grids  are  shown  in  fig.  3.9,  c–e.  The  choice  of  a  larger  value  of  ÿ  leads  to  a  rapid  
sparseness  of  the  grid  inside  the  domain.  Therefore,  for  a  very  large  value  of  ÿ,  we  
obtained  an  irregular  grid  with  a  minimum  number  of  nodes  inside  the  region  (see  Fig.  
3.9,  f).

Vtab.  3.2  contains  information  about  the  number  of  triangles  in  the  constructed  
grids.  Recall  that  the  quality  of  an  isosceles  right  triangle  [see  formula  (2.1.3)]  is  
approximately  0.89,  and  the  quality  of  an  equilateral  triangle  is  1.  The  quality  of  the  mesh  
Q(ÿh)  is  equal  to  the  quality  of  the  worst  triangle  in  it.  Note  that  in  all  the  considered  
examples,  except  for  the  last  one,  Q(ÿh)  >  0.6,  which  is  typical  for  high  quality  regular  
grids.

1194
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b  Fig.  3.10.  Automatic  selection  of  the  grid  step  for  uneven  discretization  of  the  boundary:  
ÿ  =  1.05  (a),  ÿ  =  1.25  (b)

We  will  compose  an  algorithm  of  actions  based  on  the  idea  described  above.  The  
whole  surface  is  divided  into  several  simple  surfaces  ÿi,  we  will  call  them  curvilinear  faces.  
Each  curvilinear  face  is  parametrized  by  a  smooth  vector  function  ÿi  =  (x,  y,  z):  ( x,  y,  z)  =  
Fi(p,  s),  (p,  s)  ÿ  ÿi  ÿ  R2

1
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v  1,  2,

The  technology  for  constructing  triangular  surface  meshes,  i.e.,  meshes  at  the  
boundary  of  three  dimensional  regions,  is  necessary  for  the  further  construction  of  
unstructured  tetrahedral  meshes.  Surface  triangular  meshes  can  also  be  used  to  solve  
quasi-2D  problems  on  curved  surfaces.  Examples  of  such  problems  are  the  problems  of  
deformation  of  thin-walled  structures  or  the  solution  of  shallow  water  equations  on  the  
surface  of  a  sphere  or  geoid.  In  this  section,  we  will  show  that  the  2D  advanced  front  
algorithm  can  be  extended  to  the  case  of  curved  surfaces,  and  also  discuss  methods  for  

constructing  discrete  curvilinear  boundaries  and  interacting  with  CAD  to  obtain  the  
necessary

and  v2

A  curve  on  a  surface  or  in  space  is  a  one-dimensional  manifold  on  a  surface  or  in  
space,  respectively.  A  simple  curve  is  a  curve  that  is  homeomorphic  to  a  unit  segment.  
Whenever  possible,  we  will  use  the  notation  from  §  3.3.

The  splitting  of  the  boundary  ÿ  under  a  homeomorphism  generates  a  splitting  of  the  
boundary  of  a  simple  surface,  which  can  be  regarded  as  a  discrete  boundary  of  the  
surface.  Using  this  boundary  as  a  front,  one  can  apply  the  advanced  front  algorithm,  
treating  the  surface  locally  as  a  plane.  A  complex  surface  can  usually  be  cut  into  several  
simple  surfaces.  Having  fixed  the  

discretization  on  cuts,  it  is  possible  to  construct  a  triangulation  consistent  with  this  
discretization  for  each  simple  surface,  then  the  general  triangular  mesh  for  the  entire  
complex  surface  will  be  conformal.

border  information.  We  examine  the  finiteness  and  complexity  of  the  presented  algorithms  
and  give  several  examples  of  their  operation.

2

3.4.1.  Surface  representation

.

(e31  ×  e32)  n3,

63

S  ÿ123

§  3.4.  Construction  of  surface  triangulation

§  3.4.  Construction  of  a  surface  triangulation  by  the  advancing  front  

method

The  area  of  a  triangle  ÿ123  on  the  surface  is  calculated  as  follows:

62

1

Consider  first  a  simple  surface.  According  to  its  definition,  there  must  exist  a  
parametrizing  function  that  takes  a  point  from  the  unit  square  in  the  parametric  space  to  
a  point  on  the  surface.  The  construction  of  such  a  homeomorphism  for  an  arbitrary  
surface  is  a  difficult  task.  In  practice,  it  is  easier  to  construct  a  homeomorphism  from  some  
bounded  domain  ÿ  ÿ  R2  that  is  homeomorphic  to  the  unit  square.

actually.

v3)  in  the  plane  tangent  to  v3,  where  v

Using  geometric  criteria  for  choosing  the  function  s(x,  y),  we  can  construct  grids  
adapted  to  the  features  of  the  computational  model.  Decreasing  the  value  of  s  in  some  
subdomain,  for  example,  in  the  prefracture  zone,  we  will  refine  the  mesh  there.  A  more  
complicated  approach  to  constructing  the  function  s(x,  y)  is  based  on  estimating  the  error  
of  the  finite  element  solution  of  the  differential  problem—see  the  methods  described  in  
the  appendix.  For  example,  s(x,  y)  can  be  adjusted  to  some  error  rate.

A  surface  is  a  two-dimensional  manifold  in  a  three-dimensional  space.  A  simple  
surface  is  a  surface  that  is  homeomorphic  to  the  unit  square.

where  n3  is  the  outward  unit  normal  to  the  surface  at  the  point  v3,  and  a  ·  b  is  the  scalar  
product  of  two  space  vectors.  We  note  that  for  the  plane  the  new  notation  goes  over  into  
the  definition  from  §  2.1.  We  also  note  that  such  a  quantity  corresponds  to  the  value  Sÿ(v  
are  orthogonal

projections  onto  the  plane  of  the  points  v1  and  v2,  respectively.

and  ÿ  =  1.25  are  shown  in  Figs.  3.10.  The  number  of  triangles  in  the  resulting  grids  was  
2904  and  550,  respectively.  The  worst  triangle  quality  was  Q(ÿh)  =  0.334  and  Q(ÿh)  =  
0.696  respectively

=

A
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3.4.2.  Interaction  with  the  geometric  CAD  core

k].

When  implementing  this  method  on  a  computer,  you  can  use  a  different  
approach.  Let  us  consider  the  parametrization  of  curvilinear  edges  in  the  parametric  
space  of  the  surface  separately  for  each  curvilinear  face.  Let  the  face  ÿi  be  
parametrized  by  the  function  Fi(p,  s),  then  the  edge  ÿk  can  be  considered  as  a  
curve  in  the  parametric  space  (p,  s).  For  example,  if  we  use  the  mapping  p  ÿ  
(p,sik(p)),  then  the  curvilinear  edge  will  be  parametrized  as  follows:

Ch.  3.  Construction  of  unstructured  grids

0

0

Algorithm  13.  Construction  of  a  surface  mesh  1:  for  all  

curvilinear  edges  do  Choose  one  of  the  
parametrizations  of  a  simple  curve  Construct  a  
discretization  of  the  curve  using  the  bisection  method

Consistency  of  surface  meshes  of  faces  with  discretizations

After  constructing  the  discretization  of  the  boundary  of  the  curvilinear  face,  we  
can  apply  an  analogue  of  the  advanced  front  algorithm  to  construct  a  triangular  
mesh.  Since  neighboring  faces  have  the  same  discretization  of  their  common  edge,  
and  the  triangular  ones  built  on  them

65

Let  us  write  down  the  main  stages  of  constructing  a  surface  grid.  Let  us  
suppose  that  the  surface  is  divided  into  several  non-intersecting  simple  surfaces—
curvilinear  faces.  The  curvilinear  boundary  of  each  face  is  divided  into  several  
simple  curves—curvilinear  edges.  We  will  consider  only  conformal  partitions,  i.e.,  
those  in  which  two  neighboring  faces  have  common  curvilinear  edges.  At  the  first  
stage,  discretization  is  constructed  for  all  curvilinear  edges.  To  do  this,  points  are  
placed  

on  the  curved  line,  and  the  curve  is  approximated  by  a  broken  line.  The  length  
of  the  segments  is  controlled  by  the  desired  size  of  the  grid  elements,  while  the  
position  of  the  points  is  calculated  using  the  bisection  method.

8:  Apply  the  advanced  front  method  to  build  the  mesh  9:  end  for  10:  Merge  all  
the  meshes  

built  into  one  common  mesh

At  the  second  stage,  for  each  curvilinear  face,  a  discrete  boundary  is  compiled  
from  the  available  edges.  For  points  on  edges,  the  values  of  parameters  (p,  s)  are  
restored  in  the  parametric  space  of  the  face.  Finally,  using  the  advanced  front  
algorithm,  a  surface  triangulation  is  constructed  that  is  consistent  with  the  discrete  
boundary.  We  formalize  these  ideas  in  Algorithm  13.

2:

We  will  build  points  on  it:

The  values  of  the  parameters  ti  ÿ  [p0,p1]  are  chosen  using  the  bisection  method  
in  accordance  with  the  desired  distance  between  the  points  vi.

6:

Let  us  assume  that  the  vector  functions  Fi  have  continuous  first  derivatives:  Fi  ÿ  

(C1(ÿi))3.  We  divide  the  
boundary  of  a  curvilinear  face  into  several  simple  curves  ÿk,  which  we  will  call  

curvilinear  edges.  In  we  parametrize  on  curvilinear  edges:  ÿk  =  (x,  y,  z):  ( x,  y,  z)  =  
Gk(t),  t  ÿ  [tk,t  We  will  also  need  mappings  pik,sik  

from  the  parametric

Gk(t)  =  Fi(pik(t),sik(t)),  t  ÿ  [tk].  k,t  Therefore,  in  

practice,  this  approach  is  applicable  for  fairly  simple  domains.

n.
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curve  space  into  parametric  surface  space:

ÿk  =  {(x,  y,  z):  ( x,  y,  z)  =  Fi(p,sik(p)),  p  ÿ  [p0  i ,p1  i ]}.

(x,  y,  z)  =  F(p,s(p))  =  G(p),  p  ÿ  [p0,p1].

3:  4:  end  

for  5:  for  all  curvilinear  faces  do  Compose  
the  discretization  of  the  boundary  from  the  discretizations  of  the  edges  
Compute  the  parameterization  of  the  nodes  of  the  discrete  boundary  in  
the  parametric  space  of  the  face

1

curvilinear  ribs,  the  conformality  of  the  overall  mesh  is  guaranteed.

Information  about  the  region  boundary  can  be  obtained  using  the  CAD  
geometric  kernel  [4].  Most  of  the  existing  CAD  systems  offer  an  interface  for  
interacting  with  their  internal  geometric  core,  allowing  you  to  obtain  information  
about  the  topology  and  geometry  of  the  area.  Each  CAD  uses  its  own  interface  for  
this  interaction,  and  there  are  no  common  standards  in  this  area  yet.  Some  open  
source  CAD  is  good

grids  are  consistent  with  this  discretization,  then  the  general  grid  composed  of  them  
will  be  conformal.

´

7:

1

§  3.4.  Construction  of  surface  triangulation

Such  parametrizations  of  the  curve  ÿk  may  be  different  for  different  curvilinear  
faces  containing  ÿk,  but  must  provide  mathematically  equivalent  representations  
of  the  curve.  In  practice,  it  is  possible  to  allow  a  slight  discrepancy,  within  the  
permissible  error,  of  representations  of  the  same  curve  by  different  parametrizations,  
which  simplifies  the  construction  of  parametrizations  and  expands  the  class  of  
domains  for  which  this  approach  is  applicable.  To  construct  surface  meshes  on  
curvilinear  faces,  a  discretization  of  curvilinear  edges  is  first  

constructed.  Consider  a  parametrized  simple  curve:

vi  =  G(ti),  i  =  0,  1, ... ,
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2S  ÿ123

CGMA  offers  a  universal  interface  for  communicating  with  geometric  CAD  kernels.  In  
this  case,  all  information  is  divided  into  two

3.  A  loop  is  a  connected  and  closed  set  of  edges.  It  does  not  carry  any  geometric  
information  and  is  a  purely  topological  object.

def  hi  _

parts.

4.  A  face  is  a  part  of  a  smooth  parametrized  surface  bounded  by  a  loop.  The  edges  of  
the  loop  must  lie  on  the  surface  of  the  face.  The  face  is  given  by  the  surface  

parametrization  (p,  s)  ÿ  (x,  y,  z).

.
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•  Topological  information  about  the  model:  component  parts  of  the  model

abc

The  sign  of  the  determinant  D  =  aei  ÿ  ce  g  +  bf  g  ÿ  afh  +  cdh  ÿ  bdi  of  a  3  ×  3  matrix  is  
calculated  by  an  algorithm  similar  to  Algorithm  12.  The  absolute  error  can  be  estimated  
as  r  =  ÿ(|a|  +  |b|  +  |c|  +  +  |d|  +  |e|  +  |f|  +  |  g|  +  |h|  +  |i|  +  |aei|  +  |ce  g|  +  |bf  g|  +  |afh|  +  |cdh|  +  +  
|  bdi|).  Note  that  if  single  precision  is  used  for  the  coordinates  of  the  nodes  of  real  numbers,  
and  for  calculating  the  determinant

Ch.  3.  Construction  of  unstructured  grids

and  their  topological  relations  with  each  other.

xv1  ÿ  xv3  yv1  ÿ  yv3  zv1  ÿ  zv3

3.4.3.  Advance  Front  Algorithm

§  3.4.  Construction  of  surface  triangulation

xv2  ÿ  xv3  yv2  ÿ  yv3  zv2  ÿ  zv3

67

The  advancing  front  algorithm  10  is  extended  to  the  case  of  curved  surfaces.  In  this  
subsection,  we  only  note  the  main  features  of  the  advancing  front  algorithm  for  such  
surfaces.  Vp.  3.3.2,  algorithm  11  was  proposed  for  checking  the  intersection  of  a  triangle  

with  a  segment.  This  algorithm  used  only  the  function  of  determining  the  sign  of  the  
expression  S  ÿ123 .  Let  us  show  how  to  get  the  sign  of  the  expression  S  ÿ123  on  the  

surface.  Let  us  construct  the  point  v  =  v3  +  n3  so  that  n3  =  v  ÿ  v3  is  the  outward  normal  to  
the  surface  at  the  point  v3.  By  our  definition

ÿ

documented.  One  example  of  such  a  CAD  can  be  the  open  system  Open  CASCADE  
Technology  [19].  However,  in  most  cases,  the  closed  nature  of  the  source  code  and  the  
lack  of  documentation  on  interfaces  in  the  public  domain  complicate  the  development  of  
interfaces  with  CAD.  A  promising  direction  is  the  use  of  intermediate  libraries  that  provide  
a  common  

unified  interface  for  the  developer  and  support  interaction  with  different  CAD  systems.  
During  the  development  of  the  commercial  package  CUBIT  Tool  Suite,  which  includes,  in  
particular,  its  own  ACIS  geometric  kernel,  developers  began  to  add  new  interfaces  to  
other  CAD  systems.  For  this,  a  special  layer  was  created  that  provides  a  common  interface  
for  interacting  with  CAD.  Later,  this  part  of  the  code  was  removed  from  a  commercial  
project  as  a  separate  open  library  Common  Geometry  Module  (CGM)  [20,  82].  At  that  
time,  interfaces  to  the  geometric  kernels  of  the  ACIS  and  Pro/ENGINEER  systems  were  
developed.  The  openness  of  the  source  code  made  it  possible  to  use  and  improve  this  
library.  The  CGM  project  is  currently  being  developed  under  the  new  name  CGMA  [21].  
This  version  adds  the  ability  to  interact  with  the  Open  CASCADE  geometric  kernel.

•  Geometric  information:  coordinates,  dimensions,  parameters  and  parametrizing  
functions  for  curves  and  surfaces.  Most  CAD  kernels  use  boundary  

representation  of  models  (B-Rep  or  BREP  is  short  for  boundary  representation).  This  
representation  method  is  also  used  in  the  CGMA  library.  The  model  consists  of  parts  that  
form  a  tree-like  hierarchy.  Let's  look  at  these  parts,  moving  from  simple  to  more  complex.  
1.  A  point  for  which  its  coordinates  in  space  are  given

xv  ÿ  xv3  yv  ÿ  yv3  zv  ÿ  zv3

5.  A  shell  is  a  connected  and  closed  set  of  faces.  Just  like  a  loop,  it  is  a  purely  
topological  object.  6.  The  body  is  a  part  of  space  bounded  by  a  

shell.  7.  A  set  of  bodies  representing  the  model  as  a  whole.  As  noted  
earlier,  in  order  to  construct  a  three-dimensional  triangular  
surface  mesh,  each  face  has  its  own  triangulation,  and  the  triangulations  of  faces  are  

conformally  connected  on  common  edges.  To  do  this,  we  first  construct  an  edge  
discretization.  Edges  are  approximated  by  broken  lines  with  a  space  step  specified  by  the  
user.  After  that,  a  triangulation  is  constructed  for  each  face  using  the  advanced  front  
algorithm  [54].  The  discretization  of  edges  acts  as  the  initial  front.

(x,  y,  z).

=  ( e31  ×  e32)  n3  =

Particular  attention  should  be  paid  to  curved  surfaces.  Geometric  CAD  kernels  often  
create  faces  with  periodic  parametrization,  as  well  as  with  parametrization  having  singular  
points.  For  example,  Open  CASCADE  defines  the  lateral  surface  of  a  cylinder  with  one  
face  with  periodic  parametrization,  and  the  lateral  surface  of  a  cone  with  a  face  with  a  
singular  point  at  the  vertex  of  the  cone.  Moreover,  the  surface  of  the  ball  is  given  by  one  
face  with  a  periodic  parametrization  and  two  singular  points  at  the  poles;  the  face  itself  is  
limited  to  only  one  edge  connecting  the  two  poles.  The  advancing  front  algorithm  should  
be  modified  accordingly  to  allow  for  such  peculiarities.  Examples  of  how  the  algorithm  
works  with  geometric  CAD  models  will  be  given  in  Section  3.4.4.

2.  An  edge  is  a  part  of  a  smooth  parametrized  curve  bounded  by  points.  For  the  edge,  
a  certain  parametrization  t  ÿ  (x,  y,  z)  is  defined,  as  well  as  the  points  limiting  it  and  

the  values  of  the  parameter  t  at  these  points.
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ÿ  >  0,  ÿ  ÿ  [0,  2  ÿ].

D(x,  y)

ÿy  
ÿs  
ÿz  

ÿs

are  defined  similarly,  k  is  the  normalizing  set

D(x,  y)
,

´

§  3.4.  Construction  of  surface  triangulation

´

To  calculate  the  value  of  S  ÿ123,  you  need  to  be  able  to  build  a  normal  to  the  
surface.  Let  the  surface  be  parametrized  as  follows:  (p,  s)  ÿ  (x,  y,  z),  and  in  some  
neighborhood  of  the  point  v3  the  first  derivatives  of  the  components  x,  y,  z  with  respect  
to  the  parameters  p  and  s  exist  and  are  continuous.  Then  the  direction  of  the  normal  
can  be  calculated  using  the  following  formula:

D(z,  x)

Where

D(x,  y)

D(z,  x)

The  analysis  of  the  complexity  of  the  advancing  front  algorithm  from  Sec.  3.3.4  is  
also  applicable  in  the  superficial  case.  Although  the  finiteness  of  the  algorithm  has  not  
been  proven  in  the  general  case,  in  practice,  when  working  with  surfaces  of  limited  
curvature  and  with  a  sufficiently  fine  mesh  step,  the  complexity  of  the  algorithm  is  on  

average  proportional  to  Nf  log  Nf ,  where  Nf  is  the  total  number  of  triangles.

68

T

,

Algorithm  11,  taking  into  account  the  previous  remark  about  calculating  S  ÿ123,  
can  be  used  to  check  the  intersection  of  a  triangle  and  a  segment  on  a  surface.  In  fact,  
we  will  check  the  intersection  of  the  projection  of  the  triangle  and  the  projection  of  the  
segment  on  the  tangent  plane,  so  this  method  is  applicable  only  in  local  neighborhoods  
in  which  the  surface  differs  little  from  the  tangent  plane.

,
D(p,  s)

n3  =  k

D(p,  s)

D(p,  s)
inhabitant.

D(p ,  s )
n3  =  k

T

space.  Let  the  vertex  v1  be  parametrized  by  the  point  (pv1 ,  sv1 ).  We  will  look  for  the  
parametrization  of  the  point  v3  in  the  form

,

,

where,  for  example,  p  =  p  ÿ  s  and  s  =  p  +  s.  In  the  case  where  the  point  v3  is  a  singular  
point  of  the  parametrization,  one  can  retreat  a  small  distance  from  the  point  v3  and  
calculate  the  normal  at  the  neighboring  point.

Ch.  3.  Construction  of  unstructured  grids

For  a  fixed  ÿ,  one  can  choose  ÿ  so  that  |v1v3|  =  l  with  some  accuracy.  The  bisection  
method  will  speed  up  the  search  for  such  a  point.  Depending  on  the  result  of  the  side  
comparison  |v2v3|  with  the  desired  length  l,  we  will  increase  or  decrease  ÿ  until  we  
achieve  the  equality  |v2v3|  =  l  with  some  accuracy.  The  bisection  method  will  speed  up  
the  search  for  an  acceptable  direction  ÿ.  The  use  of  two  nested  bisection  methods  
results  in  a  large  amount  of  computation  required  to  construct  an  isosceles  triangle.  

Therefore,  in  practice,  the  advancing  front  method  on  the  surface  is  slower  than  
the  analogous  method  on  the  plane.  Next,  we  will  briefly  analyze  the  advanced  front  
algorithm  for  constructing  surface  meshes.

D(p,  s)

D(y,  z)

,

D(p ,  s )

(pv3 ,  sv3 )=( pv1  +  ÿ  cos  ÿ,  sv1  +  ÿ  sin  ÿ),

D(p,  s)

ÿy  

ÿp  
ÿz  

ÿp

D(p,  s)

D(p ,  s )

Another  important  operation  that  is  easily  performed  on  the  plane  is  the  construction  
of  an  isosceles  triangle  ÿ(v1,  v2,  v3)  on  a  given  edge  e12  with  sides  of  length  l.  To  find  
the  position  of  the  vertex  v3,  we  will  look  for  a  point  in  the  parametric  space  (pv3 ,  
sv3 )  such  that  |v1v3|  =  |v2v3|  =  l  in  3D

and  intermediate  values  \u200b\u200b-  double  precision,  then  there  may  not  be  
enough  margin  of  accuracy  to  obtain  an  exact  answer.  Accurate  calculations  require  

triple  or  quadruple  precision.  Some  modern  computer  architectures  allow  quadruple  
precision  calculations,  and  some  compilers  can  use  software  implementation  of  
quadruple  precision  on  conventional  processors.

D(y,  z)
,

D(z,  x)

D(y,  z)
,
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When  analyzing  the  advancing  front  algorithm,  attention  must  be  paid  to  two  
points:  the  existence  of  a  suitable  triangle  at  each  step  and  the  finiteness  of  the  number  
of  steps.  Unfortunately,  the  conclusion  about  the  existence  of  a  suitable  triangle,  

obtained  in  Section  3.3.3,  does  not  carry  over  to  the  case  of  a  surface  polygon.  
Moreover,  for  sufficiently  large  surface  curvature  and  large  lengths  from  cuts  in  the  
front,  a  suitable  triangle  may  not  exist  on  a  given  edge.  In  practice,  provided  that  the  
curvature  of  the  surface  is  limited  and  the  lengths  of  the  front  segments  are  sufficiently  
small,  a  suitable  

triangle  is  usually  found.  Moreover,  it  is  among  the  candidates  in  some  small  
neighborhood  of  the  considered  edge.  If  the  curvature  of  the  surface  is  bounded  and  
the  local  neighborhood  is  sufficiently  small,  then  the  projection  of  the  surface  onto  the  
tangent  plane  will  be  a  one-to-one  mapping.  In  this  case,  an  analog  

of  Algorithm  11  can  be  used  to  find  intersections  of  a  triangle  with  a  local  front.  
Using  Algorithm  10,  we  can  maintain  a  lower  bound  on  the  minimum  pairwise  distance  
between  vertices  of  a  surface  mesh.  The  arguments  from  Sec.  3.3.3  are  applicable  in  
this  case  up  to  the  curvature  of  the  surface  and  the  Euler  characteristic  of  the  surface,  
which  for  simple  surfaces  

is  equal  to  the  Euler  characteristic  of  the  plane  [13].

(3.4.1)

=

In  formula  (3.4.1),  all  three  components  can  simultaneously  turn  to  0.  In  this  case,  
to  determine  the  normal,  one  can  choose  derivatives  along  other  directions  in  the  
parametric  space.  Let's  conditionally  write  it  like  this:
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Rice.  3.11.  Model  specified  in  CAD:  a  -  BREP  model;  b  -  discretization  of  curvilinear  
edges;  c  -  surface  quasi-uniform  triangular  mesh

121

2224

1.

3.4.4.  Experimental  results

A

1298  0.49

97

70

b

2367

0.1

5460  2.18

§  3.5.  Method  for  improving  a  given  

surface  mesh

First,  a  discretization  of  all  curvilinear  edges  of  the  geometric  model  is  constructed.  
The  constructed  discretization  is  shown  in  fig.  3.11b .  It  consists  of  461  nodes  and  494  
segments.  Further,  for  each  of  the  36  curvilinear  faces,  the  algorithm  of  the  advancing  
front  on  the  surface  is  launched.  Depending  on  the  size  of  the  curved  face,  the  number  
of  constructed  triangles  ranges  from  3  to  641.  The  final  surface  triangulation  contains  
2594  triangles  and  1299  nodes.  The  resulting  surface  triangulation  is  shown  in  fig.  3.11,  c.

71

Nf  t,  s  Nf /t,  sÿ1  t/(Nf  log  Nf ),  µs

107

It  can  be  seen  from  the  calculation  results  that  the  operating  time  is  limited  by  Nf  log  

Nf .  The  proportionality  coefficient  (the  last  column  in  the  table)  is  quite  large.  The  table  
also  includes  a  column  for  meshing  speed  (triangles  per  second).

Ch.  3.  Construction  of  unstructured  grids

Note  that  the  speed  of  the  algorithm  that  uses  the  interface  with  the  CAD  kernel  
strongly  depends  on  the  speed  of  calculating  the  parameterizing  functions  inside  the  
CAD  system.  In  the  example  above,  the  face  with  the  most  triangles  (641)  was  part  of  a  
plane,  and  it  took  2.11  seconds  to  triangulate,  while  the  other  curved  face  took  4.54  
seconds  to  complete  a  triangular  mesh  consisting  of  only  25  triangles. .  The  total  time  for  
constructing  the  surface  grid  was  14  s.

0.05

91

V

2649

0.0125  89730  40.34

In  this  section,  we  will  carry  out  two  numerical  experiments.  In  the  first  experiment,  
we  estimate  the  complexity  of  the  advanced  front  algorithm  for  curved  surfaces  given  
analytically.  In  the  second  experiment,  we  will  show  the  possibility  of  using  the  interface  
with  the  CAD  geometric  kernel  when  constructing  a  surface  mesh.  Let  us  measure  
experimentally  the  speed  of  the  algorithm  of  the  advancing  front  on  the  surface.  Let  us  

take  the  upper  hemisphere  of  the  unit  sphere  as  the  surface.  Let  us  specify  the  
parametrization  of  the  hemisphere  analytically  using  the  map  (p,  s)  ÿ  (p,  s,  1  ÿ  p2  ÿ  s2),  
where  p2  +  s2.  We  will  construct  a  quasi  uniform  grid  with  step  h.  Decreasing  the  grid  

step,  we  will  monitor  the  number  of  triangles  in  the  grid  Nf  and  the  grid  construction  time  
t.  The  

results  of  the  experiments  are  presented  in  table.  3.3.

h

0.025  22152  9.36

Let's  demonstrate  the  joint  operation  of  the  surface  triangular  mesh  generator  and  
the  geometric  CAD  kernel  -  OpenCASCADE.  As  an  example,  consider  the  29_misc1  
model  from  the  Open  CASCADE  website  [19].  The  geometric  model  consists  of  63  
vertices,  96  curvilinear  edges  and  36  curvilinear  faces  (see  Fig.  3.11,  a).

§  3.5.  Method  for  improving  a  given  surface  mesh

T  a  b  l  e  3.3  The  
speed  of  the  advanced  front  algorithm  on  the  surface

2505
Surface  meshes  obtained  by  export  from  many  CAD  systems  have  the  property  that  

the  number  of  triangles  in  flat  areas  is  minimal,  and  the  triangles  themselves  can  have  a  
very  elongated  shape,  which  affects  the  regularity  of  triangulation  of  the  initial  front,  the  
quality  of  the  resulting  tetrahedral  mesh,  and  even  the  possibility  of  its  build.  To  construct  
high  quality  tetrahedral  meshes,  the  initial  front  must  be  regular.  The  proposed  technology  
for  improving  the  surface  mesh  is  based  on  identifying  almost  planar  connected  
subdomains  in  the  original  surface  mesh  and  using  the  advanced  front  algorithm  to  cover  
them  with  

a  regular  mesh.  The  main  idea  of  the  proposed  method  is  the  selection  of  flat  (or  
almost  flat)  pieces  of  the  surface,  which  are  called  polygons  below,  and  their  repartition  

into  new  triangles  of  a  regular  shape.  In  this  case,  an  insignificant  deviation  from  the  initial  
discrete  surface  is  possible  [7].  The  input  data  

for  this  method  are  a  conformal  triangulation  of  the  surface  and  a  possible  labeling  of  
triangles,  which  ensures  the  division  of  the  surface  into  polygons.  Each  polygon  will  be  
processed  separately,  and  the  geometric  boundaries  of  the  polygons  will  be  preserved  in  
their  original  form.  Several  options  are  available  to  the  user  to  control  the  result  of  the  
repartition.
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The  algorithm  for  constructing  a  regular  triangulation  of  a  given  discrete  surface  is  
an  iterative  procedure  (see  Algorithm  14).  First,  the  surface  is  divided  into  polygons,  for  
which  the  problem  is  reduced  to  a  two  dimensional  one,  and  then  the  triangulation  of  
the  entire  surface  is  assembled  from  the  resulting  triangulations  of  the  polygons.  The  
main  operations  with  the  polygon  are  shown  in  fig.  3.12.

A

Algorithm  14.  Rebuilding  the  surface  mesh  1:  while  the  original  

triangulation  is  not  exhausted  do  Select  a  connected  
subdomain  (polygon),  whose  triangles  2:  swarm  lie  in  the  same  plane  within  

the  specified  accuracy  Rotate  the  polygon  plane  to  the  Oxy  plane  and  set  the  z-
coordinates  to  zero,  map  the  polygon  to  plane  Oxy  Split  the  polygon  boundaries  
and  apply  the  advanced  front  method  to  construct  a  2D  regular  triangulation  
of  the  area  
with  a  given  trace  on  the  boundary  Project  (along  the  Oz  axis)  each  node  of  
the  new  triangulation  onto  the  rotated  polygon.  Since  the  latter  slightly  deviates  
from  the  Oxy  plane,  the  quality  of  the  projected  
triangles  hardly  deteriorates.  Rotate  the  Oxy  plane  to  the  plane  of  the  polygon  
to  complete  the  inverse  change  of  coordinates

V

72

3:

Let  us  consider  the  procedure  for  selecting  a  polygonal  subdomain  in  more  detail.  
A  polygonal  subdomain  is  a  connected  set  of  triangles  that  belong  to  the  same  plane  
with  a  given  accuracy.  The  accuracy  is  determined  by  the  maximum  allowable  distance  
h0  from  the  triangle  to  the  plane  and  the  maximum  deviation  ÿ  between  the  normal  to  the  
triangle  and  the  normal  to  the  given  plane.

Ch.  3.  Construction  of  unstructured  grids

4:

The  formation  of  a  polygon  begins  with  the  selection  of  an  initial  triangle.  For  
definiteness,  we  choose  the  not  yet  considered

§  3.5.  Method  for  improving  a  given  surface  mesh

5:

73

6:  Exclude  selected  polygon  from  initial  triangulation  7:  end  while

Among  them  is  the  rate  of  coarsening  of  triangles  when  constructing  a  new  surface  mesh  
using  the  advanced  front  algorithm.  There  is  also  a  parameter  responsible  for  the  
permissible  degree  of  deviation  in  terms  of

Rice.  3.13.  Intersection  of  two  surface  triangulations

the  triangle  with  the  largest  area.  Its  plane  is  assumed  to  be  the  plane  of  the  future  
polygon,  its  marker  specifies  the  polygon  marker,  and  its  boundary  is  assigned  to  the  
current  polygon  boundary.  We  will  call  this  plane  the  reference  plane.  Next,  an  iterative  
algorithm  for  constructing  a  polygon  works.  One  of  the  boundary  edges  of  the  polygon  is  
selected  and  all  triangles  

of  the  original  mesh  that  border  the  polygon  through  this  edge  are  checked.  A  triangle  
is  added  to  a  polygon  if  its  marker  coincides  with  the  polygon  marker,  the  distance  from  
the  reference  plane  to  any  of  the  triangle's  vertices  is  less  than  h0,  and  the  sine  of  the  
angle  between  the  reference  plane  normal  and  the  normal  to  the  candidate  triangle  is  
less  than  ÿ.  If  the  triangle  satisfies  all  these  conditions,  then  it  is  added  to  the  polygon  
and  a  new  boundary  is  built;  otherwise,  the  boundary  edge  is  marked  as  checked  and  
the  next  one  is  considered.  Only  one  triangle  can  be  added  through  one  edge.  If  there  
are  several  suitable  candidate  triangles,  then  none  of  them  is  added,  and  the  edge  is  
marked  as  checked.  This  situation  is  possible  if  the  edge  belongs  simultaneously  to  
several  surface  triangulations  (see  Fig.  3.13).  After  all  boundary  edges  are  marked,  the  
polygon  is  considered  to  be  built.

The  discretization  of  the  polygon  boundary  given  by  the  initial  triangulation  may  turn  
out  to  be  highly  nonuniform,  since  the  initial  triangulation  may  be  irregular  (in  the  sense  
of  the  shape  of  triangles).  The  inhomogeneity  of  the  discretization  of  the  boundary  will  
inevitably  lead  to  the  appearance  of  triangles  with  very  sharp  corners  near  the  boundary.  
Therefore,  with  a  new  division  of  the  boundary,  it  is  necessary  to  get  rid  of  sharp  drops  
in  the  division  step.  One  solution  may  be  to  use  a  constant  uniform  step  to  discretize  the  
polygon  boundary.  This  approach  

is  convenient  for  constructing  a  quasi-uniform  surface  grid  based  on  a  given  surface  
triangulation.  However,  in  this  case,  the  sampling  step  must  be  no  less  than  the  minimum  
length

ligons  from  the  plane.

b  Fig.  3.12.  Selected  polygon:  a  —  original  mesh  in  the  polygon;  b  -  new  division  of  the  
polygon  boundary;  c  -  new  mesh  in  the  polygon
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Improvement  of  the  surface  mesh  is  the  most  important  stage  in  the  technological  
chain  of  constructing  high  quality  tetrahedral  meshes.  The  quality  of  the  volumetric  mesh  
strongly  depends  on  the  quality  of  the  surface  mesh.  Another  example  of  the  application  
of  the  method  proposed  here  is  the  reduction  in  the  number  of  triangles  in  too  fine  surface  
meshes.  Such  grids  can  be  obtained,  for  example,  as  a  result  of  three-dimensional  
scanning.  They  can  have  hundreds  of  thousands  of  triangles  and  are  very  inconvenient  
for  constructing  tetrahedral  meshes.  The  surface  enhancement  method  can  be  used  to  
reduce  the  total  number  of  triangles  while  maintaining  the  basic  geometric  features  of  the  
model.

i,  i  =  1, ... ,  [Q]  ÿ  1,

,  Q  =v1

Ch.  3.  Construction  of  unstructured  grids

Assuming  that  the  local  size  of  triangles  in  the  original  mesh  is  consistent  with  the  
curvature  of  the  surface,  we  will  use  the  minimum  sizes  of  existing  triangles  to  construct  
a  regular  three  angulation.  For  each  node  v  of  the  original  triangulation,  we  define  the  step  
parameter  hv  as  the  minimum  height  of  all  triangles  converging  at  the  node.  The  step  
parameter  specifies  the  size  of  the  regular  grid  at  the  vertices  of  the  selected  polygon.  For  
each  boundary  edge  of  a  polygon,  we  define  a  continuous  function  of  the  step  parameter  
as  a  linear  interpolation  of  the  values  hv1  and  hv2  given  above  at  the  vertices  of  the  edge.  
In  this  case,  the  location  of  the  nodes  of  the  new  discretization  along  the  edge  e(v1,  v2)  

is  given  by  the  formula

Since  the  location  of  nodes  on  the  edge  of  a  polygon  depends  only  on  the  values  hv1  

and  hv2  at  the  vertices  of  the  edge,  and  the  mesh  inside  each  polygon  has  a  given  trace  
on  the  boundary,  the  resulting  surface  mesh  is  conformal.

ri  =  v1  +

[Q][Q]

75

When  constructing  a  new  grid,  a  uniform  grid  spacing  can  be  used  if  the  polygon  
boundary  has  been  subdivided  with  a  constant  grid  spacing.  In  the  case  of  an  uneven  
step  on  the  boundary,  a  variant  of  the  advanced  front  algorithm  with  automatic  step  
selection  and  coarsening  when  moving  inside  the  region  is  convenient.  In  practice,  it  is  
better  to  limit  the  grid  spacing  within  a  polygon  to  some  maximum  value.  If  it  is  possible  to  
calculate  the  local  curvature  of  a  surface  given  by  its  triangulation,  the  local  grid  step  can  
be  matched  to  the  local  curvature  of  the  surface.

Q  =  hv1

v2  ÿ  v1
v1

h ,

boundary  edge  of  each  polygon.  An  example  of  improving  the  surface  mesh  is  shown  in  
fig.  3.14.

In  this  section,  we  will  study  an  extension  of  the  advancing  front  algorithm  to  three  
dimensions.  The  issues  of  its  reliability  from  the  point  of  view  of  inaccurate  calculations  
and  from  the  point  of  view  of  the  possibility  of  advancing  the  front,  the  finiteness  of  the  
algorithm  and  the  complexity  of  its  work  will  be  discussed.  Let  us  introduce  concepts  and  
notation  

similar  to  those  used  in  §  3.3.  Recall  that  f(v1,  v2,  v3),  or  f123,  denotes  a  triangle  with  

vertices  v1,  v2,  and  v3.  Similarly,  ÿ(v1,  v2,  v3,  v4),  or  ÿ1234,  denotes  a  tetrahedron  with  
vertices  v1,  v2,  v3,  and  v4.  By  an  oriented  triangle  in  space  we  mean  a  triangle  with  some  
fixed,  up  to  an  even  permutation,  order  of  

traversal  of  its  vertices.  The  positive  half-space  with  respect  to  the  oriented  triangle  
f123  is  the  set  of  points  v  for  which

h  ÿ  h  v2  v1
,

74

Another  approach  can  be  used,  in  which  the  discretization  step  of  the  polygon  
boundary  is  consistent  with  the  local  curvature  of  the  surface.  The  calculation  of  the  local  
curvature  of  a  surface  given  by  its  triangulation  is  a  separate  difficult  task.  In  this  
subsection,  a  method  will  be  proposed  that  does  not  explicitly  calculate  the  local  curvature  
of  a  surface.

|v1v2|

[Q]  hv1  +  hv2
v2

Rice.  3.14.  Surface  mesh  exported  from  CAD  (a)  and  improved  surface  mesh  (b)

h

Q2|v1v2|  =  hv2

[Q]  is  the  integer  part  of  
Q.  Note  that  after  rotating  the  polygon  and  zeroing  the  z-coordinate  of  its  vertices  

(step  3  of  algorithm  14),  it  is  possible  to  cross  the  boundary  of  the  flat  polygon  that  needs  
to  be  triangulated.  This  situation  does  not  allow  using  the  advanced  front  algorithm.  In  this  
case,  the  algorithm  returns  and  the  polygon  is  built

again,  and  when  adding  another  triangle  to  the  polygon,  the  possibility  of  self-crossing  of  
the  boundary  is  additionally  checked.

i  +  
d2

d= ,

§  3.6.  Building  a  tetrahedral  mesh

§  3.6.  Construction  of  a  tetrahedral  mesh  by  the  advanced  

front  method

Where

h
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Choose  an  unlabeled  face  f123  ÿ  Fk  with  minimal  plane

9:

do

14:

§  3.6.  Building  a  tetrahedral  mesh

spare

Algorithm  15.  Advanced  Front  Method  in  3D  Space  1:  Set  T  0  =  ÿ,  F0  =  F(P)  2:  for  k  =  0,  
1, ...  3:  If  

there  are  no  unlabeled  faces,  then  go  to  
22

7:

A  tetrahedral  mesh  ÿh  for  a  polyhedral  domain  P  is  a  partition  of  this  domain  into  
disjoint  tetrahedra.  Recall  that  a  mesh  is  conformal  if  any  two  of  its  elements  either  do  not  
have  common  points,  or  have  one  common  vertex,  or  have  one  common  integer  edge,  or  
one  common  integral  face.  We  say  that  a  conformal  mesh  is  consistent  with  the  boundary  
P  if  each  face  of  P  is  a  face  of  some  tetrahedron  in  the  mesh.  In  particular,  the  inner  faces  
of  a  polyhedron  will  have  exactly  two  neighboring  tetrahedra,  and  the  outer  faces  will  have  
exactly  one.  The  set  of  mesh  tetrahedra  will  be  denoted  by  T

=  T  k  ÿ  ÿ  

{ ÿ1234}  
Update  edge:  Pk+1  =  Pk  \  ÿ1234  and  Fk+1  =

76

.

6:

Add  tetrahedron  ÿ1234  to  mesh,  T  k+1

R

12:

16:

Algorithm  10  of  the  advancing  front  is  generalized  to  the  case  of  a  three-dimensional  
space.  In  this  section,  we  note  the  main  features  of  the  3D  advanced  front  algorithm.

oriented  volume  Vÿ(v1,  v2,  v3,  v)  >  0.  Similarly,  a  negative  half  space  is  the  set  of  points  
for  which  Vÿ(v1,  v2,  v3,  v)  <  0.  A  triangulation  in  space  is  a  finite  set  of  triangles  conformally  

connected  through  
common  edges.  Moreover,  two  neighboring  triangles  can  lie  in  the  same  plane.  If  

each  edge  of  a  triangulation  belongs  to  exactly  two  triangles,  then  such  a  triangulation  will  
be  called  closed.  A  triangulation  whose  triangles  (as  open  sets)  do  not  intersect  each  other  
will  be  called  a  triangulation  without  self-intersections.  By  a  polyhedron  in  space  we  mean  
a  bounded  part  of  space  whose  boundary  consists  of  one  or  more  nonintersecting  
triangulations  without  self-intersections.  A  simple  polyhedron  is  a  polyhedron  bounded  by  
one  closed  triangulation.  The  vertices  of  the  polyhedron  will  be  

called  the  nodes  of  its  triangulation,  and  the  faces  of  the  polyhedron  will  be  called  the  
triangles  of  the  triangulation.  Note  that  the  faces  of  the  polyhedral  domains  considered  in  
§  2.2  can  be  any  flat  polygons.  As  in  §  3.3,  the  faces  of  a  polyhedron  are  divided  into  
external  and  internal.  In  this  case,  on  the  outer  faces,  one  can  introduce  an  orientation  so  
that  the  polyhedron  lies  in  a  positive  half-space  with  respect  to  each  oriented  triangle.  Such  
an  orientation  will  be  called  positive.  A  front  in  space  is  a  set  of  oriented  triangles  without  
self-intersections.  Each  polyhedron  P  can  be  assigned  a  front  F(P).  To  do  this,  we  introduce  
a  positive  orientation  on  the  outer  faces  P,  and  assign  to  each  inner  

face  f123  a  pair  of  oppositely  oriented  triangles  f123  and  f321.  The  totality  of  all  these  
oriented  triangles  forms  the  front  F(P).  We  call  the  front  F  closed  if  there  exists  a  polytope  
P  such  that  F  =  F(P).

R

i

then

Ch.  3.  Construction  of  unstructured  grids

4:

10:

R

15:

do

8:

for  all  v4  ÿ  ÿk  if  

ÿ1234  does  not  intersect  Fk

=  F(Pk+1)  Go  
to  21  end  if  end  

for  18:  
19:  end  

for  Mark  f123  and  

go  to  4  20:  21:  end  for  22:  Put  T  =  T  
k,  Pout  =  Pk  

and  Fout  =  Fk

A  distinctive  feature  of  three-dimensional  space  is  the  existence  of  such  fronts  for  

which  there  are  no  suitable  tetrahedra.  For  this  reason,  the  algorithm  adds  the  ability  to  

mark  faces  for  which  no  suitable  tetrahedra  were  found  and  skip  them  during  further  

enumeration.  At  the  end  of  the  algorithm,  we  obtain  a  set  of  tetrahedra  T  of  the  mesh  

ÿmesh  for  the  polyhedral  subdomain  Pmesh  ÿ  P  and  a  

front  for  the  unsplit  polyhedral  subdomain  Pout  =  P\Pmesh.  Note  that  if  the  advance  
front  algorithm  fails,  then  the  mesh  will  be  built  only  in  part  of  the  area.  In  this  case,  Pout  =  

ÿ,  and  the  second  algorithm  must  be  applied  to  complete  the  meshing.  The  general  
sequence  of  actions  is  presented  in  Algorithm  15.  Let  us  analyze  in  detail  the  main  actions  

that  are  performed  when  the  front  advances.

5:

eleven:

R

3.6.1.  Advance  Front  Algorithm

77

Determine  desired  edge  length  s  of  the  tetrahedron  Construct  

a  vertex  v0  given  s  and  Vÿ1230  >  0  Choose  some  R0  >  s,  
h  >  0  and  r  >  0  for  R  ÿ  { R0,ÿ}  do  Construct  a  local  
front  Fk  R:  Fk  ÿ  Fk  ÿ  ÿ  R  

(v0)  Determine  the  set  of  candidate  vertices  ÿk  =  {pk }  ÿ  ÿ  ÿ  R(v0)  
If  {pk }  ÿ  ÿr(v0)  =  ÿ  and  Fk  ÿ  ÿh(v0)  =  ÿ,  then  add  v0  to  ÿk R

13:

17:

h

i
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Let  us  consider  in  more  detail  the  rest  of  the  differences  between  the  advancing  front  

algorithm  in  three  dimensions  and  its  analogue  in  two  dimensions  from  §  3.3.

Rice.  3.15.  Tetrahedron  with  base  f123  and  vertex  v0

=

2

For  the  candidate  tetrahedron  with  vertex  v4,  we  check  its  intersection  with  the  local  

front.  If  all  candidates  turned  out  to  be  unsuitable,  then  a  complete  enumeration  of  the  entire  

front  is  carried  out.  If  no  suitable  tetrahedron  was  found  in  this  case  either,  then  the  face  

f123  is  labeled

§  3.6.  Building  a  tetrahedral  mesh

a2  +  b

ka,  then  from  vm  along  the  normal  to  f123  at  a  distance  l  the  3rd  vertex  v0  is  fixed  (see  Fig.  

3.15).  The  l  parameter  is  chosen  based  on  a  user-supplied  function  of  the  desired  item  size,

,

1

2

=

78

a2  +  4b  

9

2

=  |e1m|

Where

1

+  2c
2

=

min{a2 ,  b2 ,  c2}.

At  step  4,  the  unlabeled  face  f123  with  the  smallest  area  is  selected  from  the  front  and  

the  vertex  v0  is  constructed  in  accordance  with  the  chosen  parameter  l  depending  on  s  (see  

step  5).  When  implementing  the  algorithm  on  a  computer,  it  is  proposed  to  use  the  following  

heuristic  method  for  choosing  l  and  the  position  of  the  vertex  v0.  Let  a,  b,  c  be  the  lengths  of  

the  sides  of  the  triangle  f123.  First,  the  center  of  mass  vm  of  this  triangle  is  constructed.

2

2

2

Ch.  3.  Construction  of  unstructured  grids

Let  us  construct  an  algorithm  for  the  intersection  of  a  tetrahedron  with  a  triangle  similar  

to  Algorithm  11.  As  in  Section  3.3.2,  we  will  perform  checks  based  on  the  sign  of  the  

determinant  of  the  3  ×  3  matrix.

Let  us  estimate  the  lengths  of  the  edges  e10,  e20  and  e30.  For  ÿ  1  the  height  of  the  

tetrahedron  is  ÿ  2a2  +  2b2  +  2c2.  Consider  the  edge  e10:  |e10|  +  |em0|  2.  l0  The  

length  e1m  is  expressed  from  the  formula  for  the  median  of  a  triangle:  |e1m|  =  ÿ  2b2  +  2c2  ÿ  

a2.  Thus,  we  get

22b
|e10|

or  it  is  calculated  automatically  by  the  formula  l  =  ÿ  ÿ  1  -  some  

parameter  responsible  for  the  speed  of  automatic  mesh  coarsening.

In  general,  two  convex  objects  do  not  intersect  if  and  only  if  there  is  a  plane  separating  

them.  Under  the  conditions  of  Algorithm  15,  a  tetrahedron  and  a  triangle  can  also  have  one  

common  vertex  or  one  common  edge,  or  the  triangle  can  be  one  of  the  faces  of  the  

tetrahedron.  Let's  single  out  from  the  problem  of  checking  the  intersection  a  separate  subtask  

of  checking  the  intersection  of  a  

triangle  with  a  segment.  Vp.  3.4.3  we  have  already  considered  the  analog  of  this  problem  

for  a  surface.  Now  consider  the  general  case:  we  will  look  for  a  plane  that  separates  the  

triangle  and  the  segment,  taking  into  account  the  previous  remark  about  common  vertices.  

The  enumeration  of  all  possible  planes  is  presented  in  Algorithm  16.  Checking  the  

intersection  of  a  triangle  with  a  segment  is  used  in  Algorithm  17  for  checking  the  intersection  

of  a  tetrahedron  with  a  triangle.  We  first  check  to  see  if  there  are  intersections  between  the  

tetrahedron's  boundary  and  the  triangle's  boundary,  and  then  we  check  for  special  

cases,  such  as  a  triangle  lying  entirely  inside  the  tetrahedron.  This  order  of  checks  is  the  

most  efficient  in  practice,  since  in  most  cases  at  least  one  of  the  faces  of  the  tetrahedron  

intersects  the  edge  of  the  triangle,  less  often  the  triangle  intersects  at  least  one  of  the  edges  

of  the  tetrahedron,  and  even  more  rarely  the  triangle  lies  inside  the  tetrahedron.  The  

proposed  combination  of  Algorithms  16  and  17  uses  the  function  d(v1,  v2,  v3,  v4)  to  check  

the  intersection,  which  calculates  the  sign  of  the  expression  Vÿ1234 ,  which  is  similar  to  the  

function  d(v1,  v2,  v3)  defined  in  Algorithm  12.  Let  the  function  d(v1 ,  v2,  v3,  v4)  it  is  known  

that  for  d(v1,  v2,  v3,  v4)  =  0  we  have  d(v1,  v2,  

v3,  v4)  =  sgn( Vÿ1234 ).  Then  the  proposed  algorithms  exclude  the  occurrence  of  errors  

of  the  second  type  (see  §  3.3),  i.e.,  the  actually  intersecting  tetrahedron  and  triangle  will  not  

be  erroneously  perceived  as  non-intersecting.  This  guarantees  closedness  and  the  absence  
of  self-intersections  as  the  front  advances.

3

+  2c

If  the  sides  of  the  triangle  ÿ123  were  at  least  d,  then  |e10|  will  be  at  least  d.  Similar  estimates  
are  true  for  e20  and  e30.

as  already  considered,  and  the  enumeration  starts  from  the  beginning  for  the  next  face.  

Unlike  

Algorithm  10,  the  section  of  Algorithm  15  with  step  numbers  4–20  can  be  executed  

several  times  to  construct  one  tetrahedron.  Each  time  this  section  is  executed,  the  

corresponding  face  is  either  removed  from  the  front  or  marked.  At  the  end  of  the  algorithm,  

all  such  faces  become  faces  of  the  finite  mesh  ÿh.  Therefore,  the  number  of  executions  of  

this  section  of  the  algorithm  is  limited  from  above  not  by  the  number  of  tetrahedra  in  the  final  

mesh,  but  by  the  number  of  faces.

2+c

2

ÿ  a2  2a2  +  2b  +

2  2  +  4c
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6:  end  if  7:  

if  one  common  vertex  then  8:  If  the  two  

remaining  vertices  f567  lie  inside  ÿ1234,  i.e.  intersection  9:  end  if  10:  if  two  common  vertices  

then  11:  If  the  
remaining  

vertex  f567  lies  inside  ÿ1234,  i.e.

9:

repent

§  3.6.  Building  a  tetrahedral  mesh

4:

1:  Find  the  common  vertices  of  the  triangle  ÿ123  and  the  segment  e45  2:  if  there  
are  no  common  vertices  then  Determine  

the  position  of  the  vertices  v4  and  v5  relative  to  the  plane  ÿ123  if  v4  and  v5  lie  in  
the  same  

half  space  then  There  are  no  intersections  else  if  v4  and  v5  lie  in  

different  half  spaces  

then
7:

finite.

80

Algorithm  16.  Checking  the  intersection  of  a  triangle  with  a  segment  in  three-dimensional  space

Calculate  k1  =  d(v4,  v5,  v2,  v3),  k2  =  d(v4,  v5,  v3,  v1),  k3  =  d(v4,  v5,  v1,  v2)  If  

among  k1,  k2,  k3  there  
are  also  1  and  ÿ1,  then  there  is  no  intersection  else  if  v4  and  v5  lie  in  the  plane  

ÿ123  then  Check  that  one  of  the  lines  given  by  the  segments  

v4v5,  v1v2,  v2v3  or  v3v1  separates  the  triangle  and  the  segment  into  different  

half  planes  If  such  a  line  is  found,  then  there  is  no  intersection  end  if  12:  13:  

end  if  14:  if  one  common  

vertex  then  If  the  second  vertex  of  the  segment  does  not  lie  in  
the  

plane  of  the  

triangle,  then  there  is  no  intersection  

Otherwise,  check  that  one  of  the  lines  defined  by  the  segments  v1v2,  v2v3,  v3v1  

separates  the  triangle  and  the  

segment  different  half-planes  If  such  a  line  is  found,  then  there  is  no  intersection  17:  

18:  end  if  19:  if  two  common  vertices  then

16:

intersection  12:  
end  if  13:  

Otherwise,  we  assume  that  there  is  no  intersection

Rice.  3.16.  Examples  of  front  configurations  for  which  no  further  advance  is  possible:  Schonhardt  
prisms

nie

eleven:

1:  For  each  face  of  the  tetrahedron  ÿ1234  and  triangle  edge  f567

Ch.  3.  Construction  of  unstructured  grids

3:

10:

Let  us  analyze  Algorithm  15  and  show  that  the  number  of  operations  is  finite.  The  proposed  

algorithm  contains  three  explicit  nested  loops  and  one  implicit  one  due  to  restarting  the  

enumeration  at  step  20.  The  enumeration  loop  at  step  12  is  always  finite  due  to  the  finiteness  of  

the  set  ÿkR.  The  loop  at  step  8  does  at  most  two  iterations.  In  the  three-dimensional  case,  such  
front  configurations  are  possible  for  which  there  is  no  suitable  

tetrahedron  with  a  fourth  vertex  from  the  set  of  front  candidate  vertices.  Examples  of  such  

a  front  configuration,  for  which  further  advancement  is  impossible,  are  shown  in  Figs.  3.16:  any  

tetrahedron  with  vertices  from  the  set  {v1,  v2,  v3,  v4,  v5,  v6}  intersects  one  of  the  edges  {e26,  

e34,  e15}.  Precisely  for  this  reason,  at  step  20  of  algorithm  15,  the  faces  that  do  not  have

check  their  intersection  2:  For  f567  

and  each  edge  ÿ1234  check  their  intersection  3:  Find  the  common  vertices  of  the  

tetrahedron  ÿ1234  and  the  triangle  f567  4:  if  there  are  no  common  vertices  then  5:  If  

the  three  points  v5,  v6,  v7  lie  inside  

ÿ1234,  that  is,  the  intersection

8:

No  intersection  20:  
21:  end  if  

22:  In  other  cases,  we  assume  that  the  triangle  and  the  segment  intersect

81

6:

15:

Algorithm  17.  Checking  the  intersection  of  a  tetrahedron  with  a  triangle

5:

suitable  tetrahedra  are  marked  and  skipped  during  further  meshing.  Each  face  is  labeled  at  most  

once,  and  the  number  of  faces  in  Fk  is  finite,  so  the  implicit  loop  at  step  20

Let  us  show  that,  with  a  certain  choice  of  parameters  in  Algorithm  15,  it  is  possible  to  limit  

the  maximum  possible  number  of  constructed  tetrahedra.  The  arguments  in  §  3.3.3  carry  over  

completely  to  the  three-dimensional  case.  We  can  limit  the  distance  between  grid  nodes  from  

below:  ÿk  ÿ  >  0  for  any  k.  A  similar  estimate  (3.3.3)  is  also  true
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At  this  stage,  we  have  a  tetrahedral  mesh  ÿh  with  a  set  of  tetrahedra  T  and  a  set  of  
nodes  V,  and  a  given  front  F  with  vertices  V.  An  example  of  a  mesh  and  a  front  is  shown  
in  Fig.  3a.  3.17.  Note  that  they  represent  different  areas.

§  3.7.  Reliable  algorithm  for  constructing  a  tetrahedral  mesh

v +  K(P).  +  +  ÿÿ3  ÿÿ2

The  analysis  of  the  complexity  of  the  advancing  front  algorithm  from  Section  3.3.4  is  
also  applicable  in  the  three-dimensional  case.  The  upper  estimate  of  the  number  of  
operations  in  the  worst  case  will  be  proportional  to  N3  where  Nf  is  the  number  of  faces  
in  the  final  mesh,  which  is  limited  according  to  (2.2.9)  and  the  estimate  of  the  number  of  
nodes  (3.6.1).  The  average  estimate  of  the  number  of  operations  is  proportional  to  Nf  
log  Nf .  This  estimate  of  the  average  speed  of  work  will  be  experimentally  confirmed  in  
Section  3.7.6.

In  this  section,  we  present  a  method  for  constructing  a  tetrahedral  mesh  consistent  
with  a  given  front  based  on  the  Delaunay  tetrahedralization.  The  general  idea  of  this  
method  was  proposed  by  George  et  al.  in  [55].  We  will  consider  a  simplified  version  of  
this  method  applicable  to  splitting  the  gaps  left  by  the  advancing  front  algorithm  [12].  
This  method  is  suitable  for  arbitrary  closed  fronts,  but  it  does  not  allow  one  to  control  
either  the  size  or  the  quality  of  the  constructed  tetrahedra.  A  third  method  is  required  to  
improve  the  mesh  quality.  The  grid  construction  is  divided  into  three  stages.  At  the  first  
stage,  a  grid  is  constructed  for  the  convex  hull  of  the  set  of  points  of  a  given  front.  At  the  
second  stage,  

the  mesh  is  refined  and  the  area  geometry  is  restored.  At  the  third  stage,  the  
consistency  of  the  grid  with  the  given  front  is  restored.

82

3P(P)

3.7.2.  Region  Geometry  Restoration

We  refine  the  mesh  ÿh  by  adding  new  nodes  on  the  edges  and  faces  so  that  the  
edges  and  faces  of  the  front  F  are  represented  in  the  new  mesh  either  as  a  whole  or  as  
their  partitions.  Details  are  given  in  Algorithm  18  using  recursive  procedures.

f ,

Removing  tetrahedra  from  T

the  maximum  number  of  nodes  that  can  be  placed  in  a  domain  P  that  has  volume  V  
(P),  surface  area  S(P),  sum  of  edge  lengths  p(P),  and  consists  of  K(P)  connectivity  
components:  6V  (P)

From  (2.2.9)  it  follows  that  the  number  of  tetrahedra  and,  consequently,

Ch.  3.  Construction  of  unstructured  grids

(3.6.1)

´

3.7.1.  Delaunay  tetrahedrization  Recall  

that  the  Delaunay  tetrahedra  for  a  finite  set  of  points  V  =  {v1, ...,  vn}  is  such  a  
conformal  partition

the  convex  hull  of  a  set  of  points  into  tetrahedra  such  that  for  any  tetrahedron  inside  the  
sphere  circumscribed  around  it  there  are  no  other  points  from  V.  There  are  many  

methods  for  constructing  the  Delaunay  tetrahedronization;  we  will  not  dwell  on  the  
details,  referring  the  reader  to  [18].  We  only  note  that  the  simplest  iterative  method  in  
complexity  is  proportional  to  n2  in  the  worst  case,  and  proportional  to  n3/2  on  average.

We  have  shown  that  Algorithm  15  performs  a  finite  number  of  operations.  However,  
it  does  not  guarantee  the  construction  of  a  conformal  tetrahedral  mesh  for  the  entire  
domain  P.  In  practice,  the  advanced  front  algorithm  splits  more  than  90%  of  the  volume  
of  the  domain,  and  Pout,  the  unbroken  part  of  the  domain,  consists  of  a  certain  number  
of  isolated  gaps—polyhedra  with  a  small  number  of  faces.  The  second  method,  which  
will  be  discussed  in  the  next  section,  is  used  to  tetrahedrize  the  Pout  region.

The  first  pass  checks  the  intersections  of  the  edges  of  the  front  F  with  the  faces  T .  
For  each  edge  from  F,  the  tetrahedra  from  T  intersecting  it  are  partitioned  in  such  a  way  
that  the  edge  is  represented  in  the  grid,  either  as  a  whole  or  as  a  partition.  The  second  
pass  is  similar;  intersections  of  edges  of  tetrahedra  from  T  with  faces  F  are  checked.  
For  each  face  from  F,  the  tetrahedra  from  T  intersecting  it  are  partitioned  in  such  a  way  
that  the  face  is  represented  in  the  mesh  either  as  a  whole  or  as  a  partition.  Each  time  
we  split  tetrahedra  from  the  set  T,  we  create  an  intersection  point  lying  on  F.  In  this  case,  
only  elements  from  T  

are  split.  At  the  end,  F  will  remain  unchanged,  and  the  new  set  of  tetrahedra  T  will  
completely  cover  the  faces  of  F  with  their  faces  lying  outside  the  boundaries  of  the  
polyhedron  P,  we  will  restore  the  geometry  of  the  area.  On  fig.  3.18  shows  a  refined  
mesh  with  a  set  of  tetrahedra  T  before  and  after  the  removal  of  the  tetrahedra.

3S(P)

the  number  of  iterations  of  the  outer  loop  in  algorithm  15  is  limited.

§  3.7.  Reliable  algorithm  for  constructing  

a  tetrahedral  mesh

83

2ÿ

b  Fig.  3.17.  Two  meshes  on  one  set  of  vertices:  a  —  tetrahedral  mesh  for  the  convex  
hull  of  points  V,  b  —  front  F  for  a  nonconvex  gap

,

A

.

Machine Translated by Google



4:

15:

b  Fig.  3.18.  Restoring  the  geometry  of  the  area:  a  -  refined  mesh,  b  -  mesh  with  the  correct  geometry  
of  the  area

Ch.  3.  Construction  of  unstructured  grids

At  the  final  stage,  extra  nodes  are  removed  from  the  grid  boundary.  This  is  achieved  by  shifting  

them  into  the  region  and  filling  the  resulting  “dents”  with  conformal  tetrahedral  networks.

3.7.3.  Restoring  a  trace  of  a  grid  on  a  boundary

13:

The  first  case,  when  the  node  lies  on  the  edge  F,  is  treated  similarly;  the  only  difference  is  that  

instead  of  a  pyramid,  a  “dent”  will  be  the  union  of  two  cones  with  a  vertex  v  and  a  polygonal  base

85

3:

12:

b  Fig.  3.19.  Restoration  of  the  trace  of  the  grid  on  the  boundary:  a  -  grid  with  formed  "dents",  b  -  grid  
with  the  correct  trace  on  the  boundary

17:

Algorithm  18.  Restoring  the  region  geometry  1:  procedure  

PROCESS_EDGE(v1,  v2)  2:  Find  a  tetrahedron  with  

vertex  v1  intersecting  the  edge  e(v1,  v2)  if  tetrahedron  is  found  then

´

10:

84

5:

16:

The  resulting  mesh  ÿh  will  be  a  conformal  mesh  for  the  polyhedral  domain  P,  but  it  will  not  be  

compatible  with  its  boundary  F.  The  boundary  of  ÿh  will  contain  new  intersection  points,  which  we  

have  just

Construct  an  intersection  point  v  on  a  face  of  a  tetrahedron  Split  the  

corresponding  tetrahedra  into  T  PROCESS_EDGE(v,  v2)  
6:  7:  end  if  8:  end  procedure  9:  

procedure  

PROCESS_EDGE(v1,  

v2)  for  all  faces  f  ÿ  F  do  if  face  f  intersects  edge  e(v1,  

v2)  then  Construct  intersection  

point  v  Split  corresponding  tetrahedra  into  T  PROCESS  _  

FACES(v1,  v)  PROCESS  _  FACES(v,  v2)  

Exit  procedure  end  if  end  for  19:  end  procedure  20:  for  
all  edges  e  (v1,  v2)  from  F  do  21:  
PROCESS  _  EDGE(v1,  v2)  22:  end  

for  23:  for  all  edges  e(v1,  
v2)  from  

T  do  24:  

PROCESS  _  FACES(v1,  

v2)  25:  end  for  26:  Remove  tetrahedra  outside  
of  F

14:

A

built  (cf.  Fig.  3.17,  b  and  Fig.  3.18,  b).  The  algorithm  for  removing  these  points  from  the  boundary  

will  be  presented  in  the  next  paragraph.

eleven:

§  3.7.  Reliable  algorithm  for  constructing  a  tetrahedral  mesh

All  extra  points  are  divided  into  points  lying  on  the  edges  of  F,  and  into  points  lying  on  the  faces  

of  F.  The  elimination  of  points  in  both  cases  occurs  in  the  same  way.  Consider,  for  definiteness,  the  

second  case.  Let  v  be  a  node  on  a  face  in  F  that  must  be  removed  from  the  surface.  Assume  for  

simplicity  that  the  

front  F  is  simple.  With  minor  additions,  the  proposed  algorithm  is  also  applicable  in  the  general  

case.  Consider  the  set  ÿ(v)  of  tetrahedra  from  T  with  common  vertex  v.  The  boundary  ÿv  =  ÿÿ(v)  of  

this  set  consists  of  triangles  of  two  types:  those  lying  on  the  boundary  of  P  and  those  lying  inside  P.  

When  the  vertex  v  is  shifted  inside  P,  

“dents”  are  formed  on  the  boundary  of  the  domain.  Each  of  the  "dents"  is  a  pyramid  with  a  

vertex  v  and  a  polygonal  base.  It  can  be  conformally  divided  into  tetrahedra;  for  this,  polygonal  bases  

are  divided  by  diagonals  into  triangles.  It  can  be  shown  that  inside  ÿ(v)  there  is  always  a  non-empty  

open  set  of  points  where  the  node  v  can  be  shifted  while  maintaining  the  nondegeneracy  of  the  

tetrahedra  of  the  mesh  T.  3.19  shows  the  mesh  ÿh  with  four  visible  "dents"  and  with  closed  "dents".

18:

niami.

A

.
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3:  From  ÿv  =  ÿÿ(v)  select  the  faces  lying  on  F;  let  ÿ  =  ÿv  ÿ  F  Repartition  ÿ  Add  to  the  set  
T  the  

tetrahedra  formed  

by  the  triangle
nicknames  from  ÿ

Let  us  briefly  analyze  the  finiteness  of  the  number  of  operations  in  the  proposed

§  3.7.  Reliable  algorithm  for  constructing  a  tetrahedral  mesh

v

Construct  the  set  of  neighboring  tetrahedra  ÿ(v)

5:

Note  that  in  order  to  achieve  a  good  mesh  quality  using  only  the  first  two  algorithms,  as  a  

rule,  a  good  surface  mesh,  i.e.,  the  initial  front,  is  required.  A  regular  initial  front,  a  suitably  

chosen  function  responsible  for  the  desired  size  of  the  tetrahedra,  or  a  correctly  chosen  

automatic  coarsening  parameter  are  the  key  factors  for  obtaining  a  high  quality  mesh.  

Nevertheless,  within  the  framework  of  a  fully  automatic  and  reliable  technology  for  constructing  

unstructured  tetrahedral  meshes,  an  additional  improvement  in  the  quality  of  the  mesh  using  

a  third  algorithm  is  required.  In  this  section,  we  will  not  discuss  any  particular  algorithm  for  

improving  the  quality  of  tetrahedral  meshes.  We  only  mention  the  main  ideas  that  can  be  used.  

The  simplest  methods  use  the  shift  of  grid  nodes  without  changing  its  topological  structure.  

More  sophisticated  algorithms  use  local  

modifications  of  the  mesh  topology,  such  as  splitting  an  edge  with  a  new  node  and  

shrinking  the  edge  into  a  single  node,  in  addition  to  shifting  the  nodes.  These  methods,  as  a  

rule,  make  it  possible  to  significantly  improve  the  mesh  quality.  They  

will  be  described  in  Chap.  5.  Their  use  is  recommended  as  the  final  step  in  the  chain  of  

constructing  a  tetrahedral  mesh.  Vp.  3.7.6  experiments  will  be  given  to  measure  the  quality  of  

the  mesh  at  different  stages  of  its  construction.

In  this  paragraph,  several  examples  of  the  operation  of  the  above  algorithms  will  be  

presented.  We  will  be  primarily  interested  in  the  quality  of  the  mesh  Q(ÿh)  and  the  distribution  

of  the  quality  of  tetrahedra  over  the  entire  mesh.  The  mesh  quality  is  calculated  by  formulas  
(2.1.7)  and  (2.1.8).

86

In  practice,  the  proposed  algorithm  based  on  Delaunay  tetrahedrization  is  used  only  for  

localized  gaps  with  a  small  number  of  vertices  and  faces.  The  number  of  tetrahedra  constructed  

with  its  help  is  small,  and  its  operation  time  makes  an  insignificant  contribution  to  the  total  

operation  time  of  the  entire  tetrahedral  mesh  construction  chain.  Vp.  3.7.6  experiments  will  be  

carried  out  to  estimate  the  distribution  of  running  time  between  the  advancing  edge  algorithm  

and  the  proposed  algorithm.

v

grid  properties.

v

At  the  first  stage,  we  construct  the  Delaunay  tetrahedrization  ÿh.  The  number  of  nodes  in  

it  coincides  with  the  number  of  vertices  in  the  front  F.  Given  an  estimate  for  the  number  of  

nodes  in  the  mesh  ÿh,  using  (2.2.8)–(2.2.9),  we  obtain  estimates  for  the  number  of  edges,  

faces,  and  tetrahedra.

3.7.6.  Experimental  results

The  complete  algorithm  of  actions  at  this  stage  is  presented  in  Algorithm  19.  First,  nodes  

on  the  edges  of  F  are  considered,  and  then  on  the  faces  of  F.

6:

into  triangles,  excluding  the  node  v

In  line  24,  for  each  edge  of  tetrahedra  from  T  new  nodes  in  ÿh,  no  more  than  the  number  

of  faces  in  F  are  added.  Note  that  new  edges,  when  added  to  ÿh,  will  lie  on  F,  and  therefore  

will  not  themselves  generate  new  vertices.

Ch.  3.  Construction  of  unstructured  grids

=

and  node  v

method  without  going  into  computational  complexity  estimates.

2:

A  combination  of  three  algorithms  is  used  to  construct  a  tetrahedral  mesh.  The  first  

advanced  front  algorithm  is  used  to  build  the  majority  of  the  mesh  with  the  ability  to  control  the  

mesh  spacing  and  the  quality  of  the  tetrahedra.  The  second  algorithm,  based  on  the  Delaunay  

tetrahedralization,  is  needed  to  partition  the  rest  of  the  region.  The  third  and  final  algorithm  is  

used  to  improve  the  quality

3.7.4.  Finiteness  of  the  algorithm

Algorithm  19.  Restoring  the  trace  of  the  mesh  on  the  boundary  1:  for  all  

nodes  v  on  the  edges  F  and  faces  F  do

3.7.5.  Improving  the  quality  of  the  resulting  mesh

The  proposed  method  guarantees  the  construction  of  a  grid  that  is  consistent  with  a  given  

closed  front,  provided  that  all  calculations  are  carried  out  accurately.  The  quality  of  the  

constructed  tetrahedra  is  in  no  way  limited  from  below.  In  practice,  due  to  the  accumulation  of  

computational  errors,  the  method  can  generate  degenerate  or  inverted  tetrahedra.  For  this  

reason,  as  a  final  step,  it  is  necessary  to  use  algorithms  that  can  significantly  improve  the  

quality  of  the  mesh  and  get  rid  of  degenerate  elements  (see,  for  example,  Table  3.5).

The  remaining  operations:  removing  outer  tetrahedra  in  line  24  of  Algorithm  18  and  shifting  

extra  points  from  the  boundary  of  the  region  in  Algorithm  19,  do  not  add  new  vertices  to  ÿh  

and,  therefore,  will  work  in  finite  time.

87

4:

Move  v  inside  ÿ(v),  restoring  the  non-degeneracy  of  these  tetrahedra  7:  end  for

Algorithm  18  uses  three  basic  operations  at  the  second  stage  to  reconstruct  the  geometry.  

In  line  21,  for  each  edge  from  F  of  new  nodes  in  ÿh,  at  most  the  number  of  tetrahedra  in  T  at  

the  time  before  line  21  is  executed  is  added.  The  number  of  edges  in  F  is  finite,  and  therefore  

the  number  of  new  nodes  is  limited.
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t,  s  Nt/t,  sÿ1  t/(Nt  log  Nt),  µs

16.8

0.025  204734  43.35  4723

columns.  The  worst  mesh  quality  is  Q(ÿh)  =  3.698  10ÿ7,  which  is  due  to  the  poor  quality  
of  the  triangles  in  the  initial  front.  The  resulting  front  is  automatically  divided  into  

disconnected  gaps,  and  a  stable  method  is  run  for  each  of  them.  Gaps  are  very  
badly  shaped,  and  so  the  stable  method  produces  very  bad  elements.  The  quality  
distribution  of  tetrahedra  in  the  final  mesh  is  given  in  the  second  row  of  Table  1.  3.5.  
The  worst  mesh  quality  is  now  Q(ÿh)  =  1.232  10ÿ14,  i.e.  the  worst  tetrahedron  is

17.3

h

88

It  can  be  seen  from  the  calculation  results  that  the  operating  time  is  proportional  
to  the  value  of  Nt  log  Nt,  with  a  relatively  small  coefficient.  The  table  also  includes  a  
column  for  meshing  speed  (tetrahedra  per  second).

We  now  consider  an  example  of  successive  application  of  the  advancing  front  
algorithm  and  the  stable  algorithm  based  on  the  Delaunay  tetrahedralization.  The  first  
algorithm  is  used  to  build  most  of  the  grid,  the  second  one  is  used  to  split  the  remaining  
gaps.

0.1

Ch.  3.  Construction  of  unstructured  grids

0.0125  1613980  406.75  3968

Consider  the  initial  surface  triangulation  of  the  3D  scanned  dragon  model  shown  in  
Fig.  3.20  a.  It  consists  of  54,296  nodes  and  108,582  triangles.  All  grid  nodes  lie  in  plane  
slices  parallel  to  the  xy  plane.  In  each  cut,  the  vertices  are  connected  by  segments,  
forming  the  contour  of  the  section  of  the  model  by  a  plane.  The  contours  of  adjacent  
slices  are  connected  by  triangles  and  form  a  conformal  surface  triangular  grid.  Note  
that  this  initial  mesh  contains  a  sufficiently  large  number  of  triangles

3544  0.48  7383

§  3.7.  Reliable  algorithm  for  constructing  a  tetrahedral  mesh

16.6

17.6

Nt

0.05

89

b  Fig.  3.20.  Operation  of  the  advanced  front  algorithm  on  the  dragon  model:  a  -  initial  
front,  b  -  final  front

with  bad  quality.

27988  4.81

To  better  display  the  results,  we  will  use  a  logarithmic  scale.  The  experiments  were  
carried  out  on  different  

computers  under  different  conditions.  However,  test  runs  within  the  same  
experiment  were  carried  out  under  the  same  conditions.

First,  we  will  experimentally  measure  the  speed  of  the  advanced  edge  algorithm.  
Let's  take  a  unit  cube  as  an  area.  On  the  surface  of  the  cube,  using  the  advanced  front  
algorithm  described  in  Section  3.4.3,  we  construct  a  quasi-uniform  grid  with  step  h.  The  
resulting  surface  triangulation  is  used  as  the  initial  front  for  the  3D  advanced  front  
algorithm  in  constructing  a  quasi  uniform  mesh  with  step  h.  Decreasing  the  grid  step  h,  
we  will  monitor  the  number  of  tetrahedra  in  the  grid  Nt  and  the  construction  time  ee  t.  
The  results  of  the  experiments  are  presented  in  

table.  3.4.

T  a  b  l  e  3.4  
The  speed  of  the  advancing  edge  algorithm  in  three  dimensions

5819

At  the  first  stage,  we  will  apply  the  advancing  front  method  with  an  automatic  
increase  in  the  grid  step  when  moving  inside  the  area.  The  parameter  ÿ,  which  is  
responsible  for  the  rate  of  increase  in  the  grid  step,  is  chosen  to  be  1.3.  The  advanced  
front  algorithm  built  a  grid  in  a  part  of  the  area  that  occupies  99.67%  of  the  volume  of  
the  entire  area.  In  total,  250,461  tetrahedra  were  built,  and  1718  triangles  remained  in  
the  final  front,  which  are  shown  in  Fig.  3.20  b.  The  distribution  of  the  quality  of  the  
tetrahedra  of  the  resulting  mesh  is  presented  in  the  first  row  of  Table  1.  3.5.  The  
columns  of  the  table  show  the  number  of  tetrahedra  whose  quality  exceeds  the  
corresponding  value  and  which  were  not  included  in  the  previous

Machine Translated by Google



drag3  99.67  250  461  101.70  0.33  4303  0.76

Nt

3

§  3.7.  Reliable  algorithm  for  constructing  a  tetrahedral  mesh

this  is  a  sliver.  The  resulting  tetrahedral  mesh  contains  71,241  nodes,  108,582  
boundary  faces  that  completely  coincide  with  the  given  initial  front,  and  254,764  
tetrahedra.

Q(ÿh)

6

rbox1  97.25

Rice.  3.21.  Examples  of  areas  used:  a  -  rbox1  model  obtained  by  export  from  CAD;  
b  -  section  of  the  initial  front  of  the  Lymph  model;  c  -  section  of  the  constructed  

mesh  for  the  Lymph  model

90

Q(ÿh)  =  4.430  10  ÿ13.  The  second  example  is  the  drag3  model,  the  dragon  model  
discussed  in  this  section.  The  third  example  is  the  Lymph  model,  a  schematic  
model  of  a  lymph  node  created  in  the  Open  CASCADE  CAD  system.  The  lymph  
node  model  consists  of  several  components.  The  outer  part  consists  of  a  marginal  
sinus,  a  thick  spherical  shell,  six  cylindrical  trabecular  sinuses,  and  two  Y-shaped  
conduits.  The  diameter  of  the  conduits  is  1000  times  smaller  than  the  diameter  of  
the  lymph  node.  The  model  includes  4  spherical  follicles.  The  rest  of  the  inside  of  
the  spherical  membrane  of  the  lymph  node  represents  the  cortical  and  paracortical  
regions.  The  geometric  model  of  Lymph  consists  of  50  nodes,  62  curved  edges  
and  30  curved  faces.  The  constructed  triangular  surface  mesh  consisted  of  24,720  
vertices  and  95,732  triangles,  while  the  volumetric  tetrahedral  mesh  consisted  of  
103,891  vertices  and  619,691  tetrahedra.  The  worst  quality  of  the  tetrahedra  was  
Q(ÿh)  =  3.45  ·  10  ÿ12.  Vtab.  3.6  for  each  model  shows  the  distribution  of  the  volume  
of  the  area  for  which  the  grids  are  constructed  using  the  advancing  front  method  
and  the  stable  method.  For  each  method,  the  number  of  

constructed  tetrahedra  and  the  time  required  for  its  operation  are  also  given.

t,  s  %  Nt  t,  s

1

T  a  b  l  e  3.6  
Distribution  of  region  volume,  number  of  tetrahedra,  and  
running  time  between  the  advancing  front  algorithm  and  
the  stable  algorithm  based  on  Delaunay  tetrahedration

We  note  that  the  stable  method  is  used  only  in  a  small  part  of  the  entire  region  
and  therefore  takes  a  small  part  of  the  time  compared  to  the  advancing  front  
algorithm.

V

Model

T  a  b  l  e  3.5  
Distribution  of  the  quality  of  tetrahedra  at  different  stages  of  meshing  for  the  
dragon  model:  ÿ  is  the  advancing  front  algorithm;  D  is  a  stable  algorithm  based  on  
Delaunay  tetrahedrization;  PS  -  improving  the  grid  by  rebuilding  it  while  maintaining  

a  given  trace  on  the  boundary

0

b
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3.7  10ÿ7  250  461  248  359  1923  166  11  1.2  

10ÿ14  254  764  249  674  3428  1020  340  138  71  93  F+D  F+D+PS  1.9  

10ÿ7  267  475  258  449  8269  718  30

To  improve  the  quality  of  the  resulting  mesh,  we  used  the  mesh  rebuilding  
(GR)  methods  described  in  Chap.  5,  while  the  boundary  faces  of  the  grid  were  
fixed.  The  quality  distribution  of  tetrahedra  in  the  new  mesh  is  shown  in  the  third  
row  of  Table.  3.5.  Tetrahedra  with  poor  quality  added  to  the  mesh  at  the  second  
stage  were  removed.  The  quality  of  the  tetrahedral  mesh  in  this  example  is  limited  
by  the  poor  quality  of  the  initial  surface  triangulation.  The  new  mesh  has  75,665  
nodes,  108,582  boundary  faces,  and  267,475  tetrahedra.  Note  that  with  a  
preliminary  improvement  in  the  quality  of  the  initial  surface  mesh,  a  tetrahedral  
mesh  with  better  quality  can  be  obtained  [40].  Similar  experiments  were  carried  out  
for  a  large  number  of  different  areas,  we  will  give  here  only  a  few  illustrative  
examples  (see  

Fig.  3.21).  The  first  example  is  the  rbox1  model,  a  CAD-exported  triangulation  
of  a  surface  for  a  cuboid  with  rounded  edges.  The  surface  mesh  consists  of  104  
nodes  and  204  triangles.  The  quality  of  the  triangles  in  it  is  very  poor,  there  are  
sharp  differences  in  the  size  of  the  triangles.  built

Lymph  99.96  617  691  168.93  0.04  2000  0.34

0

10ÿ1  10ÿ2  10ÿ3  10ÿ4  10ÿ5  10ÿ6  10ÿ7

265  0.18  2.75  171  0.03

A

for  the  rbox1  model,  the  tetrahedral  mesh  contains  138  nodes  and  436  tetrahedra,  
the  minimum  quality  of  tetrahedra  is

1

%Nt

F

91

Promoted  Front  Steady  Method

The  tetrahedral  meshes  constructed  for  the  rbox1  and  Lymph  models  are  of  
poor  quality;  this  is  an  expected  result,  since  the  algorithms  presented  in  this  
chapter  are  primarily  aimed  at  constructing  topologically  correct  meshes.  The  mesh  
quality  can  be  improved  using  the  meshing  methods  described  in  Chap.  5:  for  
example,  the  quality  of  the  new  mesh  for  the  rbox1  model  increases  to  Q(ÿh)  =  
7.818  10  ÿ8,  and  for  the  Lymph  model  -
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1

up  to  Q(ÿh)  =  7.78  10ÿ2.  With  preliminary  improvement  of  the  surface  mesh  (see  §  3.6)  
and  final  smoothing  of  the  spatial  mesh  (see  Chap.  5),  the  quality  of  the  final  mesh  for  the  
rbox1  model  increases  to  Q(ÿh)  =  2.18  ·  10ÿ1.

F

0

93

74

The  total  running  time  was  5  min  53  s.  The  time  distribution  by  stages  is  as  follows:  
surface  mesh  construction  —  3  min  23  s,  volume  mesh  building  —  1  min  37  s,  mesh  
improvement  —  8  s.  The  remaining  time  was  spent  on  checking  the  correctness  of  the  
resulting  grid  and  various  auxiliary  operations.

0
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0

P+D  

P+D+PS  1.10  10ÿ2  176  764  177  690

10ÿ1  10ÿ2  10ÿ3  10ÿ4  10ÿ5  10ÿ6

The  quality  distribution  of  tetrahedra  in  the  new  mesh  is  presented  in  the  third  row  of  
Table  1.  3.7.  On  fig.  3.23  shows  a  cut  of  a  tetrahedral

0

In  conclusion,  we  will  demonstrate  the  joint  work  of  methods  for  constructing  surface  
triangular  and  volumetric  tetrahedral  meshes.  As  an  example,  consider  model  62_shaver1  
from  the  Open  CASCADE  website  [19].  The  geometric  model  consists  of  266  nodes,  403  
curvilinear  edges  and  153  curvilinear  faces  (see  Fig.  3.22,  a).  Using  the  method  of  
advancing  front  on  the  surface,  described  in  §  3.4,  a  quasi-uniform  triangular  mesh  with  
33,176  nodes  and  66,348  triangles  was  constructed  (see  Fig.  3.22,  b) .

A  combination  of  three  methods  was  used  to  construct  the  tetrahedral  mesh:  the  
advancing  front  algorithm,  the  stable  algorithm  based  on  Delaunay  tetrahedralization,  
and  the  mesh  improvement  method  described  in  Chap.  5.  The  first  method  was  used  to  
construct  a  mesh  with  158,548  tetrahedra  for  a  part  of  the  region  that  occupies  99.81%  
of  the  total  volume  of  the  model.  The  distribution  of  the  quality  of  the  tetrahedra  of  the  
resulting  mesh  is  presented  in  the  first  row  of  Table  1.  3.7.  There  are  838  triangular  faces  
left  in  the  front;  they  were  passed  to  the  input  of  the  second  method,  which  constructed  
another  1280  tetrahedra.  The  detailed  distribution  of  the  quality  of  tetrahedra  in  the  final  
mesh  is  given  in  the  second  row  of  Table  1.  3.7.  The  minimum  quality  of  the  resulting  
grid  was  Q(ÿh)  =  1.117  10ÿ6.  After  the  mesh  was  corrected  using  the  third  method,  the  
quality  of  the  mesh  improved  significantly,  and  the  minimum  quality  of  one  tetrahedron

b  Fig.  3.22.  Model  specified  in  CAD:  a  -  BREP  model,  b  -  surface  quasi-uniform  triangular  
mesh

T  a  b  l  e  3.7  
Distribution  of  the  quality  of  tetrahedra  at  different  stages  of  meshing  for  the  
62_shaver1  model:  ÿ  is  the  advancing  front  algorithm;  D  is  a  stable  algorithm  based  
on  Delaunay  tetrahedrization;  PS  -  improving  the  grid  by  rebuilding  it  while  maintaining  

a  given  trace  on  the  boundary

Nt

0

§  3.7.  Reliable  algorithm  for  constructing  a  tetrahedral  mesh

6

amounted  to  Q(ÿh)  =  1.102  10ÿ2.  The  resulting  mesh  contains  48,999  nodes,  66,348  
boundary  faces  that  completely  match  the  faces  generated  by  the  surface  mesh  
generator,  and  176,764  tetrahedra.

grids.

26

0

92

Rice.  3.23.  Section  of  a  tetrahedral  mesh  for  a  region  defined  in  CAD

Q(ÿh)  

7.03  10ÿ4  158  548  157  091  1430  1.12  

10ÿ6  159  828  157  693  1821  244  36  28

A
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MULTILEVEL  HIERARCHICAL

Principle  4)  is  especially  important  for  the  numerical  solution  of  partial  
differential  equations  by  the  finite  element  method.

n  >  0  coinciding  with  some  element  ÿ0  is  coarsened.  
3)  The  

described  algorithms  make  it  possible  to  perform  local  refinements  and  
coarsenings,  which  makes  it  possible  to  construct  grids  that  are  condensed  in  a  
subdomain.

h,

§  4.1.  Principles  of  multilevel  grid  construction

Chapter  4

Such  grids  are  called  hierarchical.  Sections  4.2,  4.3,  and  4.4  will  be  devoted  to  
the  description  and  detailed  analysis  of  algorithms  for  modifying  hierarchical  
triangulations  and  tetrahedrizations.  In  §  4.5  we  consider  an  algorithm  for  
constructing  grids  that  trace  the  features  of  dynamic  processes.  It  is  important  to  
note  that  the  

operations  of  refinement  and  coarsening  of  the  hierarchy

h

Rice.  4.1.  Mesh  Conformity  Restoration

§  4.2.  Bisection  Method  for  Refining  Triangulations

5)  Grinding  and  coarsening  operations  are  performed  quickly  enough;  the  
number  of  actions  performed  grows  linearly  with  the  number  of  triangles  or  
tetrahedra  in  the  mesh  to  which  the  operations  in  question  are  applied.

Noah  conformal  triangulation  or  tetrahedralization  of  the  region.

4)  The  resulting  grids  have  the  property  that  the  minimum  angle  of  any  
triangle  cannot  be  less  than  half  of  the  minimum  angle  of  the  triangles  in  the  initial  
grid.  Similarly,  the  minimum  dihedral  angle  of  any  tetrahedron  cannot  be  less  than  
half  the  minimum  of  the  dihedral  angles  of  the  tetrahedra  of  the  initial  mesh.  The  
same  is  true  for  the  flat  corners  of  tetrahedra.

In  practice,  there  are  often  problems  related  to  the  study  of  non-stationary  
processes  with  moving  singularities.  Such  processes  can  be  the  movement  of  the  
front  of  the  contaminated  zone,  the  propagation  of  a  crack,  and  the  formation  of  
a  prefracture  zone.  Successful  solutions  to  such  problems  require  grids  that  can  
be  quickly  rebuilt  to  reflect  ongoing  changes.

cal  grids  obey  the  following  set  of  principles.

95

One  of  the  ways  is  to  construct  in  the  domain  under  consideration  a  sequence  
of  simplicial  (triangular  or  tetrahedral)  grids  ÿn  n  =  0,  1, ...  satisfying  the  following  
properties:  —  any  grid  ÿn  is  conformal;  —  the  initial  grid  ÿ0  can  be  arbitrary;  —

each  grid  for  n  1  is  obtained  from  the  previous  
one  by  means  of  operations  of  multilevel  refinement  or  
coarsening  of  some  grid  elements.  These  operations  generate  a  sequence  of  

hierarchical  grids.  The  set  of  triangles  or  tetrahedra  subjected  to  refinement  
or  coarsening  is  determined  by  the  specifics  of  the  problem,  the  wishes  of  
the  user,  and  the  requirement  to  maintain  the  conformity  of  the  resulting  
meshes.

h,

Before  describing  the  triangular  mesh  refinement  algorithm  itself,  let  us  dwell  
in  detail  on  the  bisection  of  a  particular  mesh

1)  The  mesh  refinement  operation  is  applicable  to  an  arbitrary  initial

h,

Triangulation  refinement  is  the  process  of  successively  repeatedly  applying  
the  operation  of  splitting  a  certain  triangle  into  two  triangles.  We  will  regard  such  
a  partitioning  operation  as  a  basic  one  and  call  it  a  bisection  of  a  triangle.  A  
bisection  of  one  triangle  often  causes  a  violation  of  the  conformity  of  the  mesh  on  

an  adjacent  element.  Because  of  this,  the  number  of  mesh  elements  
increases,  which  must  be  refined  to  build  a  mesh.  As  can  be  seen  from  fig.  4.1,  
under  the  bisection  of  the  triangle  ÿ123,  the  triangle  ÿ134  breaks  the  conformality  
on  the  edge  e13.  Splitting  the  triangle  ÿ134  helps  to  keep  the  grid  conformity.

2)  The  mesh  coarsening  operation  is  applicable  only  to  those  mesh  elements  
that  were  previously  refined.  Thus,  the  grid  element  ÿn  cannot  be

This  chapter  will  describe  methods  for  constructing  dynamic  2D  and  3D  
meshes  based  on  multilevel  hierarchical  refinement  and  coarsening  of  triangles  
and  tetrahedra.  The  presented  set  of  algorithms  makes  it  possible  to  effectively  
multiple  local  remeshing  when  simulating  various  dynamic  processes.

GRINDING  AND  ROUGHING  THE  MESH

§  4.2.  Bisection  Method  for  Refining  Triangulations

h
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The  Bansch  splitting  method  not  only  splits  a  triangle  into  two,  but  also  marks  the  edges  of  two  

new  triangles.  According  to  this  method,  each  triangle  ÿ  can  be  divided  only  by  an  edge  connecting  

the  middle  of  the  labeled  edge  with  the  opposite  vertex.  For  two  new  triangles,  the  labeled  edges  are  

the  edges  that  coincide  with  the  edges  of  the  original  triangle  ÿ  that  have  not  changed  during  its  

bisection.  The  principle  of  operation  of  the  Bansh  algorithm  is  shown  in  Fig.  4.3,  where  the  dotted  lines  

in  the  triangles  mark  the  marked  edges.

v5

At  first  glance,  it  may  seem  that  the  two  proposed  algorithms  perform  the  same  partition.  To  

refute  this  assumption,  we  give  an  example  of  an  initial  grid  consisting  of  a  single  triangle  and  the  

results  of  the  two  described  methods.  In  this  case,  we  will  bisection  each  of  the  available  triangles  

twice:  first,  by  splitting  along  the  largest  edge,  then  along  the  labeled  edge.  Since  the  initial  mesh  

consists  of  only  a  single  triangle,  the  conformality  of  the  mesh  will  not  be  violated  in  the  course  of  

bisections.  Rice.  4.4  demonstrates  the  operation  of  the  Rivara  algorithm,  and  fig.  4.5  -  Bansch's  

algorithm.  In  this  case,  in  the  original  triangle,  the  edge  with  the  maximum  length  is  selected  as  

marked.  As  we  can  see,  the  resulting  grids  turned  out  to  be  different.

Rice.  4.2.  Rivara's  triangle  bisection  algorithm

v4 v6

v5

The  first  method  was  proposed  by  Rivara  in  [78,  79]  and  is  known  as  the  largest  edge  partitioning  

method.  The  method  consists  in  the  fact  that  if  a  triangle  ÿ  is  included  in  the  set  of  grid  elements  that  

need  to  be  refined,  or  if  one  of  its  edges  does  not  satisfy  the  mesh  conformity  property  after  the  

bisection  of  other  triangles,  then,  first,  this  grid  element  is  split  by  a  segment  connecting  the  middle  of  

the  largest  edge  with  opposite  top.  If,  after  making  this  bisection,  the  grid  conformality  property  is  still  

violated  at  least  on  one  edge  of  the  original  triangle,  then  the  midpoint  of  this  edge  is  connected  to  

the  midpoint  of  the  largest  edge  of  the  triangle  ÿ.  The  principle  of  operation  of  the  partitioning  method  

along  the  largest  edge  is  illustrated  in  fig.  4.2.  As  a  result  of  the  bisection  of  the  triangle  ÿ123,  the  

conformality  property  of  the  triangle  ÿ134  on  the  edge  e13  is  violated.  Triangle  ÿ134  must  be  refined  

to  maintain  conformity.  First,  its  partition  is  carried  out  by  the  edge  e36.  However,  this  does  not  restore  

the  mesh's  conformity  

property.  Only  the  subsequent  splitting  of  the  triangle  ÿ136  by  the  edge  e56  leads  to  the  desired  

result.

B(ÿ)  =  (ÿ1,  ÿ2).

V  =  {v1,  v2,  v3},

Rice.  4.4.  Two  steps  of  bisections  of  triangles  by  Rivara's  method

v2

v1
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v2

Another  method,  which  was  described  in  Bansh's  paper  [31],  is  called  the  labeled  edge  partitioning  

method.  In  our  opinion,  it  is  more  convenient  and  easy  to  implement  when  developing  a  complex  

algorithm  for  constructing  dynamic  grids.  Let  us  pay  special  attention  to  this  method.  Each  triangle  of  

the  grid  is  associated  with  one  of  its  edges,  which  we  will  call  labeled.  The  choice  of  such  an  edge  for  

the  triangles  of  the  initial  grid  is  carried  out  arbitrarily,  regardless  of  which  edge  of  the  neighboring  

triangle  turned  out  to  be  labeled.  Often  take  the  longest  edge  in  the  triangle.

v2

v1
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Rice.  4.3.  Bansch's  Triangle  Bisection  Algorithm

v5

v4

v3

element.  There  are  various  methods  for  splitting  a  triangle.  We  will  focus  on  two  of  them.

v1

(4.2.1)  

Let  ÿh(V,  T )  denote  a  triangular  grid,  where  V  is  a  collection  of  grid  nodes,  each  of  which  is  

determined  by  two  coordinates,  and  T  is  a  set  of  triangles.  Let  V(ÿ)  be  the  set  of  global  indices  of  the  

vertices  of  the  triangle  ÿ(v1,  v2,  v3),  and  r(ÿ)  be  the  local  number  of  the  labeled  edge  in  the  triangle  ÿ:  

1  r(ÿ)  3.

§  4.2.  Bisection  Method  for  Refining  Triangulations

v3

v6

In  what  follows,  speaking  of  the  bisection  of  a  certain  triangle  ÿ,  we  will  assume  that  it  is  produced  

by  the  Bansch  method.  We  introduce  the  following  convenient  notation  for  the  triangle  bisection  

operation:

v4
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9:

Rice.  4.6.  The  set  U(ÿ)  for  the  boundary  triangle

7:

a  expression

where  the  subset  ui(ÿ)  contains  the  numbers  of  triangles  that  border  ÿ  along  the  ith  edge  

(see  Fig.  4.6).  For  a  conformal  grid,  ui(ÿ)  contains  only  one  triangle.  If  the  ith  edge  lies  on  the  
boundary  of  the  domain,  then  we  set  ui(ÿ)  equal  to  the  label  of  the  corresponding  part  of  the  

boundary  with  a  minus  sign.  Let  U(ÿh)  denote  the  collection  U(ÿ)  for  all  ÿ  belonging  to  the  grid  

ÿh.  The  set  U(ÿh)  for  a  conformal  grid  is  best  represented  in  the  form  described  in  Chap.  2  

structured  list  TT(3,Nf ),  where  Nf  is  the  number  of  triangles  in  the  current  grid.  When  one  
triangle  is  split,  only  the  data  about  its  nearest  neighbors  change.  Therefore,  the  cost  of  

maintaining  a  structured  list  U(ÿh)  does  not  actually  affect  the  complexity  of  the  entire  mesh  
refinement  process.  

However,  before  performing  the  bi  section  triangulation  procedure,  U(ÿ)  must  be  

determined  for  each  triangle.  The  complexity  of  the  optimal  algorithm  for  computing  U(ÿh)  is  

linear  with  respect  to  the  number  of  triangles  in  ÿh.  When  constructing  U(ÿh),  for  each  node  
of  the  grid  v,  we  will  use  the  superelement  ÿ(v)  as  a  set  of  triangles  with  node  v  as  one  of  

their  vertices.  The  calculation  of  U(ÿh)  is  presented  in  Algorithm  20.

Rice.  4.5.  Two  steps  of  triangle  bisections  by  the  Bansch  method

13:

1:  For  each  node  v  put  ÿ(v)  =  ÿ  2:  loop  over  all  triangles  
ÿ  ÿ  ÿh  3:  For  all  v  ÿ  V(ÿ)  add  ÿ  to  the  set  ÿ(v)  4:  end  
loop  5:  loop  over  all  triangles  ÿ  ÿ  ÿh  loop  over  all  vertices  vj  ÿ  V(ÿ)  Find  
vk,vm  ÿ  V(ÿ)  

distinct  from  vj ,  vk  =  vm  Find  the  set  of  triangles  L  

=  ÿ(vk)  ÿ(vm)  if  L  contains  triangle  ÿ1  =  ÿ  
then  Set  uj  (ÿ)  =  ÿ1

§  4.2.  Bisection  Method  for  Refining  Triangulations

eleven:

will  mean  that  the  mesh  ÿ  h  is  obtained  from  the  triangulation  ÿh  by  the  obligatory  bisection  

of  all  triangles  from  the  set  M.

10:

Algorithm  20.  Building  a  structured  list  U(ÿh)  for  three  angulations

(4.2.3)

8:

D(ÿ)  =  (V(ÿ),  r(ÿ)).

,

the  value  ci(ÿ)  =  1  indicates  problems  with  conformality  on  the  edge  opposite  vertex  i.  Let  M  
be  some  given  subset  of  T

For  simplicity,  we  assume  that  the  local  number  of  the  vertex  opposite  the  labeled  edge  is  

also  equal  to  r(ÿ).  Let  us  define  a  four  of  numbers

6:

12:

U(ÿ)  =  (u1(ÿ),  u2(ÿ),  u3(ÿ)),

99

To  check  the  conformity  of  the  grid  or  its  violation  on  some  grid  element,  it  is  enough  for  

each  triangle  to  determine  the  binary  array  C(ÿ)  of  three  numbers  (c1(ÿ),  c2(ÿ),  c3(ÿ)).  Let

An  efficient  implementation  of  the  triangulation  bisection  algorithm  requires  information  

about  neighboring  triangles  for  all  grid  elements.  For  each  triangle  ÿ  we  define  the  set

else  

Determine  uj  (ÿ)  from  edge  label  information  end  if  14:  end  loop  15:  end  
loop
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T )  =  Bisection_method(ÿh(V,  T ),M)  ÿ  h(V ,

(4.2.2)
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Bisection  B(ÿ)  =  (ÿ1,  ÿ2)  Add  ÿ1  and  ÿ2  to  T  
Remove  ÿ  from  M  and  T

1:  Given  U(ÿ),  find  ÿ3  and  ÿ4  adjacent  to  ÿ  along  the  edge  r(ÿ)  2:  if  ÿ3  =  
ÿ4  then  3:  4:  else  

Determine  v  as  a  common  point  of  ÿ3  and  ÿ4  lying  on  the  edge  r(ÿ)

6:

10:

labels.

4:

Algorithm  22

10:

loop  over  all  triangles  ÿ  ÿ  M

§  4.2.  Bisection  Method  for  Refining  Triangulations

8:  end  loop  loop  
over  all  triangles  ÿ  ÿ  T  9:

Since  the  set  of  labeled  triangles  is  again  non-empty,  the  algorithm  again  
starts  bisecting  triangles  from  M,  namely  ÿ134.  Now  the  role  of  ÿ3  and  ÿ4  is  
played  by  grid  elements  ÿ125  and  ÿ235.  Since  they  are  different,  after  the  
bisection  ÿ134  we  do  not  need  to  add  the  point  v5  to  the  list  of  grid  nodes  (it  is  
already  there),  and  there  is  no  need  to  impose  a  conformality  violation  condition  
through  the  edge  e13.  After  the  bisection  ÿ134,  we  remove  it  from  the  set  M,  
which  becomes  empty.  We  obtain  the  required  conformal  grid.

7:  Determine  D(ÿ1)  and  D(ÿ2)  from  D(ÿ)  8:  
Determine  U(ÿ1)  and  U(ÿ2)  and  adjust  U(ÿh)  of  neighbors

1:  Run  Algorithm  20  to  initially  determine  U(ÿh)  2:  Put  V  =  V,  T  =  T  3:  
while  set  M  is  not  empty  do

in  order  to  detect  triangles  on  whose  edges  the  conformality  property  is  violated,  
in  M  we  write  the  triangle  ÿ134.

7:

Algorithm  21.  Bisection  method  of  triangulation  ÿh(V,  T )

eleven:

if  array  C(ÿ)  contains  1  then  Add  ÿ  to  
set  M  end  if  end  loop  13:  14:  

end  

while

5:

When  the  mesh  is  refined,  the  sets  of  nodes  and  triangles  are  constantly  changing.  
The  grinding  procedure  can  be  written  in  the  form  of  Algorithm  21.

The  process  of  multilevel  refinement  of  triangulation  consists  in  the  sequential  
application  of  the  bisection  algorithm.  This  process

Assign  1  to  the  array  element  C(ÿ3)  corresponding  to  the  edge  shared  
with  ÿ.  Add  v  to  V  11:  end  if  12:  Put  

cr(ÿ1)(ÿ1)  

=  1  and  cr(ÿ2)(ÿ2)  =  1  if  cj  (ÿ)  =  1  on  the  corresponding  edge  ÿ

101

6:  end  if

Let's  make  some  important  remarks.  As  can  be  seen  from  Algorithm  22,  the  
bisection  of  one  triangle  can  lead  to  violation  of  the  mesh  conformality  only  on  
one  mesh  element.  Therefore,  if  the  set  M  contains  a  small  number  of  elements  
compared  to  the  number  of  all  triangles  in  the  mesh  to  which  the  bisection  
procedure  is  applied,  then  the  mesh  will  be  refined  locally.  The  operation  of  
finding  v,  a  common  point  of  ÿ3  and  ÿ4  lying  on  the  labeled  edge  ÿ,  can  be  carried  
out  taking  into  account  information  about  neighbors  ÿ3  and  ÿ4.  If  the  edge  being  
split  belonged  to  the  boundary,  then  during  the  bisection,  new  triangles  on  the  
edges  located  on  the  boundary  must  retain  the  value  ui(ÿ)  previously  assigned  to  
the  split  edge.  This  will  save  information  about  the  various  boundary

In  this  algorithm,  the  bisection  operation  B(ÿ)  =  (ÿ1,  ÿ2)  is  a  subroutine  that,  
given  a  quadruple  of  numbers  D(ÿ)  (4.2.2),  builds  D(ÿ1)  and  D(ÿ2)  and  
simultaneously  updates  auxiliary  information  about  the  grid  ( see  Algorithm  22).  
Note  that  during  the  operation  of  this  algorithm,  the  conformality  of  the  grid  may  
be  violated  and  some  triangles  may  border  (through  an  edge)  with  two  triangles,  
denoted  as  ÿ3  and  ÿ4.  Let  us  illustrate  the  operation  of  this  algorithm  using  the  
example  of  Fig.  4.1,  omitting  the  

stage  of  determining  the  neighbors  for  each  grid  element.  Let  the  original  
mesh  ÿh  consist  of  two  triangles  ÿ123  and  ÿ134  that  have  a  common  labeled  
edge  e13.  The  set  M  contains  only  the  triangle  ÿ123.  The  presented  algorithm  
first  determines  for  ÿ123  the  neighbors  ÿ3  and  ÿ4  through  the  edge  e13.  In  this  
case,  ÿ3  and  ÿ4  coincide  -  this  is  the  triangle  ÿ134.  Next,  a  bisection  of  the  grid  
element  ÿ123  is  performed,  which  leads  to  the  appearance  of  two  new  triangles  
ÿ125  and  ÿ235.  Since  ÿ3  and  ÿ4  coincide,  the  triangle  ÿ134  on  the  edge  e13  did  
not  violate  the  grid  conformality.  Therefore,  after  splitting  ÿ123,  we  add  the  point  
v5  to  the  list  of  grid  nodes  and  impose  on  the  edge  e13  of  the  triangle  ÿ134  the  
mesh  conformality  violation  condition.  For  triangles  ÿ125  and  ÿ235,  we  determine  
the  neighbors,  and  for  ÿ134  we  change  the  information  about  the  neighbors  
through  the  edge  e13.  It  is  important  to  note  that  at  the  moment  this  triangle  has  
two  neighbors  at  once.  Next,  we  add  ÿ125  and  ÿ235  to  the  set  of  grid  triangles,  
and  remove  the  grid  element  ÿ123  from  the  grid  and  from  the  set  M.  As  a  result,  
M  becomes  empty.  After  that,  passing  through  all  the  elements  of  the  grid

5:

ÿ9:  if  ÿ3  =  ÿ4  then
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12:

Set  v  as  the  midpoint  of  the  side  r(ÿ)
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a

Rice.  4.7.  Similar  triangles  arising  from  one,  two  and  three  levels  of  uniform  triangle  
refinement

a

Theorem  4.2.1.  With  multilevel  refinement  of  triangulation,  the  minimum  angle  
of  any  grid  element  for  any  number  of  grid  partitions  is  not  less  than  half  of  the  
minimum  angle  of  the  triangles  of  the  initial  grid.

bc

Rice.  4.8.  Several  levels  of  uniform  meshing

G

cb

bc

V
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implies  the  existence  of  a  procedure  for  determining  the  set  of  labeled  triangles.  
Bansh's  choice  

of  labeled  sides  ensures  the  regularity  of  the  triangles  in  the  refined  mesh.  This  
follows  from  the  following  theorem  [31].

dd

bc  bc

Rice.  4.9.  Various  adaptive  mesh  refinements

103

b

a

§  4.2.  Bisection  Method  for  Refining  Triangulations

Proof.  According  to  the  description  of  the  method  of  splitting  a  triangle  along  a  
marked  edge,  the  bisection  line  each  time  leaves  the  vertex  that  appeared  during  
the  previous  refinement  and  connects  it  to  the  midpoint  of  the  opposite  side.  
Therefore,  if  we  consider  several  levels  of  refinement  of  an  arbitrary  triangle,  then  
we  obtain  a  set  of  triangles,  each  of  which  is  similar  to  either

A
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The  bisection  method  for  refining  tetrahedral  structures  is  based  on  the  same  approaches  that  

were  described  in  the  study  of  the  procedure  for  refining  a  triangular  mesh.  The  main  basic  

operation  is  the  bisection  of  the  tetrahedron,  which  splits  it  into  two  tetrahedra,  as  shown  in  Fig.  

4.10.  However,  the  third  dimension  brings  its  own  characteristics  to  the  process  of  meshing.

result  of  the  bisection  ÿ.  Any  admissible  set  of  rules  must  guarantee  that  the  minimum  dihedral  and  

planar  angles  in  the  resulting  mesh,  when  it  is  repeatedly  refined,  decrease  by  no  more  than  a  

factor  of  two  compared  to  the  corresponding  minimum  dihedral  and  planar  angles  of  the  initial  

mesh.  We  will  focus  on  the  approach  proposed  by  Arnold  et  al.  in  [28].  The  presented  method  is  

a  generalization  of  the  Bansh  method  of  bisection  of  tetrahedra  [31].  Let  us  introduce  the  following  

notation.  To  each  tetrahedron  ÿ  we  assign  one  of  its  edges,  which  we  will  call  the  split  edge  r(ÿ),  

and  the  two  faces  containing  this  edge,  the  split  faces.  For  each  of  the  two  non-decomposable  

faces,  we  single  out  

one  of  the  edges,  calling  it  labeled,  and  denote  these  edges  by  l1(ÿ)  and  l2(ÿ).  The  split  and  

labeled  edges  will  be  called  singular.  In  contrast  to  the  two-dimensional  case,  when  the  labeled  

edge  of  the  triangle  was  split,  here  the  split  and  labeled  edges  are  different.  The  tetrahedron  ÿ  will  

be  characterized  by  the  binary  flag  s(ÿ)  ÿ  {0,  1}  associated  with  the  mutual  arrangement  of  singular  

edges.  After  a  bisection,  this  flag  determines  the  type  of  further  splitting.  The  values  s(ÿ)  must  be  

determined  for  all  elements  of  the  initial  grid.  In  this  case,  s(ÿ)  can  be  set  arbitrarily,  taking  into  

account  only  one  restriction:  if  the  singular  edges  do  not  lie  in  the  same  plane,  then  s(ÿ)  =  0.  Below,  

when  formulating  the  bisection  method,  we  indicate  how,  based  on  the  singular  edges  of  the  

tetrahedron  ra  ÿ  determine  the  edges  to  be  partitioned  and  labeled  and  the  binary  flags  of  the  

cells  into  which  the  tetrahedron  ÿ  is  partitioned.  The  method  of  bisection  of  the  tetrahedron  ÿ  is  as  

follows.  First,  ÿ  is  split  into  two  tetrahedra  ÿ1  and  ÿ2  by  a  plane  that  passes  through  the  middle  of  

the  edge  being  split  and  two  vertices  of  the  tetrahedron  ÿ  that  do  not  belong  to  this  edge  (see  Fig.  

4.10).  Note  that  each  of  the  tetrahedra  ÿ1  and  ÿ2  entirely  contains  one  of  the  unbreakable  faces  

ÿ.  The  labeled  edge  of  this  face  is  defined  as  the  edge  to  be  split  for  the  corresponding  new  

tetrahedron.  As  a  result,  for  ÿ1  and  ÿ2  it  becomes  known  which  of  the  faces  are  breakable.  It  

remains  to  determine  the  labeled  edges  for  the  indecomposable  faces  of  the  tetrahedra  ÿ1  and  

ÿ2.  Let  v  be  the  midpoint  of  the  splitting  edge  of  the  tetrahedron  ÿ,  which  has  become  common  for  

ÿ1  and  ÿ2.  Consider  any  of  the  unbreakable  faces  of  the  

grid  element  ÿ1  or  ÿ2.  If  this  face  is  part  of  a  face  of  the  tetrahedron  ÿ,  then  we  mark  in  it  an  

edge  opposite  to  v.  In  the  case  when  a  common  face  for  ÿ1  or  ÿ2  is  considered,  it  is  endowed  

with  the  same  labeled  edge  according  to  the  following  rule.  If  s(ÿ)  =  1,  then  the  labeled  edge  is  the  

one  that  connects  the  vertex  of  the  already  defined  splitting  edge  ÿ1  or  ÿ2  and  the  point  v;  

otherwise,  the  edge  opposite  v  will  be  labeled.  For  two  new  tetrahedra,  s(ÿ1)  =  s(ÿ2)  =  1  only  if  the  

subdivided  and  labeled  edges  of  the  grid  element  ÿ

v2

v1

v4

the  original  triangle  itself,  or  triangles  obtained  from  the  one  under  consideration  after  one  or  two  

levels  of  refinement  (see  Fig.  4.7,  similar  triangles  are  marked  with  the  same  letters).  The  minimum  

angle  during  one  or  two  refinements  cannot  be  reduced  by  more  than  two  times,  and  the  maximum  

reduction  is  achieved  when  the  equilateral  triangle  is  split.  Consequently,  even  with  a  greater  

number  of  refinements,  a  decrease  in  the  angle  of  the  triangle  by  more  than  two  times  cannot  

occur.

Rice.  4.10.  Bisection  of  a  tetrahedron

v1

As  in  the  two  dimensional  case,  we  first  describe  in  detail  the  method  of  bisecting  an  

individual  tetrahedron.  In  the  three  dimensional  case,  there  are  much  more  possibilities  for  

specifying  the  rules  for  the  bisection  of  the  tetrahedron  ÿ  and  for  determining  methods  for  further  
refinement  of  grid  elements,  which  are

v2

It  follows  from  Theorem  4.2.1  that  if  the  minimum  of  the  angles  of  triangles  in  the  initial  grid  

is  ÿ,  then  any  angle  in  the  resulting  grid  is  bounded  above  by  ÿ  ÿ  ÿ.

´

v3
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v3

§  4.3.  Bisection  Method  for  Refining  

Tetrahedrals

In  conclusion,  we  present  two  examples  of  how  the  algorithm  works.  On  fig.  4.8  shows  the  

initial  grid  and  the  resulting  triangulations  after  4,  6  and  8  levels  of  uniform  partitioning;  rice.  4.9  

illustrates  different  types  of  adaptive  refinements:  to  a  diagonal  ( a),  to  a  point  ( b),  to  a  circle  (c) ,  

and  to  a  subdomain  (d).

v5

§  4.3.  Bisection  Method  for  Refining  Tetrahedrals

v4v4
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13:

For  simplicity  of  working  with  a  tetrahedral  mesh,  it  is  convenient  to  introduce  a  
correspondence  between  the  vertices,  edges,  and  faces  of  a  particular  mesh  element.  
Given  a  tetrahedron  defined  by  four  mesh  nodes  v1,  v2,  v3,  and  v4,  we  will  order  the  six  
edges  as  follows:

eleven:

D(ÿ)  =  ( V(ÿ),  r(ÿ),  l1(ÿ),  l2(ÿ),  s(ÿ)),  (4.3.1)  where  V(ÿ)  =  (v1,  v2,  v3,  

v4)  is  a  vector  consisting  of  the  global  numbers  of  four  grid  nodes  that  are  vertices  ÿ,  r(ÿ)  
is  the  local  number  of  the  split  edge,  l1(ÿ),  l2(ÿ)  are  the  local  numbers  of  labeled  edges,  
and  s(ÿ)  is  the  binary  flag  mutual  arrangement  of  special  edges.  Note  that

9:

Algorithm  23.  Construction  of  a  structured  list  U(ÿh)  for  tetrahedralization

end  if  

15:  end  loop  16:  
end  loop

7:

§  4.3.  Bisection  Method  for  Refining  Tetrahedrals

end  if

ÿh(V,  T )  =  Bisection_method(ÿh(V,  T ),  M),

f(v1,  v2,  v3),  f(v1,  v2,  v4),  f(v1,  v3,  v4),  f(v2,  v3,  v4).  Now,  

speaking  about  some  local  number  of  an  edge  or  face  of  a  tetrahedron,  one  can  
unambiguously  determine  their  vertices.

e(v1,  v2),  e(v1,  v3),  e(v1,  v4),  e(v2,  v3),  e(v2,  v4),  e(v3,  v4),

The  bisection  process  can  be  accelerated  if  information  about  neighboring  tetrahedra  
is  available  for  any  grid  element.  To  each  tetrahedron  ÿ  we  associate  the  set  U(ÿ)  =  =  
( u1(ÿ),  u2(ÿ),  u3(ÿ),  u4(ÿ)),  where  the  subset  ui(ÿ)  contains  the  numbers  of  tetrahedra  
that  border  on  ÿ  along  face  opposite  to  vertex  i.  For  a  conformal  mesh,  ui(ÿ)  contains  the  
number  of  only  one  tetrahedron.  For  boundary  faces,  as  ui(ÿ)  we  can  take  the  label  of  the  
boundary  with  a  minus  sign,  by  analogy  with  how  it  was  proposed  in  the  two-dimensional  
case.  Let  U(ÿh)  denote  the  collection  U(ÿ)  for  all  ÿ  belonging  to  the  grid  ÿh.  When  
constructing  U(ÿh),  for  each  node  v  of  the  grid  ÿh,  we  will  use  the  superelement  ÿ(v)  as  a  
set  of  tetrahedra  having  the  point  v  as  one  of  their  vertices.  The  procedure  for  determining  
U(ÿh)  can  be  implemented  with  complexity  linearly  dependent  on  the  number  of  
tetrahedra  in  ÿh  (see  Algorithm  23).

12:

1:  For  each  node  v  put  ÿ(v)  =  ÿ  2:  loop  over  all  
tetrahedra  ÿ  ÿ  ÿh  3:  For  each  v  ÿ  V(ÿ)  add  ÿ  
to  ÿ(v)  4:  end  loop  5:  loop  over  all  tetrahedra  ÿ  ÿ  ÿh  6:

tetrahedron  often  entails  violation  of  the  grid  conformity  on  several  grid  elements  at  once.  
For  each  tetrahedron,  we  introduce  an  integer  array  C(ÿ)  of  six  numbers  (ci(ÿ),  i  =  1, ...,  

6)  corresponding  to  the  edges  of  the  given  grid  element.  If  ci(ÿ)  =  0,  then  this  means  a  
violation  of  the  conformality  on  the  edge  i,  i.e.,  the  appearance  of  a  new  grid  node  v0  in  
the  middle  of  the  edge  of  the  tetrahedron  ÿ.  This  edge  may  belong  to  a  whole  set  of  grid  
elements  W  at  once.  To  preserve  conformality,  all  tetrahedra  in  W  must  be  reduced  by  
bisections  that  split  the  edge  under  consideration.  Therefore,  all  grid  elements  from  W  
need  information  about  the  node  v0.  The  condition  that  the  bisection  of  some  tetrahedron  
and  the  appearance  of  a  new  node  v0  lead  to  violation  of  conformality  on  the  edge  j  of  
the  tetrahedron  ÿ  will  be  given  in  the  form  cj  (ÿ)  =  v0.  Initial  moment  for  each  grid  element,  
all  ci(ÿ)  are  zero.  For  each  element  ÿ,  we  determine  the  depth,  or  level  of  refinement  z(ÿ).  
As  noted  in  §  4.1,  there  is  a  sequence  of  grids,  each  of  which  is  obtained  from  the  

previous  one  by  refinement  or  coarsening.  We  will  assume  that  any  element  of  the  initial  
grid  has  z(ÿ)  =  0.  When  a  tetrahedron  with  level  z1  is  partitioned,  we  obtain  two  grid  
elements  with  level  z1  +  1.  Denote  the  procedure  for  refining  the  tetrahedralization  ÿh  as  
follows:

14:

lie  in  the  same  plane  and  the  condition  s(ÿ)  =  0  is  satisfied.  Thus,  the  method  of  bisection  
of  a  particular  tetrahedron  is  completely  described.  This  operation,  by  analogy  with  the  
two  dimensional  case,  will  also  be  denoted  by  the  formula  B(ÿ)  =  (ÿ1,  ÿ2).

10:

if  L  =  {ÿ}  then  
Determine  uj  (ÿ)  from  boundary  information

8:

107

(4.3.2)

As  in  the  bisection  of  a  triangular  mesh,  in  the  three-dimensional  case,  the  mesh  
conformality  check  operation  is  necessary.  Conformity  violation  is  easier  to  track  on  the  
ribs,  since  the  refinement  of  one

and  four  edges  like  this:

Let  ÿh(V,  T )  denote  the  tetrahedral  mesh  ÿh,  where  V  is  the  set  of  mesh  nodes,  each  
of  which  is  defined  by  three  coordinates,  and  T  is  the  set  of  tetrahedra.  Each  tetrahedron  
ÿ  ÿ  T  is  assigned  a  data  set  of  eight  numbers

106  Ch.  4.  Multilevel  hierarchical  mesh  refinement  and  coarsening

1  r(ÿ),  l1(ÿ),  l2(ÿ)  6.

loop  over  all  vertices  vj  ÿ  V(ÿ)  Find  distinct  
vertices  vk,  vm,  vn  ÿ  V(ÿ)  other  than  vj  Find  the  intersection  L  =  ÿ(vk)  
ÿ(vm)  ÿ(vn)  
if  ÿ1  ÿ  L  and  ÿ1  =  ÿ  then  Put  uj  (ÿ)  =  ÿ1
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5:

In  this  algorithm,  the  bisection  operation  B(ÿ)  =  (ÿ1,  ÿ2)  is  a  subroutine  that  is  
much  more  complicated  in  the  three  dimensional  case  due  to  the  fact  that  one  
edge  can  belong  to  a  whole  set  of  grid  elements  at  once  (see  Algorithm  25).

14:

where  M  is  some  given  subset  T  assumes  that  the  

mesh  ÿh  is  obtained  from  the  tetrahedralization  of  ÿh  by  the  obligatory  bisection  
of  all  mesh  elements  from  the  set  M.  Algorithm  24  for  refining  a  tetrahedral  mesh  
is  similar  to  its  two-dimensional  counterpart  (algorithm  21).  As  in  the  bisection  of  
triangles,  the  set  of  mesh  tetrahedra  is  constantly  changing,  and  the  set  of  nodes  
is  increasing.

1:  Run  Algorithm  23  of  the  initial  determination  of  U(ÿh)  2:  Put  V  =  
V  and  T  =  T  3:  while  the  set  M  

is  not  empty  do  4:  Find  the  smallest  value  
of  zmin  from  z(ÿ)  over  all  ÿ  ÿ  M  Form  M  =  {ÿ  ÿM|  z(ÿ)  =  zmin}  loop  over  

all  tetrahedra  ÿ  ÿ  M  Bisection  B(ÿ)  =  (ÿ1,  ÿ2)  Add  
ÿ1  and  ÿ2  to  set  T  Remove  ÿ  from  

sets  M  and  T  end  loop  loop  over  all  
tetrahedra  ÿ  ÿ  T  if  array  C(ÿ)  contains  
nonzero  value  then  Add  ÿ  to  set  M  

end  if  
end  loop  15:  16:  end  while

9:

12:

Algorithm  24.  Bisection  method  of  tetrahedralization  ÿh(V,  T )

Algorithm  25

7:

v  =  cr(ÿ)(ÿ)

§  4.3.  Bisection  Method  for  Refining  Tetrahedrals

12:

unbreakable  edge  i  of  the  tetrahedron  ÿ

The  refinement  of  one  tetrahedron  can  lead  to  violation  of  the  grid  conformity  
only  on  a  small  number  of  neighboring  grid  elements.  If  the  set  M  is  small  
compared  to  the  number  of  all  elements  in  the  grid,  then  the  grid  will  be  refined  
locally.

Set  cj  (ÿ)  =  v0  for  edge  j  with  vertices  vk1  and  vk2  13:  end  loop

3:

unbreakable  edge  i  of  the  tetrahedron  ÿ

eleven:

.

10:

For  the  initial  mesh,  we  will  define  a  list  of  its  edges,  each  of  which  is  given  
by  the  global  numbers  of  its  vertices.  We  arrange  the  edges  in  ascending  order  
of  length  and  assign  to  each  edge  a  serial  number  in  the  new  list,  which  will  be  
called  its  weight  in  what  follows.  Next,  for  each  tetrahedron,  we  choose  an  edge  
with  the  largest  weight  and  mark  it  as  splittable.  Then,  for  each  unsplitted  face,  
we  find  the  edge  of  this  face  that  has  the  largest  weight  and  consider  it  labeled.  
Thanks  to  this  algorithm,  any  face  belonging  to  two  tetrahedra  will  have  the  same  
special  edge  for  each  of  them,  since  each  face  has  three  edges  with  different  
weights.  In  the  initial  grid,  the  values  of  the  binary  flags  s(ÿ)  can  be  chosen,  for  
example,  to  be  zero.  Similarly  to  the  algorithm  of  multilevel  bisection  of  
triangulation,  we  can  also  speak  of  multilevel  bisection  of  tetrahedralization.  With  
multiple  

mesh  refinement,  the  bisection  algorithm  with  the  introduction  of  special  
edges  ensures  that  the  dihedral  and  flat  angles  of  the  grid  elements  are  bounded  
from  below  by  half  of  the  minimum  dihedral  and  flat  angles  of  the  tetrahedra  of  
the  initial  mesh.  This  is  achieved  by  dividing  the  faces  into  breakable  and  non-
breakable  ones  and  by  a  special  choice  of  labeled  edges  that  determine  the  
further  course  of  the  bisection,  as  justified  in  [28].  Parallelization  of  multilevel  
bisection  algorithms  is  discussed  in  [37,  38].

8:

Equality  (4.3.2)

7:  Determine  D(ÿ1)  and  D(ÿ2)  from  D(ÿ)  8:  
Determine  U(ÿ1)  and  U(ÿ2)  and  change  U(ÿh)  of  neighbors  ÿ  9:  if  cr(ÿ)
(ÿ)  =  0  then  10:  Find  

vertices  vk1  and  vk2  of  the  edge  r(ÿ)  loop  over  
all  tetrahedra  ÿ  ÿ  ÿ(vk1 )  ÿ(vk2 )  except  ÿ

13:

6:

5:  6:  end  if

109

eleven:

17:  Set  cj  (ÿ2)  =  ci(ÿ)  if  ci(ÿ)  =  0  on  the  corresponding

4:  else

Add  v0  to  set  V  14:  15:  end  if
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The  bisection  algorithm  for  a  tetrahedral  mesh  is  constructed  taking  into  
account  that  the  conformity  preservation  process  does  not  lead  to  an  infinite  cycle,  
in  which  the  restoration  of  conformity  on  one  tetrahedron  leads  to  its  violation  on  
other  mesh  elements.  The  correctness  of  this  assertion  is  substantiated  in  [28].  
The  bisection  process  will  be  successful  only  if  the  split  and  labeled  edges  are  
correctly  determined  for  all  elements  of  the  initial  mesh.  In  contrast  to  the  initial  
conditions  for  refinement  of  triangulation,  the  consistency  of  singular  edges  is  
required  here.  Therefore,  we  will  dwell  in  detail  on  the  method  of  specifying  split  
and  labeled  edges  for  an  arbitrary  initial  tetrahedralization.

16:  Put  cj  (ÿ1)  =  ci(ÿ)  if  ci(ÿ)  =  0  on  the  corresponding

1:  Determine  edge  r(ÿ)  from  D(ÿ)  2:  if  
cr(ÿ)(ÿ)  =  0  then  Place  

new  node  v  at  the  middle  of  edge  r(ÿ)  of  tetrahedron  ÿ
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Rice.  4.11.  Several  levels  of  uniform  mesh  refinement

In  conclusion,  we  will  demonstrate  two  examples  of  the  operation  of  the  
bisection  algorithm  in  the  three-dimensional  case.  On  fig.  Figure  4.11  shows  the  
resulting  tetrahedrizations  after  (a)  three ,  (b)  six ,  and  (c)  nine  levels  of  uniform  
partitioning  of  the  initial  mesh  consisting  of  two  canonical  tetrahedra.  Rice.  4.12  
illustrates  various  types  of  local  condensations:  to  a  subdomain  (a),  to  a  line  (b) ,  
and  to  a  point  (c).

110  Ch.  4.  Multilevel  hierarchical  mesh  refinement  and  coarsening

An  algorithm  for  coarsening  grids  obtained  by  bisecting  triangles  by  the  Rivara  
method  can  be  found  in  [79].  Here  we  present  a  description  of  the  coarsenings  
for  triangulations  and  tetrahedrizations  obtained  by  the  refinements  presented  in  
§  4.2  and  4.3.  The  purpose  of  coarsening  

is  to  enlarge  some  of  the  selected  grid  elements  by  combining  two  adjacent  
ones.  Note  that  the  union  can  be  done  in  different  ways.  On  fig.  4.13  shows  the  
union  of  two  pairs  of  triangles  on  the  same  horizontal  line.  Rice.  4.14  illustrates  
another  kind  of  coarsening.  As  a  result,  we  get  two  different  grids.

Rice.  4.12.  Various  local  mesh  refinements

§  4.4.  Multilevel  Coarseness  Algorithm

In  the  study  of  dynamic  processes,  an  important  factor  is  the  fast  rebuilding  
of  the  grid.  Having  only  algorithms  for  hierarchical  refinement,  one  would  have  
to  build  many  times  very  little  different  grids  that  take  into  account  small  changes  
in  the  dynamic  process  and  are  connected  to  each  other  only  through  the  coarsest  
grid.  Connecting  grid  coarsening  algorithms  provides  a  close  connection  between  
slightly  different  grids.  In  this  section,  coarsening  algorithms  for  both  2D  and  3D  
meshes  will  be  described,  however,  all  the  problems  encountered  and  methods  
for  solving  them  will  be  illustrated  using  triangular  meshes  as  an  example.

The  coarsening  process  will  be  applied  only  to  meshes  obtained  as  a  result  
of  the  bisection  method.  Therefore,  the  main  goal  of  merging  grid  elements  is  to  
restore  grids  to  which  refinement  has  been  applied.  This  can  be  done  by  keeping  
the  history  of  mesh  transformations.  During  hierarchical  mesh  refinement,  its  
elements  are  subjected  to  a  

different  number  of  bisection  operations.  Therefore,  simply  joining  an  arbitrary  
triangle  with  any  of  its  neighbors  can  result  in  mesh  elements  other  than  triangles,  
as  shown  in  Fig.  4.15.

§  4.4.  Multilevel  Coarseness  Algorithm

Rice.  4.13.  Merging  Triangles  Horizontally
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Rice.  4.14.  Merging  Triangles  Vertically

Two  triangles  ÿ1  and  ÿ2  can  be  combined  into  one  under  three  conditions:  1)  
z(ÿ1)  =  z(ÿ2)  =  z;  2)  if  k  =  h  

ÿ1  (z),  then  uk(ÿ1)=ÿ2;  
3)  if  m  =  h  ÿ2  (z),  then  um(ÿ2)=ÿ1.

it  will  be  due  to  the  coarsening  of  the  grid  elements  whose  vertex  is  v,  and  the  
subsequent  removal  of  the  node  v  itself.  Therefore,  we  will  say  that  the  conformity  
is  violated  at  the  knot.  Let  us  proceed  to  the  

formalization  of  the  coarsening  algorithm.  Let  ÿh  denote  a  triangular  or  
tetrahedral  mesh.  Recall  that  each  element  ÿ  ÿ  ÿh  has  a  refinement  level  z(ÿ).  
Two  elements  can  be  combined  into  one  only  if  they  have  the  same  level,  say,  
z1,  then  the  resulting  coarsened  grid  element  will  have  the  level  z1  ÿ  1.  According  
to  the  basic  principles  of  meshing,  it  is  impossible  to  enlarge  the  elements  of  the  
initial  grid.  This  can  be  formulated  as  a  prohibition  on  enlargement  of  elements  
with  level  zero:  the  level  of  any  triangle  or  tetrahedron  must  be  nonnegative.  In  
addition  to  the  refinement  level,  each  element  ÿ  will  be  assigned  an  array  h  ÿ(z),  
which  will  contain  the  history  of  modification  of  this  grid  element.  In  the  two  
dimensional  case,  

for  each  level  z0,  the  only  element  h  ÿ(z0)  is  defined  as  follows.  If  the  
bisection  of  triangle  ÿ  produces  grid  elements  ÿ1  and  ÿ2,  then  h  ÿ1  (z0)  contains  
the  local  number  of  the  vertex  of  triangle  ÿ1  opposite  the  edge  along  which  ÿ1  
borders  ÿ2.  As  can  be  seen  from  the  description  of  the  bisection  of  an  arbitrary  
triangle,  h  ÿ1  (z0)  can  never  coincide  with  the  vertex  opposite  to  the  side  being  
split.

Let  us  first  consider  the  process  of  combining  two  neighboring  triangles  ÿ1  
and  ÿ2  into  a  single  grid  element  ÿ.  In  doing  so,  we  again  need  the  structured  list  
U(ÿh)  of  neighbors  of  triangles  defined  in  §  4.2.

Rice.  4.16.  Restoring  conformity  when  coarsening  the  mesh

In  the  three  dimensional  case,  h  ÿ(z0)=( h(1)  (z0),  h(2)  (z0))  is  a  pair  of  local  
vertices  of  the  grid  element  ÿ.  When  the  tetrahedron  ÿ  is  split  into  ÿ1  and  ÿ2,  the  
common  face  of  two  new  grid  elements  passes  through  the  midpoint  v  of  the  
split  edge  ÿ.  Let  us  agree  that  h(1)  (z0)  is  the  local  number  of  the  vertex  ÿ1  
corresponding  to  the  point  v,  and  h(2)  (z0)  is  the  local  number  of  the  vertex  ÿ1  

opposite  to  the  face  along  which  ÿ1  borders  ÿ2.

Rice.  4.15.  Union  of  a  triangle  with  an  arbitrary  neighbor,  leading  to  the  
appearance  of  a  quadrilateral

In  this  case,  the  global  number  of  the  grid  vertex  corresponding  to  the  local  
number  of  the  triangle  vertex  ÿ1  opposite  to  the  labeled  edge  coincides  with  the  
equivalently  defined  number  for  the  same  triangle  vertex  ÿ2.  When  coarsening,  
this  common  vertex  v  will  be  removed.  Since  ÿ1  and  ÿ2  had  a  common  edge,  
they  had  two  common  mesh  vertices.  After  deleting  node  v,  another

§  4.4.  Multilevel  Coarseness  Algorithm

ÿThe  grid  coarsening  algorithm  described  below  will  help  to  solve  this  and  
other  problems.  Its  main  goal  is  that,  starting  with  a  conformal  mesh  resulting  
from  the  bisection  procedure,  the  coarsening  algorithm  coarsens  the  given  mesh  
elements  and  some  others  to  maintain  conformality  and  produces  a  mesh  in  such  
a  form  that  either  refinement  or  refinement  can  be  applied  to  it  again.  coarsening.  
It  was  assumed  in  the  bisection  algorithm  that  the  conformity  is  broken  on  the  
edge  of  the  grid  

element  and  can  be  restored  by  additional  partitioning  of  adjacent  elements.  
Similarly,  when  the  mesh  is  coarsened,  conformality  can  also  be  violated  on  the  
edge  due  to  the  presence  of  a  node  v  in  its  middle,  as  shown  in  Fig.  4.16  but  
recover
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ÿ1
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ÿ
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1:  Put  V  =  V  and  T  =  T  2:  loop  until  

set  M  is  empty

ÿ2

Algorithm  26.  Method  for  coarsening  the  triangulation  ÿh(V,  T )

7:

eleven:

already  defined.  

The  mesh  coarsening  process  can  be  written  in  the  form  of  Algorithm  26.  In  this  algorithm,  

the  operation  of  removing  a  vertex  from  the  set  of  mesh  nodes  is  best  done  as  follows.  Let's  

introduce  some  auxiliary  binary  array  of  grid  node  labels.  In  this  array,  the  number  of  elements  

is  equal  to  the  number  of  nodes  in  the  initial  triangulation  ÿh  specified  for  coarsening.  Initially,  all  

elements  of  this  array  are  equal  to  1.  Deleting  a  node  from  the  grid  means  zeroing  the  

corresponding  component  of  the  labels  array.  This  approach  makes  it  possible  to  use  data  about  

the  remote  node  v  with  further  coarsening

(4.4.2)

Let  us  demonstrate  the  operation  of  Algorithm  26  using  the  example  of  Fig.  4.18.  Let  a  grid  

ÿh  consisting  of  five  triangles  be  given,  and  the  set  M  contains  only  the  triangle  ÿ346.  In  this  

case,  we  assume  that  the  level  of  refinement  for  all  grid  elements  is  2,  except  for  ÿ346,  for  

which  it  is  equal  to  1.  The  constructed  set  M  coincides  with  M.  We  start  with  the  grid  element  

ÿ346.  First,  we  look  for  a  triangle  with  which  it  could  be  combined.  Triangle  ÿ356  is  not  suitable  

for  this  role,  as  it  has  a  different  level  of  refinement:  z(ÿ356)  =  z(ÿ346).  Therefore,  we  can  only  

impose  the  conformality  violation  condition  on  all  grid  elements  containing  the  point  v6.

the  common  vertex  ÿ1  and  ÿ2  and  their  other  two  vertices  form  a  new  grid  element  ÿ.  To  correctly  

define  the  coarsening  operation,  it  remains  to  show  which  edge  in  ÿ  will  be  marked.  As  r(ÿ)  one  

should  take  the  edge  opposite  to  the  non-removed  common  vertex  of  ÿ1  and  ÿ2.  Rice.  4.17  

illustrates  the  coarsening  process.  Comparison  with  fig.  4.3  shows  that  this  process  is  the  
reverse  of  the  Bansch  method.  For  simplicity,  the  coarsening  operation  will  be  denoted

5:

10:

Remove  ÿ  from  the  set  M  if  z(ÿ)  =  0  4:  Find  zm  —  the  

largest  value  from  z(ÿ)  over  all  ÿ  ÿ  M  Form  a  subset  M  =  {ÿ  ÿM|  z(ÿ)  =  zm}  loop  over  all  

triangles  ÿ1  ÿ  M  Find  a  ÿ2  that  can  be  combined  with  ÿ1  Determine  the  grid  

node  v  corresponding  to  the  vertex  k  of  the  triangle  

ÿ1  opposite  to  the  labeled  side  if  ck(ÿ1)  =  0  then  Using  the  

set  U(ÿh ),  impose  a  conformity  violation  condition  on  all  ÿ  ÿ  ÿ(v)  Remove  v  from  

the  set  V  end  if  ÿ2  is  found  then  Coarse  ÿ  =  G(ÿ1,  ÿ2)  Add  ÿ  to  the  set  T  

and  remove  ÿ1  and  ÿ2  

from  M  and  T  end  if  17:  end  loop  loop  over  all  triangles  ÿ  ÿ  T :  18:  if  array  

c(ÿ)  contains  1  then

Rice.  4.17.  Triangle  coarsening  method

16:
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´ Add  ÿ  to  set  M  end  if  22:  end  loop  23:  
end  

loop

ÿ  =  G(ÿ1,  ÿ2).

ÿ

14:

ÿ1

12:

.

chat  like  this:

grid  elements  for  which  v  is  still  a  vertex.  At  the  end  of  Algorithm  26,  the  array  of  labels  gives  

information  about  the  vertices  of  the  resulting  mesh.  As  a  basic  operation,  Algorithm  26  uses  the  

coarsening  procedure  ÿ  =  G(ÿ1,  ÿ2)  of  triangles  ÿ1  and  ÿ2,  which  is  described  in  detail  in  

Algorithm  27.

6:

By  analogy  with  the  process  of  bisection  during  coarsening,  we  need  to  check  the  mesh  

conformality.  We  again  assign  this  role  to  the  binary  array  C(ÿ)  of  three  numbers  (c1(ÿ),  c2(ÿ),  

c3(ÿ)).  The  value  ci(ÿ)  =  1  indicates  problems  with  conformality  at  vertex  i,  i.e.,  the  presence  of  

a  triangle  ÿ  whose  vertex  corresponding  to  the  i-th  vertex  of  triangle  ÿ  lies  in  the  middle  of  the  

edge.  Initial  moment  for  each  grid  element,  all  ci(ÿ)  are  zero.  We  denote  the  procedure  for  

coarsening  the  triangulation  ÿh  as  follows:

where  M  is  some  given  subset  of  T  Equality  (4.4.2)  means  that  the  grid  ÿh  is  obtained  from  the  

grid  ÿh  by  the  obligatory  coarsening  of  all  elements  from  the  set  M.  The  coarsening  algorithm  is  

applicable  only  to  the  grid  in  which  there  are  elements  that  differ  from  the  triangles  of  the  initial  

meshes,  i.e.,  obtained  as  a  result  of  the  bisection  method.  Thus,  at  the  start  of  the  algorithm,  

we  can  assume  that  for  each  grid  element  ÿ,  the  set  of  its  neighbors  U(ÿ)

9:

ÿh(V,  T )  =  Coarse_method(ÿh(V,  T ),  M),

21:
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3:

8:

15:

(4.4.1)

§  4.4.  Multilevel  Coarseness  Algorithm

20:

13:

19:
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Tetrahedra  ÿ1  and  ÿ2  can  be  combined  into  one  if  four  conditions  are  met:  1)  
z(ÿ1)  =  z(ÿ2)  =  z;  

2)  if  k  =  h(2)  (z),  then  
uk(ÿ1)=ÿ2;  3)  if  m  =  h(2)  (z),  then  

um(ÿ2)=ÿ1;  h(1)  4)  the  vertex  ÿ1  with  index  
(z)  coincides  with  the  vertex  ÿ2  with  index  h(1)  (z).

ÿ2

ÿ2

The  mesh  coarsening  process  can  be  represented  by  a  modified  algorithm  
26.  It  uses  a  different  basic  procedure  ÿ  =  G(ÿ1,  ÿ2)  for  combining  tetrahedra  ÿ1  
and  ÿ2  and  modifying  auxiliary  information  (see  Algorithm  28).  Another  difference  
of  the  modified  algorithm  26  is  that  in  the  three-dimensional  case,  for  each  vertex  
v,  it  is  necessary  to  constantly  maintain  and  correct  information  about  the  set  
ÿ(v).

Algorithm  27.  Coarseness  of  triangles  ÿ  =  G(ÿ1,  ÿ2)  and  modification  of  auxiliary  
information  about  the  mesh

current  v1

Rice.  4.18.  Coarse  algorithm  illustration

There  are  two  such  triangles:  ÿ156  and  ÿ356.  The  v6  point  itself  is  removed  from  
the  list  of  grid  vertices.  Triangles  ÿ156  and  ÿ356  have  the  same  grinding  level.  
They  can  be  united  into  one  triangle  ÿ136  and  remove  ÿ156  and  ÿ356  from  the  
set  M,  simultaneously  declaring  the  vertex  v5  deleted.  Under  this  coarsening  
operation,  the  conformity  of  the  grid  begins  to  be  violated  at  the  point  v5;  therefore,  
triangles  ÿ125  and  ÿ235  are  added  to  the  set  M.  Combining  them  into  a  grid  
element  ÿ123  leads  to  the  preservation  of  grid  conformity.  All  triangles  now  have  
the  same  level  of  refinement,  but  the  set  M  still  contains  the  triangle  ÿ346.  Now  it  
can  be  combined  with  the  grid  element  ÿ136  and  get  a  triangle  ÿ134.  As  a  result,  
we  have  a  coarsened  conformal  grid.

ÿ1

Now  we  describe  the  process  of  combining  two  neighboring  tetrahedra  ÿ1  
and  ÿ2  into  a  single  grid  element  ÿ.  We  again  use  the  structured  list  U(ÿh)  of  
neighbors  described  in  §  4.3  and  the  vector  C(ÿ)  of  four  numbers  c1(ÿ),  c2(ÿ),  
c3(ÿ)  and  c4(ÿ),  showing  the  violation  of  conformality  at  the  vertex  i.

ru  r(ÿ1)
1:  Using  D(ÿ1),  determine  the  vertex  v  corresponding  to  the  reb

5:  Determine  U(ÿ)  and  correct  U(ÿh)  for  neighbors  ÿ1  and  ÿ2

The  described  coarsening  algorithms  have  one  common  feature.  If  some  grid  
element  ÿ  needs  to  be  coarsened,  and  there  is  no  candidate  for  combining  with  ÿ  
due  to  the  fact  that  the  neighbors  have  a  higher  level  of  refinement,  then  the  
algorithm  imposes  a  requirement  on  the  neighbors  to  be  coarsened  and,  after  
waiting  for  the  required  candidate  for  ÿ,  performs  its  coarsening.  Since  the  
coarsening  of  one  grid  element  

often  leads  to  pairing  of  a  small  number  of  grid  elements,  the  presented  
algorithms  lead  to  a  local  change  in  the  grid.

§  4.4.  Multilevel  Coarseness  Algorithm

ÿ2

ÿ1

ÿ1

ÿ2
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rom  
In  contrast  to  the  two-dimensional  case,  when  the  tetrahedron  ÿ1  is  coarsened,  

there  is  not  enough  information  about  which  grid  element  ÿ2  it  can  be  combined  
with.  It  is  also  necessary  to  know  the  number  of  the  vertex  v,  which  will  be  
removed  when  a  new  tetrahedron  is  formed,  see  condition  4.  It  cannot  be  
determined  from  D(ÿ1)  and  D(ÿ2).  Therefore,  during  the  bisection,  this  number  is  

stored  as  the  value  of  the  elements  h(1)  (z)  and  h(1)  (z).  When  coarsening,  the  
common  vertex  v  is  removed  from  the  grid.  The  segment  connecting  h(2)  (z)  with  
h(2)  h(1)  (z)  and  passing  through  (z)  becomes  a  split  edge  in  the  tetrahedron  ÿ.  The  labeled  edges  of  ÿ  will  be  
those  that  were  decomposable  for  ÿ1  and  ÿ2.  If  for  ÿ1  and  for  ÿ2  the  split  and  
labeled  edges  lie  in  different  planes,  while  the  singular  edges  of  ÿ  lie  in  the  same  
plane,  then  we  define  s(ÿ)  =  1;  otherwise,  s(ÿ)  =  0.  The  operation  of  combining  
two  tetrahedra  will  again  be  denoted  by  (4.4.1),  and  the  

procedure  for  coarsening  the  tetrahedralization  of  ÿh  by  (4.4.2).  The  
coarsening  algorithm  is  applied  only  to  tetrahedralization,  in  which  there  are  
elements  that  differ  from  the  tetrahedra  of  the  initial  mesh,  i.e.,  obtained  as  a  
result  of  bisection.  Initially,  we  can  assume  that  for  each  grid  element  ÿ  the  list  of  
its  nearest  neighbors  U(ÿ)  is  already  defined  and  the  set  ÿ(v)  is  known  for  each  
node.

ÿ1

ÿ1
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2:  Find  a  common  vertex  v1  for  ÿ1  and  ÿ2  other  than  v  3:  Determine  
V(ÿ)  from  V(ÿ1)  and  V(ÿ2)  4:  Set  r(ÿ)  equal  to  
the  local  number  of  vertex  ÿ,  respectively
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3:  loop  over  n  =  1, ...,  K  4:  
Calculate  the  function  s(xÿ,  tn)  for  each  element  5:  Set  V  =  Vnÿ1  and  T  =  
T  nÿ1

h(1)  (z)  1:  Find  the  mesh  vertex  v  corresponding  to  2:  Determine  
V(ÿ)  from  V(ÿ1)  and  V(ÿ2)  from  v  3:  Assign  number  r(ÿ)  to  the  
edge  connecting  the  nodes  corresponding  to  h  (2)  (z)  and  h(2)  (z)  4:  Determine  l1(ÿ),  

l2(ÿ)  and  s(ÿ)  from  

D(ÿ1)  and  D(ÿ2)  5:  Determine  U(ÿ)  and  adjust  U(ÿ  h)  at  neighbors  

ÿ1  and  ÿ2  6:  Remove  ÿ1  and  ÿ2  from  sets  ÿ(v),  where  v  ÿ  V(ÿ1)  V(ÿ2)  7:  Add  ÿ  to  
sets  ÿ(v),  where  v  ÿ  V( ÿ1)  V(ÿ2)  and  v  =  v

7:

eleven:

Algorithm  28.  Coarseness  of  tetrahedra  ÿ  =  G(ÿ1,  ÿ2)  and  modification  of  auxiliary  
information  about  the  mesh

1:  Given  a  quasi-uniform  mesh  ÿ0h(V0,T  0)  with  step  d0  2:  Determine  labeled  
edges  in  triangles  or  binary  flags,  split  and  labeled  edges  in  tetrahedra

9:

10:

Form  a  set  M  ÿ  T  from  elements  ÿ  satisfying  the  condition  diam(ÿ)  >  s(xÿ,  tn)  
if  set  M  is  not  empty  then  ÿnh(Vn,  T  n)  =  
Bisection_method  ÿnh(V,  T),  M  Set  V  =  

Vn  and  T  =  Tn.  Go  to  step  6  end  if  Output  V  and  T  Generate  a  

set  M  ÿ  T  from  elements  ÿ  satisfying  diam(ÿ)  <  s(xÿ,  tn)  if  
set  M  

is  not  empty  then  

ÿnh(Vn,  T  n)  =  Coarse_method  ÿnh( V,  T),  M  Put  V  =  Vn  and  T  =  T  n.  Go  to  
step  12  end  if  17:  end  loop

13:

16:

ing

ÿ1

Rice.  4.19.  Circular  front  movement  centered  at  the  bottom  left

12:

§  4.5.  Algorithms  for  constructing  dynamic  grids

ÿ2

6:

14:

15:

ÿ1

Let  us  consider  the  construction  in  the  domain  ÿ  of  a  set  of  grids  ÿnh,  in  which  the  
local  size  of  the  grid  element  is  determined  by  the  grid  step  function  s(x,  tn).  The  function  

s(x,  t)  can  be  piecewise  constant,  for  example,  to  track  the  motion  of  a  shock  wave  in  a  
liquid  or  the  propagation  of  a  crack  in  a  solid.  In  general,  s(x,  t)  is  determined  in  terms  of  

a  posteriori  error  estimates.  Let  ÿ0h  be  a  given  initial  quasi-uniform  triangulation  or  
tetrahedralization  of  the  domain  ÿ  with  step  d0.  The  process  of  

creating  dynamic  grids  can  be  schematically  represented  in  the  form  of  Algorithm  29.  
The  membership  of  a  grid  element  ÿ  in  the  set  M  depends  on  the  value  s(xÿ,  tn)  at  its  

geometric  center  xÿ.  The  process  of  constructing  a  dynamic  mesh  is  a  repeated  

application  of  refinement  and  coarsening  procedures.  The  essence  of  the  process  is  that,  

having  first  constructed  a  grid  that  condenses  to  a  certain  subdomain,  then  we  can

119

The  described  algorithms  for  multilevel  hierarchical  refinement  and  coarsening  of  
triangular  and  tetrahedral  meshes  are  convenient  tools  for  constructing  dynamic  meshes.  
They  make  it  possible  to  quickly  rebuild  the  grid  when  modeling  nonstationary  processes,  
adapting  it  to  the  features  of  a  changing  solution.

Algorithm  29.  Building  a  dynamic  mesh

8:
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§  5.1.  Principles  of  organizing  algorithms

places.

Chapter  5

Let  ÿh(V,  T )  denote  the  computational  grid  with  the  set  of  nodes  V  and  the  set  of  
elements  (simplices)  T .  Let  N(ÿh)  be  the  number  of  simplices  ÿ  in  this  grid.  Recall  that  
we  use  the  term  "element"  or  "simplex"  as  a  generic  term  for  triangle  and  tetrahedron.  
The  first  important  principle  of  organizing  algorithms  for  rebuilding  the  grid  ÿh  is  the  
locality  of  basic  

operations.  Each  mesh  modification  affects  only  a  few  simplices,  opening  up  the  
possibility  of  using  efficient  parallelization  techniques.  The  grid  can  be  modified  
independently  and  simultaneously  in  several

Rice.  4.20.  Motion  of  a  point  feature

Locality  is  also  the  key  to  developing  robust  and  efficient  algorithms.  First,  you  
can  analyze  several  options  for  changing  the  mesh  topology  and  choose  the  best  one.  
Secondly,  our  experience  shows  that  consistent  change

REBUILDING  SIMPLICIAL  GRIDGES  VIA  LOCAL  MODIFICATIONS

coarsen  it  in  the  region  of  condensation,  and  then  refine  it  again  in  another  subregion  
without  rebuilding  the  entire  mesh.  Acting  in  this  way,  one  

can  model  both  the  movement  of  an  entire  front  (Figure  4.19)  and  the  movement  
of  some  local  feature  (Figure  4.20).  The  use  of  hierarchically  nested  grids  provides  
efficient  reinterpolation  of  grid  functions  in  the  finite  element  solution  of  nonstationary  
partial  differential  equations  on  dynamic  grids.

This  chapter  will  describe  methods  for  rebuilding  triangular  and  tetrahedral  meshes.  
The  algorithms  described  in  the  previous  chapters  are  mainly  focused  on  the  
construction  of  regular  grids.  In  some  applied  problems,  it  becomes  necessary  to  
construct  grids  with  special  properties,  for  example,  anisotropic  grids,  in  which  the  
simplices  are  strongly  elongated  along  the  boundary  of  the  region,  the  shock  wave  
front,  or  grids  that  thicken  towards  the  destruction  zone.  The  presented  set  of  algorithms  
makes  it  possible  to  build  such  grids  by  locally  modifying  the  elements  of  the  original  
grid.  In  addition  to  this,  the  technology  of  local  modifications  can  be  used  to  unravel  
the  mesh,  build  a  mesh  with  desired  properties,  and  adapt  the  mesh  to  a  given  mesh  
solution.

Since  the  computational  complexity  of  re-meshing  is  proportional  to  the  number  
of  local  modifications,  the  distribution  of  work  among  several  processors  is  greatly  
simplified.  For  example,  synchronization  of  processors  is  possible  after  each  local  
modification,  i.e.,  almost  immediately  after  the  processor  receives  this  command.
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§  5.2.  Rebuilding  triangulations

3

then  to  the  third,  and  so  on  (see  §  5.2).  This  approach  requires  ordering  the  
simplices  in  ascending  order  of  quality  using  the  methods  described  in  §  2.3.

Q(ÿ).

i=1

fictions.  The  principle  of  monotonic  increase  in  mesh  quality  says:

Recall  that,  according  to  the  notation  introduced  in  §  2.1,  normal  font  (v)  is  used  
to  designate  a  vertex  as  a  mesh  object,  and  bold  font  (v)  is  used  for  the  vertex  
spatial  coordinate  vector  v.

123

The  quality  of  a  simplex  is  close  to  1  if  its  shape  and  size  in  the  vicinity  of  a  
particular  point  x  ÿ  ÿ  in  the  computational  domain  are  close  to  the  parameters  
specified  by  the  user.  For  example,  for  a  regular  grid,  it  is  natural  to  require  that  
Q(ÿ)  =  1  for  an  equilateral  (regular)  simplex  of  diameter  h(x  ÿ),  where  the  function  
h(x)  is  given  by  users  and  x  ÿ  denotes  the  geometric  center  of  the  simplex.  The  
mesh  quality  is  calculated  in  the  same  way  as  before:

Similarly,  the  quality  of  an  arbitrary  set  of  simplex

0  <  Q(ÿ)  1.

ÿ(vi).

The  first  basic  algorithm  puts  a  point  in  the  middle  of  an  edge  of  the  triangle  
ÿ,  splitting  ÿ  and  the  adjacent  triangle  in  half.  Rice.  5.1  illustrates  the  operation  of  
this  algorithm  for  the  internal  mesh  edge  e12,  common  to  triangles  ÿ  and  ÿ.  
Algorithm  30  describes  the  first  basic  algorithm  for  triangle  ÿ.  Algorithm  30  is  
easily  generalized  to  the  case  of  a  triangle  ÿ  

with  boundary  edges.  If  e  is  a  boundary  edge,  then  the  neighboring  triangle  
ÿ  does  not  exist  and  Q0  =  Q(ÿ).  Splitting  a  boundary  edge  may  also  require  
updating  the  list  of  boundary  edges.  It  is  possible  that  algorithm  30  will  never  
perform  step  5.  In  this  case,  we  move  on  to  the  next  

basic  operation  to  improve  the  quality  of  ÿ.  The  computational  domain  model  
can  be  specified  using  curvilinear  boundaries.  In  this  case,  an  additional  grid  
validation  

check  must  be  included  in  the  basic  algorithm  30 .  Assume  that  the  edge  
e12  with  vertices  v1  and  v2  lies  on  some  curvilinear  boundary  (internal  or  
external),  and  suppose

Ch.  5.  Rearrangement  of  simplicial  grids

If

The  minimum  set  of  data  structures  that  define  a  triangular  mesh  includes  
three  structured  lists  for  triangles,  boundary  edges,  and  node  coordinates.  
Rebuilding  the  grid  will  require  several  auxiliary  data  structures,  which  will  be  
described

Thus,  the  quality  of  the  mesh  is  the  same  as  the  quality  of  the  worst  case

Q(ÿ(v))  =  min

ÿÿÿh

Basic  operations  change  the  grid  inside  the  superelement  ÿ(ÿ123).  The  grid  at  
the  boundary  ÿ(ÿ123)  and  in  the  remaining  computational  domain  does  not  
change.  Based  on  this  property,  one  can  construct  a  reliable  parallel  algorithm  
for  rebuilding  a  triangular  mesh.

Q(i)(ÿh)  Q(j)(ÿh),

The  second  important  principle  of  organizing  mesh  rebuilding  algorithms  is  
the  monotonic  increase  in  mesh  quality.  Recall  that  the  concepts  of  the  quality  
of  a  grid  Q(ÿh)  and  the  quality  of  a  simplex  Q(ÿ)  were  introduced  in  §  2.1  for  
regular  grids.  In  §  6.2  these  concepts  will  be  generalized  to  the  case  of  anisotropic  
meshes.  Since  we  do  not  use  the  exact  formula  for  Q(ÿ)  in  this  chapter,  we  will  
simply  assume  that  the  procedure  for  calculating  the  quality  of  a  simplex  is  
known,  and  that

meshing  in  spatially  unrelated  places  ultimately  requires  fewer  local  modifications  
than  sequential  meshing  around  neighboring  elements.

Q(ÿh)  =  min

cos  coincides  with  the  quality  of  the  worst  simplex  in  this  set.

Denote  by  Q(i)(ÿh)  the  mesh  quality  after  i  local  modi

simplex  in  the  grid.

ÿÿÿ(v)

§  5.2.  Rebuilding  triangulations

Reliable  reconstruction  of  a  triangular  grid  requires  the  use  of  both  algorithms  
that  change  the  topology  of  the  grid  and  algorithms  that  change  the  shape  of  
triangles.  Consider  a  triangle  ÿ(v1,  v2,  v3)  (or  ÿ123  for  simplicity  of  notation)  with  
vertices  v1,  v2  and  v3  and  five  basic  local  algorithms  to  improve  its  quality.  We  
describe  the  basic  algorithms  for  a  triangle  ÿ  located  strictly  inside  the  region.  
The  generalization  of  these  algorithms  to  the  boundary  triangle  is  discussed  in  
the  comments  to  the  algorithms.  Let  ÿ(ÿ123)  denote  the  set  of  triangles  including  
ÿ123  and  those  of  its  neighbors  that  have  at  least  one  point  

in  common  with  ÿ123:

ÿ(ÿ123)  =

Q(ÿ).

below.

122

Note  that  the  last  formula  does  not  guarantee  that  the  mesh  quality  will  tend  to  1  
with  an  increase  in  the  number  of  local  modifications,  since  the  mesh  quality  can  
only  be  increased  by  increasing  the  quality  of  the  worst  mesh  element.  
Unfortunately,  there  are  cases  when  local  algorithms  for  modifying  the  mesh  
around  the  worst  simplex  cannot  improve  its  quality.  In  these  cases,  local  
algorithms  are  applied  to  the  second  worst  mesh  simplex,

For  example,  for  a  superelement  ÿ(v)  formed  by  simplices  with  a  common  vertex  
v,  we  have

i  <  j.
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v5

v2

v3

Algorithm  30.  Putting  a  node  on  an  edge  of  a  triangle

(5.2.1)

and  intermediate  values  of  t  define  a  point  on  a  curvilinear  edge.  The  parameters  
t1  and  t2  can  be  stored  in  an  additional  structured  array  of  boundary  edges.  The  
coordinates  of  the  midpoint  of  the  edge  e12  and  the  point  projected  onto  the  
curvilinear  boundary  are  calculated  as  follows:

v1  =  F(t1),

§  5.2.  Rebuilding  triangulations

v  5

1:  loop  over  all  edges  e  of  triangle  ÿ  2:  Find  
neighboring  triangle  ÿ  with  vertices  v1,  v2  and  v4  as  shown  in  fig.  5.1.  

Determine  Q0  =  min{Q(ÿ),  Q(ÿ)}  Put  a  test  node  v5  in  the  middle  of  
the  edge  e  and  calculate  the  qualities  of  triangles  ÿ315,  ÿ235,  ÿ145  and  
ÿ425.  Define  Q1  =  min{Q(ÿ315),  Q(ÿ235),  Q(ÿ145),  Q(ÿ425)}  if  Q1  >  
Q0  then  Add  node  v5  to  the  grid  and  replace  triangles  
ÿ  and  ÿ  with  

triangles  ÿ315,  ÿ235,  ÿ145  and  ÿ425.  Finish  algorithm  6:  end  if  7:  
end  loop

v1

Let  Sÿ315  denote  the  algebraic  area  of  the  triangle  ÿ315:

that  each  point  of  this  edge  is  mapped  to  a  single  point  of  the  curvilinear  
boundary.  In  practice,  for  each  curvilinear  boundary,  it  is  convenient  to  use  a  one-
parameter  function  F(t)  such  that

124

divided  as  a  set  of  points

v  5

v5

Rice.  5.2.  Two  cases  of  v5  node  projection  onto  an  external  curvilinear  boundary  
(a,  b)  and  an  admissible  set  of  v5  node  positions  (c,  shaded  area)

where  det( )  denotes  the  determinant  of  the  2  ×  2  matrix  composed  of  the  vectors  
v1  ÿ  v3  and  v5  ÿ  v3.  Geometric  interpretation  of  this  determinant  through  the  
vector  product

v2

4:

=  (v1  +  v2)/2,

v3abc  v3

Rice.  5.1.  Local  modification  of  mesh  topology  after  v5  node  addition

3:

v2  =  F(t2),

Sÿ315  =  12  det{v1  ÿ  v3,  v5  ÿ  v3},

shows  that  the  algebraic  area  differs  from  the  ordinary  area  of  a  triangle  only  in  
sign.  Both  definitions  of  area  are  the  same  when  the  vertices  of  the  triangle  are  
ordered  counterclockwise  (when  looking  at  the  triangle  from  above).  Consider  
auxiliary  triangles  constructed  using  v5  

instead  of  v5.  The  grid  remains  correct  if  the  algebraic  areas  of  the  
constructed  triangles  (ÿ315  and  ÿ235)  have  the  same  sign  as  the  algebraic  
areas  of  the  corresponding  auxiliary  triangles.  A  more  detailed  analysis  shows  
why  the  algebraic  area  method  leads  to  correct  mesh  verification.  Consider  first  
the  case  when  the  

neighboring  triangle  ÿ  does  not  exist.  The  straight  line  given  by  the  edge  e23  
splits  the  plane  into  two  half-planes.  Let  ÿ1  be  the  half-plane  containing  the  vertex  
v1.  This  half-plane

ÿ1  =  x  ÿ  R2 :  det{x  ÿ  v2,  x  ÿ  v3}  >  0 .

Ch.  5.  Rearrangement  of  simplicial  grids

v  5

A  curvilinear  boundary  can  lead  to  both  a  regular  grid  (a)  and  an  inverted  grid  (b).

det{v1  ÿ  v3,v5  ÿ  v3}  =  (v1  ÿ  v3)  ×  (v5  ÿ  v3)

v1

125

For  a  linear  function  F(t),  the  points  v5  and  v5  coincide.  For  a  smooth  function  
F(t),  the  second  formula  gives  a  node  located  close  to  v  5.  Otherwise,  various  
methods  of  projecting  the  midpoint  v5  onto  a  given  curve  can  be  used.  Once  the  
v5  node  is  defined,  the  correctness  of  the  mesh  needs  to  be  

verified.  As  shown  in  fig.  5.2,  the  projection  of  node  v5  on  the  outside

5:

v5  =  F((t1  +  t2)/2).
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We  construct  the  set  D  as  the  intersection  of  these  half-planes:

=  F((t1  +  t2)/2)  leads  to  a  regular  grid  if  v5  ÿ  D.

sign  when  v5  lies  in  the  half-plane  ÿ2.  Thus,  the  preservation  of  the  sign  of  the  algebraic  
areas  is  equivalent  to  the  fulfillment  of  both  conditions,  i.e.,  the  node  v5  belongs  to  the  set  
D.  According  to  Lemma  5.2.1,  we  conclude  that  the  grid  is  correct.

v5

v4

D  =  ÿ1  ÿ  ÿ2  ÿ  ÿ3  ÿ  ÿ4.

ÿ4  =  x  ÿ  R2 :  det{x  ÿ  v4,  x  ÿ  v2}  >  0 .

127

The  set  D  is  shown  in  fig.  5.2,  c.  Note  that  this  set  is  not  limited.  Lemma  5.2.1.  Under  the  
conditions  of  exact  

arithmetic,  the  projection  v5  =

To  determine  the  correct  sign  of  the  algebraic  area,  we  apply  the  algorithms  described  
in  §  3.3.  These  algorithms  use  the  function  d(v1,  v2,  v3)  which  returns  either  the  correct  
sign  of  the  algebraic  area  S  ÿ123  or  zero  if  rounding  errors  could  lead  to  an  incorrect  
result.  For  example,  a  triangle  and  a  line  segment  that  do  not  intersect  may  be  
misinterpreted  as  intersecting.  Errors  of  this  type  are  acceptable  in  re-meshing,  since  
they  only  narrow  the  set  D.  Therefore,  in  the  worst  case,  this  basic  operation  will  not  be  
performed.  The  use  of  the  d(v1,  v2,  v3)  function  is  also  recommended  for  other  basic  
operations  involving  the  algebraic  areas  of  triangles.

v1

v2

Consider  the  case  where  the  edge  e12  is  part  of  an  internal  curvilinear  boundary  (see  
Fig.  5.3).  We  define  two  additional  half-planes  associated  with  the  edges  e14  and  e42:  ÿ3  
=  x  ÿ  R2 :  det{x  ÿ  v1,  x  ÿ  v4}  >  0

Ch.  5.  Rearrangement  of  simplicial  grids

Proof.  According  to  the  definition  of  the  half-plane  ÿ1,  the  algebraic  area  S  ÿ235  
does  not  change  sign  when  the  node  v5  lies  in  this  half-plane.  Similarly,  the  algebraic  
area  S  ÿ315  does  not  change

Lemma  5.2.1  remains  valid,  but  only  with  a  new  definition  of  the  set  D.  Lemma  5.2.2  
will  also  be  true  if  we  compare  the  signs  of  the  algebraic  areas  of  four  auxiliary  triangles  
with  a  common  vertex  v5  and  four  triangles  with  a  common  vertex  v5.  The  second  basic  
algorithm  is  applied  to  a  pair  of  triangles  that  share  an  edge.  If  the  union  of  these  

triangles  forms  a  strictly  convex  quadrilateral,  then  there  exists  a  second  partition  of  
this  quadrilateral  into  two  triangles.  Algorithm  31  determines  which  of  the  partitions  
improves  the  quality  of  the  mesh.

D  =  ÿ1  ÿ  ÿ2.

v5

v3

v5

v3

The  set  D  is  shown  in  fig.  5.3,  c.  Note  that  this  set  is  bounded,  in  contrast  to  the  previous  
case.  As  shown  in  the  figure,  if  the  union  of  triangles  ÿ  and  ÿ  is  not  convex,  then  the  set  
D  includes  only  a  part  of  these  triangles.  Otherwise,  the  set  D  coincides  with  the  interior  
of  the  convex  quadrilateral  ÿ  ÿ  ÿ

ÿ2  =  x  ÿ  R2 :  det{x  ÿ  v3,  x  ÿ  v1}  >  0 .

v5

Now  consider  the  partition  of  the  plane  into  two  half-planes  of  the  straight  line  defined  by  
the  edge  e31.  Let  ÿ2  be  the  half  plane  containing  the  vertex  v2:

Lemma  5.2.1  gives  a  sufficient  condition  for  the  location  of  v5.  The  same  condition  
becomes  necessary  when  both  neighboring  triangles  exist.  Otherwise,  the  analysis  of  
the  necessary  condition  becomes  nontrivial.  Lemma  5.2.2.  Let  ÿ315  and  ÿ235  be  auxiliary  
triangles  constructed  using  v5  

instead  of  v5.  Then  the  grid  remains  correct  if  the  algebraic  areas  of  the  triangles  
ÿ315  and  ÿ235  have  the  same  sign  as  the  algebraic  areas  of  the  corresponding  auxiliary  
triangles.

We  construct  the  set  D  as  the  intersection  of  four  half-planes:

Proof.  Consider  Fig.  5.2  and  the  line  defined  by  the  edge  e23.  This  line  divides  the  
plane  into  two  half-planes.  If  the  nodes  v5  and  v1  are  in  different  half  planes,  then  the  
triangle  ÿ153  will  intersect  the  edge  e32.  Thus,  the  first  sufficient  condition  is  that  the  
node  v5  must  be  in  the  half  plane  ÿ1.  Consider  the  line  given  by  the  edge  e31  and  the  
triangle  ÿ325.  Similar  reasoning  leads  to  the  conclusion  that  the  node  v5  must  be  in  the  
half-plane  ÿ2.  Thus,  if  

the  node  v5  belongs  to  the  set  D,  then  the  interiors  of  no  two  triangles  intersect.  
Therefore,  the  grid  is  correct.

And

§  5.2.  Rebuilding  triangulations

v1

v2

Rice.  5.3.  Two  cases  of  v5  node  projection  onto  an  internal  curvilinear  boundary  (a,  b)  
and  an  admissible  set  of  v5  node  positions  (c)

v1

126

Algorithm  31  can  be  easily  generalized  to  the  case  of  a  triangle  ÿ  with  edges  on  the  
interior  boundaries.  Since  such  edges  cannot  be  removed  from  the  mesh,  they  are  not  
considered  in  the  algorithm.

v4

.
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4:

ÿQÿ  
ÿx

1:  loop  over  all  edges  e  of  triangle  ÿ  2:  Find  neighboring  

triangle  ÿ  with  vertices  v2,  v3,  and  v4  as  shown  in  fig.  5.4.  If  triangles  ÿ  and  ÿ  do  not  form  a  

strictly  convex  quadrangle,  then  go  to  the  next  edge  Determine  Q0  =  min{Q(ÿ),  Q(ÿ )}  

Calculate  the  qualities  of  triangles  ÿ124  and  ÿ134.  Determine  Q1  =  min{Q(ÿ124),  

Q(ÿ134)}  if  Q1  >  Q0  then  Replace  triangles  ÿ  and  
ÿ  with  triangles  ÿ124  and  ÿ134.  End  algorithm  7:  end  if  8:  end  loop

Qÿ(x1  +  ÿx,  y1) .

(5.2.3)

The  node  v1  is  shifted  in  the  direction  of  the  approximate  gradient  until  the  maximum  Qÿ  is  

reached:

§  5.2.  Rebuilding  triangulations

ÿ(v1).  As  a  rule,  the  quality  Q(ÿ(v1))  is  a  non-linear  function  of  the  coordinates  of  the  vertex  v1.  

In  this  case,  the  search  for  the  optimal  position  v1  will  require  the  use  of  fairly  complex  

computational  methods.

ÿ

Rice.  5.5.  Local  modification  of  the  mesh  by  moving  node  v1

(5.2.2)

|vi  ÿ  vj|/100}.

Ch.  5.  Rearrangement  of  simplicial  grids

5:

ÿQÿ  

ÿy

The  edge  change  operation  is  sometimes  called  a  flip  and  has  another  interesting  

application.  Flip  can  be  used  to  build  a  Delaunay  triangulation  based  on  an  existing  mesh.  To  

do  this,  we  check  the  Delaunay  condition  for  a  pair  of  neighboring  triangles  ÿ  and  ÿ,  and  if  the  

condition  is  not  met,  then  we  replace  them  with  triangles  ÿ124  and  ÿ134  (Fig.  5.4).  The  

theoretical  substantiation  of  this  approach  is  based  on  the  following  theorem  [18].  Theorem  

5.2.1.  A  Delaunay  triangulation  can  be  obtained  from  any  conformal  triangulation  by  successively  

applying  the  edge  replacement  algorithm  to  a  pair  of  

triangles  that  do  not  satisfy  the  Delaunay  condition.  The  third  basic  algorithm  changes  the  

position  of  the  mesh  vertex.  Let  v1  be  one  of  the  vertices  of  the  triangle  ÿ.  Consider  a  

superelement  ÿ(v1)  formed  by  triangles  with  a  common  vertex  v1,  as  shown  in  Fig.  5.5,  a.  On  
fig.  5.5b ,  

the  node  v1  is  placed  at  the  center  of  mass  of  the  superelement  ÿ(v1).  This  approach  is  

used  in  methods  for  improving  the  shape  of  triangles.  In  general,  the  optimal  position  of  node  

v1

Qÿ(x1,  y1  +  ÿy)  ÿy
ÿx

To  search  for  this  maximum,  various  methods  can  be  used,  for  example,  the  bisection  method  

or  various  modifications  of  the  Levenberg–Marquardt  method  [65].  Note  that  the  node  v1  cannot  

go  beyond  the  superelement,  since  the  quality  Qÿ  tends  to  zero  as  v1  approaches  the  boundary.

3:

129

Since  the  position  of  neighboring  nodes  can  be  changed  in  the  process  of  constructing  the  

optimal  mesh,  there  is  no  need  to  use  exact  optimization  methods.  Algorithm  32  solves  the  

problem  of  the  optimal  vertex  position  approximately.  Let  v1  =  ( x1,  y1)  and,  for  simplicity,  Qÿ  =  

Q(ÿ(v1)).  Denote  the  approximate  gradient  of  the  quality  function  Qÿ  by  ÿhQÿ.  The  components  

ÿhQÿ  are  calculated  based  on  finite  differences:

,

v1 :=  v1  +  ÿ  ÿhQÿ,  ÿ  0.

ÿ

vi,vjÿÿ(v1)

should  increase  the  quality  of  the  worst  triangle  in  superelement

Algorithm  31.  Edge  replacement

Rice.  5.4.  Local  modification  of  the  mesh  topology  after  replacing  edge  e23  with  edge  e14

ÿx  =  ÿy  =  min{ ÿ,  min

6:

128

A  reasonable  value  for  increments  ÿx  and  ÿy  is  the  square  root  of  machine  precision:  ÿx  =  ÿy  =  

ÿ.  For  the  reliability  of  the  algorithm,  it  is  necessary  to  check  that  the  calculated  increment  is  
significantly  less  than  the  diameter  of  the  superelement,  for  example,  less  than  1%  of  the  length  

of  the  minimum  edge:
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However,  moving  a  node  even  within  a  superelement  can  confuse  the  mesh.

4:

The  maximum  possible  displacement  of  the  vertex  v1  in  the  direction  ÿhQÿ  that  
does  not  violate  the  topology  of  the  superelement  ÿ(v1)  (see  step  4  of  Algorithm  32)  
requires  finding  the  intersection  of  the  line  defined  by  this  direction  with  the  set  D.  
Another  method  is  based  on  comparing  the  signs  of  the  algebraic  areas  of  triangles  ÿi  
and  ÿi.  They  have  the  same  sign  if  v1  is  inside  D. Removing  the  boundary  edge  of  the  mesh  is  also  wise  to  avoid  when  the  only  

edge  that  represents  an  important  part  of  the  mesh  is  removed.

131

3:

telny.

The  generalization  of  Algorithm  33  to  the  case  of  a  triangle  with  boundary  edge  
e12  requires  additional  analysis.  Removing  this  edge  from  the  mesh  can  lead  to  a  
significant  change  in  the  boundary.  Even  a  slight  local  change  in  the  boundary  can  
accumulate  from  operation  to  operation.  This  should  be  kept  in  mind  when  developing  
numerical  methods,  in  which  the  preservation  of  the  area  of  the  computational  domain  
or  its  subdomain  is  especially  important.

The  edge  removal  algorithm  is  the  most  complex  of  the  basic  algorithms  
discussed,  since  it  modifies  a  larger  number  of  triangles.  Nevertheless,  there  is  a  
simple  method  for  checking  the  correctness  of  the  modified  grid.  Not  surprisingly,  it  
is  again  based  on  checking  the  algebraic  areas  of  modified  triangles.  The  modified  
grid  remains  correct  if  the  algebraic  areas  of  the  triangles  retain  their  sign.  Consider,  
for  example,  the  triangle  ÿ263  (Fig.  5.6,  a),  which  goes  into  the  triangle  ÿ163  (Fig.  
5.6,  b).  Let  the  algebraic  areas  of  these  triangles  be

The  fourth  basic  algorithm  removes  an  edge  from  the  mesh.  Algorythm  33  can  
be  interpreted  as  follows.  Let  us  start  moving  the  vertices  of  the  edge  towards  each  
other,  possibly  with  different  speeds.  When  vertices  merge  into  one,  the  topology  of  
the  mesh  changes.  As  shown  in  fig.  5.6,  two  pairs  of  edges  merge,  each  into  one  
edge,  and  the  two  triangles  disappear  from  the  grid.

Algorithm  32  can  be  easily  generalized  to  the  case  of  a  triangle  with  vertices  lying  
on  the  inner  and  outer  boundaries.  Such  mesh  nodes  can  only  move  along  boundary  
edges.  Movement  along  curvilinear  edges  should  be  accompanied  by  checking  the  
correctness  of  the  grid.  As  before,  for  this  it  suffices  to  control  the  conservation  of  the  
sign  of  the  algebraic  area  of  the  triangles  ÿ1, ...,  ÿn.

Rice.  5.6.  Local  mesh  modification  by  removing  edge  e12

130

D  =  ÿ1  ÿ  ÿ2  ÿ ...  ÿ  ÿn,

Note  that  such  configurations  of  the  superelement  ÿ(v1)  are  possible,  when  the  
motion  along  the  approximate  gradient  does  not  increase  the  quality  of  Qÿ.  In  this  
case,  ÿ  =  0,  and  the  algorithm  proceeds  to  the  next  vertex  of  the  triangle  ÿ.  If  ÿ  =  0  for  
all  vertices  of  ÿ,  then  we  apply  the  following  basic  operation  to  this  triangle.

Consider  the  case  where  v1  is  an  internal  mesh  node  with  the  initial  position  v1  
and  the  final  position  v1.  Let  ÿi  be  triangles  with  a  common  vertex  v1,  ÿi  be  triangles  
with  a  common  vertex  v1,  and  ei  be  a  boundary  edge  of  the  superelement  ÿ(v1)  
belonging  to  the  triangle  ÿi.  This  edge  defines  a  line  that  divides  the  plane  into  two  
half-planes.  Let  ÿi  be  the  half-plane  containing  the  point  v1.  We  define  the  set  D  as  
follows:

which  maximizes  the  quality  Qÿ  If  ÿ  >  
0,  then  store  the  new  position  of  the  node  v1  in  the  grid  and  finish  Algorithm  
7:  end  loop

§  5.2.  Rebuilding  triangulations

1:  loop  over  all  nodes  v1  of  the  triangle  ÿ  2:  Find  
the  triangles  ÿ1,  ÿ2, ...,  ÿn  that  form  the  superelement  ÿ(v1).  Let  ÿ=ÿ1,  as  shown  

in  fig.  5.5,  where  n  =  5  Calculate  the  approximate  gradient  ÿhQÿ  using  
formulas  

(5.2.2)  Calculate  the  maximum  possible  displacement  of  the  node  v1  in  the  
direction  ÿhQÿ  that  does  not  violate  the  topology  of  the  superelement.  Let  
ÿ  =  ÿmax  for  this  extreme  position  5:  Find  the  value  of  ÿ  in  the  half-open  
interval  [0,  ÿmax)  that

Algorithm  32.  Node  shift

6:

Ch.  5.  Rearrangement  of  simplicial  grids

where  n  is  the  number  of  triangles  in  the  superelement.  If  the  point  v1  ÿ  D,  then  the  
interior  of  one  of  the  triangles  ÿi  will  intersect  the  interior  of  the  triangle  located  on  the  
other  side  of  the  edge  ei.  Note  that  the  admissible  set  D  coincides  with  the  
superelement  ÿ(v1)  when  it  is  convex.  Otherwise,  D  is  a  subset  of  ÿ(v1),  similar  to  
the  configuration  shown  in  Fig.  5.3.
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Rice.  5.7.  First  local  modification  of  the  mesh  by  deleting  node  v1

9:

The  fifth  basic  algorithm  removes  a  node  from  the  grid  along  with  the  triangles  

containing  it.  The  void  created  in  the  mesh  is  filled  with  a  smaller  number  of  triangles,  which  
are  constructed  using  only  existing  mesh  nodes.  On  fig.  Figure  5.7  shows  that  removing  
the  inner  vertex  v1  reduces  the  number  of  triangles  by  exactly  two.

§  5.2.  Rebuilding  triangulations

new

Rice.  5.8.  Second  local  modification  of  the  mesh  by  deleting  node  v1

the  point  of  view  is  presented  in  [35]  and  allows  one  to  significantly  simplify  the  software  
implementation  of  this  algorithm.  We  distinguish  Algorithms  34  and  33  because  the  new  

superelement  triangulation  ÿ(v1)  at  step  4  of  Algorithm  34  is  not  unique.  An  alternative  new  
triangulation  is  shown  in  fig.  5.8  and  corresponds  to  the  offset  of  node  v1  to  node  v3.  Note  
that  this  basic  operation  is  faster  than  the  edge  removal  operation.  Let  us  dwell  in  more  
detail  on  the  preservation  of  the  topology  of  boundaries  between  different  materials.  Let  in  
Fig.  5.7  triangles  ÿ,  

ÿ2  and  ÿ3  belong  to  one  material,  and  triangles  ÿ4  and  ÿ5  belong  to  another.  This  
means  that  the  edges  e23,  e34  and  e45  must  remain  the  boundary  of  the  first  material  after  
the  operation  of  deleting  node  v1,  i.e.  this  node  can  only  be  moved  to  node  v5  or  to  node  
v2.

6:

First,  it  is  necessary  to  maintain  a  list  of  triangles  ordered  in  ascending  order  of  their  
quality.  Basic  algorithms  change  the  positions  of  triangles  in  this  list,  remove  triangles  from  
the  list

4:

1:  loop  over  all  edges  e  of  triangle  ÿ  2:  Find  
neighboring  triangle  ÿ  with  vertices  v1,  v2  and  v4  as  shown  in  fig.  5.6  3:  Find  triangles  

ÿ1,  ÿ2, ...,  ÿn  that  are:  (a)  

different  from  triangles  ÿ,  ÿ;  (b)  are  included  in  the  superelement  ÿ(v1)  or  ÿ(v2)  Determine  

a  new  common  (virtual)  position  v1  of  the  vertices  (v1  +  v2)

n,

The  combination  of  basic  algorithms  opens  up  wide  possibilities  for  rebuilding  
computational  grids  using  various  criteria  described  in  Chap.  6.  Consider  what  data  
structures  are  required  for  the  efficient  implementation  of  basic  algorithms.

132

2

8:

Algorithm  34  is  a  special  case  of  algorithm  33,  where  the  edge  e15  is  removed  by  
moving  node  v1  to  node  v5.  Such

1

7:

Algorithm  33.  Removing  an  edge

5:

borders.  Such  situations  often  arise  when  using  coarse  grid  approximations  of  a  given  

boundary  and  when  constructing  grids  that  are  strongly  elongated  in  one  direction.  The  
fourth  step  of  Algorithm  33  requires  choosing  a  

common  vertex  v1  for  v1  and  v2.  On  the  one  hand,  it  is  natural  to  consider  the  problem  
of  the  optimal  position  of  the  vertex  v1.  On  the  other  hand,  since  a  similar  problem  is  
considered  in  the  basic  vertex  shift  algorithm,  the  complication  of  Algorithm  33  is  not  

required.  The  optimal  position  of  the  v1  vertex  can  be  achieved  by  sequentially  applying  
two  basic  algorithms.  Therefore,  we  propose  to  consider  1  (v1  +  v2).  only  one  possible  
position  of  this  vertex:  v1  =  2

10:

Ch.  5.  Rearrangement  of  simplicial  grids

v1  and  v2:  v1  =  

Determine  (virtual)  triangles  ÿ1,  ÿ2, ...,  ÿ  by  shifting  the  vertices  v1  and  v2  of  the  

original  triangles  in  v1  If  the  algebraic  areas  of  the  triangles  ÿi  and  ÿi  have  
different  signs  for  at  

least  one  i,  then  remove  all  virtual  objects  and  go  to  the  next  edge  Determine  
the  qualities  Q0  =  min{Q(ÿ1),  Q(ÿ2), ...,  Q(ÿn)}  and  Q1  =  min{Q(ÿ1),  Q(ÿ2), ...,  Q  
(ÿ  n)}  if  Q1  >  Q0  then  Delete  vertex  v2  and  triangles  ÿ,  ÿ  from  the  

grid;  change  vertex  v1  to  v1  and  triangles  ÿi  to  ÿi.  End  algorithm  end  if  11:  end  

loop
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§  5.2.  Rebuilding  triangulations

eleven:

Second,  for  each  triangle  ÿ,  it  is  necessary  to  quickly  find  triangles  in  the  superelement  
ÿ(ÿ).  To  do  this,  several  optimal  methods  with  arithmetic  complexity  O(1)  are  used.  The  
simplest  method  is  to  build  a  structured  nearest  neighbor  list  U(ÿh)  for  each  grid  triangle  
and  modify  it  after  each  basic  algorithm.  The  initial  construction  of  such  a  list  requires  
O(Nf)  arithmetic  operations.  A  detailed  description  of  the  algorithm  for  filling  the  list  U(ÿh)  
is  presented  in  §  4.2.  Each  basic  operation  changes  only  a  few  triangles,  so  updating  

this  list  has  optimal  complexity.  Search

Algorithm  34.  Deleting  a  node

6:

Algorithm  35  requires  four  parameters  Q0,  N1,  N2  and  N3  to  be  chosen.  By  definition,  
the  desired  final  mesh  quality  Q0  1.  Int.  In  Section  6,  we  consider  several  examples  with  
different  definitions  of  the  quality  Q(ÿ)  and  formulate  the  criteria  for  choosing  Q0.  The  
maximum  allowable  number  of  basic  operations,  N1,  controls  the  computational  complexity  
of  the  algorithm  and  plays  an  important  role  in  the  development  of  parallel  meshing  
methods  (see  §  5.4).  For  a  sequential  algorithm,  it  suffices  to  choose  a  number  N1,  
which  is  several  times  greater  than  the  expected  number  of  triangles  in  the  final  mesh.  
The  maximum  allowable  size  N2  of  the  basket  of  stored  triangles  depends  on  the  number  
of  triangles  in  the  initial  and  final  grids.  The  recommended  value  for  N2  is  approximately  
5–10%  of  the  average  number  of  triangles  in  the  grid.  Maximum  allowable

list.

9:

1:  loop  over  all  vertices  v  of  triangle  ÿ  Let  triangles  ÿ1,  
ÿ2, ...,  ÿnÿ1  form  a  superelement  2:  ÿ(v)  with  vertices  v2,  v3, ...,  vn,  as  shown  

in  Fig.  5.7,  where  ÿ=ÿ1  and  n  =  6  loop  i  =  2, ... ,  Split  the  superelement  ÿ(v)  into  virtual  
triangles  ÿ  ÿ  n  are  

not  connected  with  
vi  edges  If  the  signs  of  the  algebraic  areas  of  triangles  ÿk  and  ÿ  with  the  
same  boundary  edge  of  the  superelement  l  are  different  for  at  least  one  k,  then  
go  to  the  next  boundary  vertex  If  the  edges  of  virtual  triangles  do  not  
approximate  
the  original  boundaries,  then  go  to  the  next  vertex  Calculate  local  qualities  
Q0  =  min{Q(ÿ1), ...

triangles  included  in  the  superelement  ÿ(ÿ)  begins  with  the  triangle  ÿ.  After  that,  we  add  
their  nearest  neighbors  from  the  list  U(ÿh)  to  the  already  existing  nonempty  list  of  
triangles,  and  then  the  neighbors  of  neighbors  that  have  a  common  vertex  with  ÿ.  This  
process  is  repeated  as  long  as  such  neighbors  exist.  It  is  easy  to  see  that  this  method  
has  an  optimal  order  of  computational  complexity  if  the  number  of  triangles  in  the  
superelement  ÿ(ÿ)  is  limited.  Thirdly,  the  basic  algorithms  change  the  number  of  basic  
mesh  objects:  nodes,  triangles,  and  boundary  edges.  These  objects  are  represented  by  
structured  lists  

(see  §  2.3).  Adding  a  new  object  to  a  structured  list  is  the  same  as  adding  a  new  row  
to  a  two-dimensional  array.  Deleting  an  object  involves  shifting  all  objects  below  the  
deleted  object  by  one  line.  This  is  a  very  time  consuming  operation  and  should  be  
avoided.  Instead,  we  will  store  an  additional  list  of  deleted  objects,  i.e.  the  numbers  of  the  
corresponding  rows  in  a  structured  array.  When  adding  a  new  object,  we  first  check  for  
free  places  in  the  structured  list,  and  then  fill  them.  If  there  are  no  free  places,  the  new  
object  is  added  to  the  end  of  the  list.  After  the  grid  is  rebuilt,  empty  places  in  the  structured  
list  are  filled,  for  example,  by  renumbering  all  grid  objects.  The  main  stages  of  mesh  
rebuilding  are  presented  in  Algorithm  35.  Let  us  pay  attention  to  step  10  of  this  algorithm,  
which  is  performed  when  none  of  the  basic  algorithms  could  increase  the  quality  of  the  
triangle  ÿ.  The  shift  of  the  pointer  by  one  position  means  that  this  triangle  is  temporarily  
excluded  from  the  analysis  (it  is  put  aside  for  storage  in  the  trash).  During  this  time,  the  
triangles  in  its  vicinity  may  change.  Moreover,  their  change  can  also  affect  the  triangle  ÿ  
itself.  If  this  does  not  happen,  then  the  algorithm  will  return  to  the  triangle  ÿ  when  the  
pointer  is  set  

again  to  the  worst  triangle  in  the  grid,  i.e.  k  =  1.

8:

135

3:

10:

...,  Q(ÿnÿ1)}  and  Q1  =  min{Q(ÿ  1), ...,  Q(ÿ  nÿ3)}  if  Q1  >  Q0  
then  Delete  vertex  

v  from  the  grid.  Replace  triangles  ÿ1,  ÿ2, ...,  ÿnÿ1  with  triangles  ÿ  ÿ  ÿ  
2, ...,  nÿ3.  End  algorithm  end  if  end  loop  12:  end  loop1,

Ch.  5.  Rearrangement  of  simplicial  grids

n

5:

and  add  new  triangles.  These  elementary  operations  require  the  fast  search  algorithms  
within  a  dynamic  list,  described  in  §  2.3.  For  a  list  of  Nf  triangles,  each  elementary  

operation  requires  O(log2  Nf )  arithmetic  operations.  The  mesh  quality  is  a  monotonic  
function  of  the  number  of  successfully  implemented  basic  algorithms.  Unfortunately,  the  
quality  of  a  particular  triangle  can  fluctuate  greatly.  This  is  the  main  reason  for  the  lack  of  
more  efficient  search  methods  inside  a  dynamic

134

4:
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137

until  the  first  successful  algorithm  if  a  

successful  algorithm  is  found  then  Modify  the  

mesh  and  update  the  list  of  triangle  qualities  and  other  auxiliary  lists  else  Move  

the  pointer  k :=  k  +  1.  If  k>N2  or  k  is  greater  
than  

the  number  of  triangles  in  the  mesh,  put  k  =  1  and  m :=  m  +  1  If  m>N3,  go  to  

step  14  end  if  13:  end  loop  14:  Update  structured  lists  of  vertices,  triangles,  
and  boundary  

edges

the  grid  shown  in  fig.  5.9,  b,  was  built  from  the  grid  in  fig.  5.9a,  containing  only  20  triangles.  

The  initial  mesh  is  a  minimal  representation  of  a  square  model  with  two  round  holes.  Note  a  

very  rough  initial  approximation  of  the  holes.  Each  of  them  is  represented  by  four  curvilinear  

ribs.

grids

§  5.2.  Rebuilding  triangulations

9:

Note  that  reliable  rebuilding  of  computational  grids  requires  all  five  basic  algorithms.  We  

will  illustrate  this  statement  with  the  example  of  the  model  shown  in  Fig.  5.9b .  The  initial  quasi  

uniform  mesh  contains  1827  triangles.  Let's  try  to  rebuild  it  into  a  calculated  regular  grid  with  

the  same  number  of  triangles,

10:

which  thickens  to  two  holes.  The  quality  of  the  triangle  Q(ÿ)  is  determined  in  such  a  way  that  

its  diameter  increases  in  direct  proportion  to  the  minimum  distance  from  the  centers  of  the  

holes.  It  would  seem  that  this  can  be  achieved  by  placing  several  additional  nodes  on  the  

boundaries  of  the  holes  and  shifting  the  rest  of  the  grid  vertices  using  the  basic  algorithm  32.  

Nevertheless,  after  13,000  iterations  of  algorithm  35,  the  initial  grid  remained  virtually  

unchanged.  The  final  mesh  is  shown  in  fig.  5.10,  a.  If  we  add  the  basic  algorithms  30,  33  and  

34,  which  add  a  node  and  remove  an  edge  or  node,  we  get  a  mesh  very  similar  to  the  mesh  

shown  in  Fig.  5.10,  b.  Algorithm  35  took  47,287  iterations  to  build  this  grid.  As  we  expected,  

97%  of  the  iterations  involved  shifting  the  grid  nodes.  The  quality  of  this  mesh  is  Q(ÿh)  =  0.73,  

and  the  average  quality  of  the  triangles  is  0.88.

2:  loop  from  1  to  N1  

Take  the  k-th  worst  triangle  ÿ  from  the  list  If  k  =  1  and  Q(ÿ)  Q0,  

then  terminate  the  algorithm  Calculate  the  superelement  ÿ(ÿ)

12:

1:  Calculate  the  qualities  of  the  triangles  and  create  a  block-ordered  list  of  them.  Initialize  

helper  structures.  Choose  the  desired  quality  Q0  for  the  final  mesh,  the  maximum  

allowable  number  of  basic  operations  N1,  the  maximum  allowable  basket  size  N2,  the  

maximum  allowable  number  of  baskets  N3,  set  the  pointer  k  =  1  and  the  counter  m  =  1

the  number  of  bins  N3  allows  the  algorithm  to  terminate  quickly  when  a  further  increase  in  

mesh  quality  is  impossible.  For  example,  the  geometric  features  of  the  computational  domain  

(sharp  corners,  narrow  sections,  etc.)  may  impose  restrictions  on  the  quality  of  triangles.  In  this  

case,  the  baskets  of  triangles  will  contain  the  same  triangles.  We  assume  that  the  number  of  

singular  triangles  is  small  and  use  the  constant  value  N3.  Note  that  N2N3  must  be  greater  than  

the  average  number  of  triangles  in  the  grid.  At  first  glance,  it  seems  strange  that  Algorithm  35  

does  not  require,  as  an  input,  the  desired  number  of  triangles  in  the  final  mesh.  In  fact,  we  

assume  that  this  information  is  contained  in  the  definition  of  the  quality  of  the  grid  and  the  

quality  of  the  triangle,  which  imposes  certain  requirements  on  the  formation  of  Q(ÿ).  In  

other  words,  Q(ÿh)  =  1  only  if  the  mesh  ÿh  contains  the  desired  number  of  triangles.  Algorithm  

35  is  applicable  for  constructing  computational  grids  based  on  a  very  coarse  initial  grid.  For  

example,  quasi-uniform

eleven:
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8:

4:

´

3:

7:

Rice.  5.9.  Construction  of  a  quasi-uniform  grid  based  on  a  coarse  initial

Algorithm  35.  Mesh  rebuilding

6:  Apply  basic  algorithms  to  ÿ  (in  no  particular  order)

Ch.  5.  Rearrangement  of  simplicial  grids

The  parameter  Q0  was  chosen  so  that  the  quality  of  an  isosceles  right  triangle  was  less  

than  Q0.  In  a  number  of  finite  element  methods,  triangles  with  angles  not  exceeding  90ÿ  make  

it  possible  to  construct  numerical  schemes  with  additional  properties,  such  as  the  discrete  

maximum  principle.
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Quasi-uniform  grids  Regular  grids

1.00

Determination  of  specific  node  properties,  in  addition  to  the  data  already  given,  can  

be  automated  if  additional  information  about  the  model  is  available.  For  example,  if  the  

region  boundary  is  represented  by  several  curves,  then  it  is  reasonable  to  fix  the  grid  

nodes  corresponding  to  the  start  and  end  points  of  these  curves.  If  the  boundary  is  defined  

as  a  set  of  edges,  then  the  common  vertex  of  two  edges  forming  an  acute  angle  can  be  

marked  as  fixed.  Special  properties  can  also  be  introduced  for  boundary  edges  and  

triangles.  Additional  information  about  mesh  objects  allows  you  to  effectively  control  the  

mesh  rebuilding  process.  We  will  return  to  this  issue  in  §  5.4.  The  estimation  of  the  

computational  complexity  of  the  algorithm  35  is  made  up  of  the  estimations  of  the  

complexity  of  executing  the  basic  operations  (W1),  the  support  of  various  data  structures  

(W2),  and  searching  

in  dynamic  unstructured  lists  (W3).  The  computational  complexity  of  a  single  basic  

operation  and  the  associated  data  structure  update  is  independent  of  the  grid  size.  

Unfortunately,  fast  searching  in  unstructured  lists  depends  on  the  size  of  the  grid.  

Therefore,  on  very  fine  grids,  one  should  expect  that  W3  W1  +  W2.  Consider  a  sequence  

of  grids  with  an  increasing  number  of  triangles.  Tab.  Figure  5.1  shows  the  relative  cost  of  

one  iteration  of  Algorithm  35  in  constructing  quasi-uniform  meshes  ÿh,  starting  from  the  

very  coarse  mesh  shown  in  fig.  5.9,  a,  as  well  as  when  these  grids  are  rebuilt  into  regular  

grids  ÿh,  condensing  to  holes  and  similar  to  the  

grid  shown  in  Fig.  5.10.  Recall  that  the  dynamic  list  of  triangle  qualities  is  divided  into  

blocks  of  length  O(log2  Nf ),  and  that  an  increase  in  the  number  of  such  blocks  leads  to  an  

increase  in  the  time  of  one  operation  with  this  list.  The  data  presented  in  the  table  shows  

that  W3  begins  to  noticeably  dominate  when  the  number  of  triangles  exceeds  105.

108  357  1.11

time

139

3.36

438,003  3.53

1,066,444  9.05

0.88

Adding  the  last  basic  algorithm  results  in  the  grid  shown  in  fig.  5.10,  b.  A  detailed  
analysis  of  Algorithm  35  shows  that  the  number  of  iterations  has  been  approximately  
halved:  to  22682,  the  mesh  quality  has  increased  to  Q(ÿh)  =  0.78,  and  the  average  quality  

of  triangles  has  increased  slightly:  to  0.89.

11  916

Rice.  5.10.  Reconstruction  of  a  quasi-uniform  grid  into  a  regular  grid  that  thickens  towards  
holes

986  1.00930

138

0.80

Table  5.1  
Relative  average  cost  of  one  iteration  of  the  algorithm  

35

466  742

116  726

Thus,  the  minimal  ability  to  change  the  mesh  topology  allows  it  to  be  rebuilt  in  a  
reasonable  number  of  operations.  Extending  the  set  of  topological  operations  leads  to  
faster  convergence  of  the  algorithm.  Note  also  that  a  complete  re-meshing  requires  several  
iterations  per  mesh  element  (12  in  this  example).  The  optimal  order  of  the  basic  algorithms  
at  step  6  of  Algorithm  35  depends  not  only  on  the  properties  of  the  initial  and  final  grids,  
but  also  on  

the  dynamics  of  the  process.  For  example,  rebuilding  an  anisotropic  grid  with  triangles  
stretched  in  the  horizontal  direction  into  an  anisotropic  grid  with  triangles  stretched  in  the  

vertical  direction  can  occur  through  an  intermediate  quasi-uniform  grid.  At  the  beginning  of  
the  re-meshing  process,  the  first  basic  algorithm  will  be  executed  much  more  often  than  
other  algorithms.  Then  the  fourth  and  fifth  basic  algorithms  will  begin  to  dominate.  
Therefore,  the  optimal  order  of  the  underlying  algorithms  is  practically  impossible  to  
determine  in  advance.  The  vertices  of  the  square  in  fig.  5.10  are  the  singular  points  of  the  
model.  The  grid  nodes  at  the  vertices  of  a  square  are  usually  set  once  and  for  all,  and  the  
underlying  algorithms  must  preserve  their  position.  One  possible  solution  is  to  create  an  
additional  list  of  special  mesh  node  properties  and  slightly  modify  the  underlying  
algorithms.  For  example,  Algorithm  

32  should  not  move  a  grid  node  marked  as  fixed.

9934  1.00

§  5.2.  Rebuilding  triangulations

Nf  (ÿ  h)  timeNf  (ÿh)

Ch.  5.  Rearrangement  of  simplicial  grids

1.84

904  210
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Algorithm  36.  Placement  of  a  node  on  an  edge  of  a  tetrahedron

141

All  basic  operations  change  the  mesh  inside  the  superelement  ÿ(ÿ1234)  
formed  by  tetrahedra  that  have  at  least  one  point  in  common  with  ÿ1234:

The  minimum  set  of  data  structures  that  define  a  tetrahedral  mesh  includes  
three  structured  lists  for  tetrahedra,  boundary  faces,  and  vertex  coordinates.  
Building  additional  data  structures  based  on  this  minimum  information  is  discussed

1:  loop  over  all  edges  e  of  the  tetrahedron  
ÿ  2:  Find  tetrahedra  ÿ1, ...,  ÿn  with  a  common  edge  e,  as  shown  in  fig.  5.1  

and  put  ÿ1  ÿ  ÿ.  Determine  Q0  =  min{Q(ÿ1), ...,  Q(ÿn)}  Put  a  test  node  
v7  in  the  middle  of  the  edge  e  
and  split  and  ÿb  each  tetrahedron  ÿi  into  two  virtual  tetrahedra  ÿa ),  

Q(ÿb  1), .. .,  Q(ÿa  n),  Q(ÿb  n)}  Define  Q1  =  min{Q(ÿa  if  Q1  >  Q0  then  

Add  node  v7  to  the  mesh  and  replace  each  of  the  tetrahedrons  
and  ÿb  ditch  ÿi  

with  two  tetrahedra  ÿa  i .  Finish  Algorithm  6:  end  if  7:  end  loop

4

i .

Rice.  5.11.  Placement  of  node  v7  on  edge  e12

The  algorithm  can  be  easily  generalized  to  the  case  of  a  tetrahedron  with  one  
or  more  edges  lying  on  the  boundary  of  the  region.  Additional  analysis  is  required  
only  for  edges  lying  on  curvilinear  boundaries.  We  will  call  such  edges  curvilinear  
edges.  Note  that  additional  information  about  curvilinear  boundaries

Most  of  the  existing  approaches  to  improve  the  properties  of  a  tetrahedral  
mesh  use  a  combination  of  different  methods  such  as  mesh  smoothing,  mesh  
topology  modification,  and  mesh  refinement.

4:

The  grid  at  the  boundary  ÿ(ÿ1234)  does  not  change.  As  noted  in  §  5.1,  this  
property  is  the  key  to  developing  parallel  rebuilding  methods.

Ch.  5.  Rearrangement  of  simplicial  grids

i

§  5.3.  Rearrangement  of  tetrahedrizations

In  §  5.2  we  showed  that  expanding  the  set  of  basic  operations  has  a  positive  
effect  on  the  convergence  of  the  meshing  method.  For  tetrahedral  meshes,  seven  
basic  algorithms  can  be  distinguished  that  change  the  mesh  topology  and  the  
shape  of  tetrahedra.  Consider  a  tetrahedron  ÿ(v1,  v2,  v3,  v4)  (or  ÿ1234  for  
simplicity  of  notation)  with  vertices  v1,  v2,  v3,  and  v4,  whose  quality  is  to  be  
increased.  We  present  the  structure  of  basic  algorithms  for  a  tetrahedron  located  
inside  a  region.  Extensions  of  the  algorithms  to  the  boundary  tetrahedron  will  be  
discussed  in  the  comments  to  the  algorithms.

5:

grids.

below.

3:

ÿ(ÿ1234)  =
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Reliable  rebuilding  of  tetrahedral  meshes  is  a  much  more  difficult  problem  
than  rebuilding  triangular  meshes.  And  the  reason  is  not  just  the  extra  dimension.  
The  set  of  fundamental  results  for  triangulations  does  not  extend  to  
tetrahedralizations.  For  example,  it  is  widely  known  that  regular  triangles  of  the  
same  size  cover  the  plane  without  intersections  and  voids.  A  similar  statement  
for  regular  tetrahedra  is  false,  although  there  are  identically  shaped  tetrahedra  
for  which  the  statement  is  true.  There  is  also  no  simple  local  modification  of  the  
tetrahedral  mesh  for  which  an  analogue  of  Theorem  5.2.1  on  the  construction  of  
the  Delaunay  triangulation  would  be  true.  Even  the  Delaunay  tetrahedrization  
can  contain  slivers  (i.e.,  tetrahedra  with  dihedral  angles  close  to  180°),  which  
lead  to  various  problems  in  the  numerical  solution  of  partial  differential  equations.

i

ÿ(vi).

§  5.3.  Rearrangement  of  tetrahedrizations

These  methods  lead  to  various  local  modifications  of  the  mesh,  which  we  will  
call  basic  operations.

i=1

The  first  basic  algorithm  puts  the  node  in  the  middle  of  the  edge  of  the  
tetrahedron  ÿ  and  splits  the  tetrahedra  adjacent  to  the  edge  in  half.  The  algorithm  
is  similar  to  algorithm  30  for  a  triangle.  Since  the  dihedral  angle  of  a  tetrahedron  
is  less  than  180°,  the  number  of  tetrahedra  with  a  common  edge  is  greater  than  
or  equal  to  three.  Rice.  5.11  illustrates  the  operation  of  this  algorithm  for  an  
internal  mesh  edge  that  is  common  to  the  four  tetrahedra  ÿ1234,  ÿ1245,  ÿ1256,  
and  ÿ1263.

1
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Vÿ1347  =  6

det{v3  ÿ  v1,v4  ÿ  v1,v7  ÿ  v1},

143

i

Many  algebraic  volumes  are  calculated  for  two  positions  of  the  tetrahedron  
vertex.  For  example,  for  the  vertex  v7,  an  efficient  implementation  of  these  
calculations  is  based  on  the  selection  of  the  vector  a,  which  does  not  depend  on  
the  position  of  this  vertex  and  can  be  calculated  only  once.

In  computer  calculations,  the  determination  of  the  sign  of  the  algebraic  
volume  depends  on  roundoff  errors.  Vgl.  3,  we  proposed  two  methods  for  solving  
this  problem:  (a)  computing  the  determinant  (5.3.1)  with  extra  precision,  and  (b)  
introducing  a  function  d(v1,  v2,  v3,  v4)  that  returns  zero  when  the  sign  of  the  
determinant  cannot  be  defined  exactly.  We  recommend  using  one  of  these  
methods  whenever  you  need  to  find  the  sign  of  an  algebraic  volume.  Note  that  
the  zero  value  of  the  function  d(v1,  v2,  v3,  v4)  leads  to  errors  of  the  first  kind,  
which  are  not  critical  for  rebuilding  the  grid  and  only  limit  the  number  of  allowed  
basic  operations.  The  second  basic  algorithm  is  applied  to  a  pair  of  tetrahedra  
that  have  a  common  face.  If  the  union  of  these  tetrahedra  

forms  a  convex  polyhedron  in  which  no  four  points  lie  in  the  same  plane,  then  
there  is  another  partition  of  this  polyhedron  into  three  tetrahedra  (see  Fig.  5.12).  
Algorithm  37  determines  which  of  the  beats  improves  the  quality  of  the  mesh.  
Unlike  the  2D  flip  algorithm,  the  number  of  elements  in  the  grid  is  increased  by  1.

(5.3.1)

Algorithm  37  can  be  easily  generalized  to  the  case  of  a  tetrahedron  ÿ  
with  faces  lying  on  the  inner  boundaries.  Since  such  faces  cannot  be  
removed  from  the  mesh,  the  algorithm  does  not  need  to  consider  them.

i

v7  =  (v1  +  v2)/2,

i

As  with  triangular  meshes,  node  projection  can  lead  to  mesh  entanglement.  To  
check  the  correctness  of  the  mesh,  we  use  an  analogue  of  Lemma  5.2.1.  Let  us  
consider  the  superelement  ÿ(e12)  formed  by  tetrahedra  with  a  common  edge  e12  
and  select  those  faces  that  lie  on  the  surface  of  this  superelement  and  do  not  
contain  the  vertex  v7.  Each  of  these  faces  defines  a  plane  that  divides  the  space  
into  two  half-spaces.  Let  ÿi  be  half-spaces  containing  the  vertex  v7.  We  define  the  
set  D  as  the  intersection  of  the  half-spaces  ÿi.  Lemma  5.3.1.  The  projection  v7  =  
F(v7)  leads  to  a  regular  grid  if  v7  ÿ  D.  The  proof  of  this  lemma  repeats  the  
arguments  of  Lemma  

5.2.1  and  is  therefore  not  given.  An  important  consequence  of  the  proof  
concerns  the  

sign  of  the  algebraic  volume  of  the  tetrahedron  with  vertex  v7.  The  algebraic  
volume  of  a  tetrahedron  ÿ1347  is  calculated  by  the  formula

are  auxiliary  tetrahedra  built  using  v7  
instead  of  v7.  The  grid  remains  correct  if  the  algebraic  volumes  of  the  tetrahedra  
ÿa  and  ÿa  (similarly  for  the  tetrahedra  ÿb  and  ÿb )  have  the  same  sign.  Let  us  
give  another  interpretation  of  formula  (5.3.1):

The  third  basic  algorithm  is  applied  to  a  triple  of  tetrahedra  that  have  a  
common  edge.  This  algorithm  is  the  inverse  of  the  second  basic  algorithm,  i.e.,  
successive  application  of  these  algorithms  returns  the  grid  to  its  original  position.  
If  the  union  of  three  tetrahedra  forms  a  convex  polyhedron,  then  there  is  another  
partition  of  this  polyhedron  into  two  tetrahedra  (see  Fig.  5.12).

Ch.  5.  Rearrangement  of  simplicial  grids

i

can  be  available  if  the  computational  domain  model  is  specified  using  CAD.  CAD  
libraries  allow  you  to  work  effectively  and  reliably  with  curved  boundaries  and  
should  be  used  whenever  possible.

Vÿ1347  =

Rice.  5.12.  Replacing  face  f234  with  edge  e15

1
(( v3  ÿ  v1)  ×  (v4  ÿ  v1))  (v7  ÿ  v1)  =  a  (v7  ÿ  v1).

use.

6

i

Note  that  this  algorithm  is  also  an  analogue  of  the  two-dimensional  
algorithm  31,  but  reduces  the  number  of  elements  in  the  grid  by  one.  So

142

Let  us  assume  that  each  point  of  a  curvilinear  edge  is  mapped  to  
a  single  point  of  the  curvilinear  boundary,  and  the  function  F(x)  
describes  this  mapping.  The  coordinates  of  the  midpoint  of  the  edge  
e12  and  the  point  projected  onto  the  curvilinear  boundary  are  
calculated  as  follows:

where  det  is  the  determinant  of  a  3  ×  3  matrix  with  columns  v3  ÿ  v1,  v4  ÿ  v1,  and  
v7  ÿ  v1.  Consider  auxiliary  (virtual)  tetrahedra  constructed  using  v7  instead  of  
v7.  Following  the  notation  introduced  by  ÿb  in  Algorithm  36,  we  denote  these  
tetrahedra  by  ÿ  a  The  following  analog  of  Lemma  5.2.2  is  correct.  and  ÿb  Lemma  
5.3.2.  Let  ÿ  a

i

§  5.3.  Rearrangement  of  tetrahedrizations

1

v7  =  F(v7).

i .

i
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Algorithm  38  considers  only  (n  ÿ  2)  partitions  of  the  polygon  P  into  triangles  fk,  although  the  

number  of  possible  partitions  can  reach  (n  ÿ  2)!  for  a  convex  polygon.  Such  a  large  number  of  possible  

partitions  makes  their  exhaustive  enumeration  impractical  for  n  >  8.  In  the  numerical  experiments  

presented  below,  Algorithm  38  is  always  executed,  but  the  number  of  partitions  considered  is  limited  

to  three  hundred.  There  is  no  unequivocal  opinion  among  specialists  about  the  need  for  a  fourth  basic  

algorithm  for  the  completeness  of  the  set  of  topological  operations  with  a  grid.  We  note  the  works  [49,  

60,  72],  where,  

based  on  the  analysis  of  a  large  set  of  meshes,  it  was  shown  that  the  addition  of  operations  with  

polygonal  faces  can  significantly  improve  the  quality  of  tunable  meshes.  The  experiment  at  the  end  

of  this  section  confirms  the  results  of  these  works,  although  the  additional  increase  in  mesh  quality  is  

negligible.  The  fifth  basic  algorithm  changes  the  position  of  the  grid  node.  Let  v1  be  one  of  the  

vertices  of  the  tetrahedron  ÿ.  Consider  a  superelement  ÿ(v1)  formed  by  tetrahedra  with  a  common  

vertex  v1.  On  fig.  5.14  the  node  v1  is  shifted  to  the  geometric  center  of  the  superelement  ÿ(v1).  This  

approach  is  used  in  methods  for  improving  the  shape  of  tetrahedra.  Unlike  its  two-dimensional  

counterpart,  it  often  results  in  poorly  shaped  tetrahedra.  In  

general,  the  optimal  position  of  the  vertex  v1  should  increase  the  quality  of  the  worst  tetrahedron  

in  the  superelement  ÿ(v1).  Quality

§  5.3.  Rearrangement  of  tetrahedrizations

4:

k

3:

Algorithm  37.  Replacing  a  face  with  an  edge

36:

7:

5:

1:  loop  over  all  faces  f  of  tetrahedron  ÿ  2:  Find  

neighboring  tetrahedron  ÿ  with  face  f  and  vertices  v2,  v3,  v4,  v5,  as  shown  in  fig.  5.12.  If  the  

tetrahedra  ÿ  and  ÿ  do  not  form  a  strictly  convex  polyhedron,  then  go  to  the  next  face  

Determine  Q0  =  min{Q(ÿ),  Q(ÿ )}  Calculate  the  qualities  of  tetrahedra  ÿ1425,  ÿ1235  and  

ÿ1345.  Determine  Q1  =  

min{Q(ÿ1425),  Q(ÿ1235),  Q(ÿ1345)}  if  Q1  >  Q0  then  

Replace  ÿ  and  ÿ  tetrahedra  with  ÿ1425,  ÿ1235  and  ÿ1345  tetrahedra.  End  algorithm  7:  

end  if  8:  end  loop

k

Algorithm  38.  Replacing  an  edge  with  a  polygonal  face

4:

8:

145

5:

1:  loop  over  all  edges  e  of  the  tetrahedron  ÿ  2:  Find  

tetrahedra  ÿ1, ...,  ÿnÿ2  with  a  common  edge  e,  as  shown  in  fig.  5.13  where  e  ÿ  e12;  put  ÿ1  ÿ  ÿ.  

Determine  Q0  =  min{Q(ÿ1), ...,  Q(ÿnÿ2)}  loop  i  =  3, ... ,  Split  polygon  P  with  vertices  v3,  

v4, ...,  vn  (n  =  7  in  Fig.  5.13)  into  triangles  f3,  f4, ...,  fnÿ2,  

connecting  vertex  vi  

with  other  vertices  not  connected  to  vi  by  an  edge  and  ÿb  Construct  tetrahedra  ÿa  

with  a  common  base  fk  and  distinct  vertices  v1  and  v2,  where  k  =  3, ... ,  n  ÿ  2 ),  Q(ÿb  

3), ...,  Q(ÿa  nÿ2),  Determine  Q1  =  min{Q(ÿa  Q(ÿb  nÿ2)}  if  Q1  >  Q0  then  Replace  

tetrahedra  

ÿ1, ...,  ÿnÿ2  tetrahedra  ÿa  and  ÿb  k,  where  k  =  3, ... ,  n  ÿ  2.  End  the  algorithm  end  if  10:  end  loop  11:  end  loop

Rice.  5.13.  Replacing  the  edge  e12  with  a  triangulated  polygonal  face  f34567

9:

Thus,  there  are  two  flip  operations  in  space .  We  do  not  present  the  formal  structure  of  the  third  basic  

algorithm  due  to  its  obviousness.  In  what  follows,  referring  to  Algorithm  37,  we  will  mean  both  flip  

operations.  The  fourth  basic  algorithm  is  a  generalization  of  the  third  basic  algorithm  for  the  case  of  a  

larger  number  of  tetrahedra  with  a  common  edge.  

To  illustrate,  we  will  use  the  configuration  shown  in  Fig.  5.13.  The  edge  e12  is  replaced  by  a  

triangulated  polygonal  face  P  with  vertices  v3,  v4,  v5,  v6  and  v7.  We  note  that  the  vertices  of  this  

polygon  usually  do  not  lie  in  the  same  plane,  and  one  can  speak  of  its  convexity  only  in  the  sense  of  

the  convexity  of  its  projection  onto  the  plane  that  deviates  least  from  its  vertices.

6:

Ch.  5.  Rearrangement  of  simplicial  grids

n3:
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Note  that  a  simple  replacement  of  Qÿ  by  1  ÿ  Qÿ  makes  it  possible  to  apply  standard  
methods  for  minimizing  functionals  without  modifying  them.  Since  Qÿ  is  not  a  

quadratic  functional,  the  gradient  descent  method  (in  our  case,  the  gradient  
ascent  method)  usually  does  not  lead  to  the  calculation,  even  approximate,  of  the  
local  maximum  of  the  functional  on  the  superelement  ÿ(v1).  We  do  not  recommend

Let  v1  =  ( x1,  y1,  z1)  and,  for  simplicity,  Qÿ  =  Q(ÿ(v1)).  The  approximate  gradient  
Qÿ  is  calculated  using  finite  difference  discretization:

147

.

cyclic  repetition  of  the  procedure  described  above,  as  is  done  in  standard  methods  
for  minimizing  (or  maximizing)  functionals.  Rebuilding  the  grid  can  repeatedly  
change  any  of  the  tetrahedra,  so  there  is  a  high  probability  that  the  configuration  of  
the  superelement  ÿ(v1)  will  change  rapidly.  Algorithm  39  is  used  to  find  the  parameter  
ÿ,  which  can  use  the  bisection  method  or  various  versions  

of  the  Levenberg–Marquard  method.

T

ÿz
Qÿ(x1,  y1,  z1  +  ÿz)

3:

|vi  ÿ  vj|/100}.  vi,  
vjÿÿ(v1)

Rice.  5.14.  Local  modification  of  the  mesh  by  moving  node  v1

,

Another  method  for  checking  the  correctness  of  the  mesh  is  to  calculate  the  
algebraic  volumes  of  tetrahedra  ÿ1, ...,  ÿn  for  each  new  position  of  their  vertex  v1.  
The  mesh  remains  correct  if  these  volumes  retain  their  sign  when  the  v1  vertex  is  
shifted.

Ch.  5.  Rearrangement  of  simplicial  grids

ÿx

Q(ÿ(v1))  is  the  nonlinear  functional  of  the  coordinates  of  the  vertex  v1;  therefore,  as  
in  the  case  of  triangular  grids,  the  search  for  the  optimal  position  of  this  vertex  
requires  the  use  of  minimization  (or  maximization)  methods  for  nonconvex  functionals.

Note  that  the  node  v1  cannot  go  beyond  the  superelement,  since  the  quality  Qÿ  
tends  to  zero  when  v1  approaches  its  boundary.  However,  moving  a  node  even  
inside  a  superelement  can  confuse  the  grid  when  that  superelement  is  not  convex.  
The  analysis  of  sufficient  conditions  for  mesh  correctness  is  similar  to  the  analysis  
developed  for  triangular  meshes.  For  an  internal  grid  node  v1,  the  admissible  set  D  
of  its  positions  is  defined  as  the  intersection  of  the  half-spaces  ÿ1, ...,  ÿn.  The  half-
space  is  defined  by  one  of  the  boundary  faces  of  the  superelement  ÿ(v1)  and  contains  
the  initial  node  v1.  Note  that  the  set  D  coincides  with  the  superelement  ÿ(v1)  only  
when  it  is  convex.

,

v1 :=  v1  +  ÿ  ÿhQÿ,  ÿ  0.

Algorithm  39  can  be  easily  generalized  to  the  case  of  a  tetrahedron  with  vertices  
lying  on  the  inner  and  outer  boundaries.  Such  vertices  can  only  move  along  boundary  
faces.  Movement  along  curvilinear  faces  must  be  accompanied  by  checking  the  
correctness  of  the  grid.  As  before,  for  this  it  suffices  to  control  the  conservation  of  the  
sign  of  the  algebraic  volumes  of  the  tetrahedra  ÿ1, ...,  ÿn.  Likewise,

Algorithm  39.  Node  shift

Qÿ(x1  +  ÿx,  y1,  z1)

A  reasonable  value  for  the  increments  ÿx,  ÿy,  and  ÿz  is  the  square  root  of  machine  
precision.  For  the  reliability  of  the  algorithm,  it  is  necessary  to  check  that  the  
calculated  increment  is  significantly  less  than  the  diameter  of  the  superelement,  for  
example,  less  than  1%  of  the  length  of  the  minimum  edge:
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1:  loop  over  all  vertices  v1  of  the  tetrahedron  ÿ  2:  
Find  the  tetrahedra  ÿ1,  ÿ2, ...,  ÿn  that  form  the  super  element  ÿ(v1);  put  ÿ=ÿ1,  as  

shown  in  fig.  5.14,  where  n  =  8  Calculate  the  approximate  gradient  ÿhQÿ  
Calculate  

the  maximum  possible  displacement  of  the  vertex  
v1  in  the  direction  ÿhQÿ  that  does  not  violate  the  topology  of  the  
superelement.  Let  ÿ  =  ÿmax  for  this  extreme  position  5:  Find  the  value  of  
ÿ  in  the  half-open  interval  [0,  ÿmax)  that  maximizes  Qÿ  6:  If  ÿ  >  0,  then  

store  the  new  position  of  v1

Qÿ(x1,  y1  +  ÿy,  z1)  
ÿy

ÿx  =  ÿy  =  ÿz  =  min{ ÿ,  min

in  the  grid  and  finish  algorithm  7:  
end  loop

§  5.3.  Rearrangement  of  tetrahedrizations

The  node  v1  is  shifted  along  the  approximate  gradient  until  the  maximum  Qÿ  is  
reached:

4:

ÿhQÿ  =
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v3

8:

v2

v7

The  generalization  of  Algorithm  40  for  curvilinear  boundaries  requires  the  projection  of  the  vertex  v1  

obtained  at  step  4  of  the  algorithm  onto  the  curvilinear  boundary.  Like  any  other  vertex  displacement,  the  

projection  must  fall  within  the  allowable  set  of  shifts  for  which  the  mesh  does  not  get  tangled.  A  sufficient  

condition  for  maintaining  the  correctness  of  the  grid  is  to  check  the  signs  of  the  algebraic  volumes  at  step  6  

of  the  algorithm.  An  estimate  of  the  local  curvature  of  the  boundary  can  also  be  used  to  determine  if  a  

curvilinear  edge  can  be  removed.  The  seventh  basic  algorithm  removes  a  node  from  the  grid  along  with  all  

tetrahedra  containing  it.  The  void  created  in  the  grid  is  filled  with  fewer  tetrahedra.  To  construct  these  

tetrahedra,  Algorithm  41  uses  only  existing  mesh  nodes.

(v1  +  v8)  

Define  new  (virtual)  tetrahedra  ÿ  by  shifting  vertices  v1  and  v8  of  the  

original  tetrahedra  into  v1  and  ÿ

Algorithm  40.  Removing  an  edge

6:  If  the  algebraic  volumes  of  tetrahedra  ÿ

Step  4  of  algorithm  40  requires  choosing  a  common  vertex  v1  for  vertices  v1  and  v8.  On  the  one  hand,  

it  is  natural  to  consider  the  problem  of  the  optimal  position  of  the  vertex  v1.  On  the  other  hand,  since  a  similar  

optimization  problem  is  considered  in  the  basic  vertex  shift  algorithm,  the  complication  of  algorithm  40  is  not  

required.  The  optimal  position  of  the  v1  vertex  can  be  achieved  by  sequentially  applying  two  basic  algorithms.  

That's  why  we

v1

the  movement  of  a  node  lying  on  an  edge  that  separates  the  boundary  faces,  or  an  edge  of  a  CAD  model,  

must  occur  only  along  this  edge.  The  sixth  basic  algorithm  removes  an  edge  from  the  mesh.  The  algorithm  

can  be  

interpreted  as  follows.  We  begin  to  move  the  vertices  of  the  edge  towards  each  other,  possibly  at  

different  speeds.  When  vertices  merge  into  one,  the  topology  of  the  mesh  changes.  As  shown  in  fig.  5.15,  

when  vertices  v1  and  v8  merge,  each  of  the  four  pairs  of  edges  merges  into  one  edge,  and  four  tetrahedra  

with  a  common  edge  e18  disappear  from  the  grid.  In  Valgorithm  40,  we  use  the  notation  shown  in  Fig.  5.15.

2

i

1,

1,

v8

v6

v1

2

i

m,

v4

v5

v7
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v1  and  v8:v1=

v4

v5

9:

1:  loop  over  all  edges  e  of  the  tetrahedron  ÿ  2:  Find  the  

tetrahedra  ÿ1,  ÿ2, ...,  ÿn  that  form  the  super  element  ÿ(e),  and  set  ÿ=ÿ1  as  shown  in  fig.  5.15  where  n  =  

4  3:  Find  the  tetrahedra  ÿ  ÿ  that  are:  (a)  different  from  the  tetrahedra  in  the  superelement  ÿ(e),  

(b)  are  

included  in  the  superelement  ÿ(v1)  or  ÿ(v8)  Determine  the  new  common  (virtual)  position  v1  vertices  1

i.

we  propose  to  consider  only  one  possible  position  of  the  nova  (v1  +  v8).  The  exception  is  the  cases  when  

one  vertex:  v1  =  from  the  vertices  of  the  edge  e18  lies  on  the  boundary  of  the  region.  In  this  case,  

the  vertex  lying  inside  the  region  is  shifted  to  the  boundary  vertex.

ÿÿ2, ...,

i

v6

v2

Rice.  5.15.  Local  mesh  modification  by  merging  v1  and  v8  vertices

Algorithm  40  can  be  easily  generalized  to  the  case  of  a  boundary  edge  lying  inside  a  flat  section  of  the  

model  boundary.  An  edge  from  one  of  the  vertices  lying  on  the  model  edge  is  removed  from  the  mesh  by  

shifting  the  opposite  vertex  to  this  vertex.  Removing  a  mesh  edge  that  lies  completely  on  a  model  edge,  i.e.,  

at  the  intersection  of  two  flat  sections  of  the  boundary,  requires  checking  that  this  is  not  the  only  edge  that  

represents  an  important  part  of  the  geometric  model.

Note  that  checking  the  signs  of  algebraic  volumes  is  sufficient  for  a  node  v  lying  inside  the  domain  ÿh  

and  outside  the  internal  boundaries

148

ÿ

5:

different  signs  for  at  least  one  i,  then  delete  all  virtual  objects  and  go  to  the  next  edge  Determine  

the  qualities  Q0  =  min{Q(ÿ1),  Q(ÿ2), ...,  Q(ÿn)}  and  Q1  =  

min{Q( ÿ  1),  Q(ÿ  2), ...,  Q(ÿ  m)}  if  Q1  >  Q0  then  Delete  vertex  v8  and  tetrahedra  ÿ1, ...,  ÿn  from  

the  grid;  replace  vertex  v1  with  v1  and  tetrahedra  ÿ  with  ÿ  End  

algorithm  10:  end  if  11:  

end  loop
v3

1

§  5.3.  Rearrangement  of  tetrahedrizations

4:

7:

2, ...,

m,
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with  a  common  boundary  face  of  the  superelement  ÿ(v)  are  different  for  at  least  one  

k,  then  go  to  the  next  boundary  vertex  If  the  faces  of  virtual  tetrahedra  do  not  

approximate  

the  interior  and  boundary  surfaces,  go  to  the  next  vertex  Determine  the  local  

qualities ...

151

ÿ

1:  loop  over  all  vertices  v  of  the  tetrahedron  ÿ  2:  Find  the  

tetrahedra  ÿ1,  ÿ2, ...,  ÿn  that  form  the  superelement  ÿ(v)  and  put  ÿ=ÿ1.  Count  the  number  of  

vertices  Mv

6:

m.

a  complex  algorithm  whose  generalization  to  an  arbitrary  quality  Q(ÿ)  is  not  obvious.  The  operation  

inverse  to  the  basic  algorithm  40  is  considered  in  [49].  It  can  be  shown  that  it  reduces  to  a  combination  

of  flip  algorithms  if  none  of  them  reduces  the  mesh  quality.  The  operation  of  rebuilding  the  

triangulation  of  the  polygonal  face  f34567  (see  Fig.  5.13)  is  considered  in  [72]  and  is  a  combination  of  

the  basic  algorithm  38  and  its  inverse  if  none  of  these  operations  reduces  the  mesh  quality.  The  

combination  of  basic  algorithms  opens  up  wide  possibilities  for  constructing  or  rebuilding  computational  

grids.  Let's  consider  what  data  structures  are  required  for  efficient  implementation  of  basic  algorithms.  

Note  that  these  structures  will  be  similar  to  the  data  structures  used  

to  rebuild  triangular  meshes.

4:

(e.g.  material  boundaries).  In  this  case,  the  superelement  ÿ(v)  is  j

5:

8:

Otherwise,  several  additional  checks  are  required  for  the  approximation  of  the  outer  and  inner  

boundaries  by  the  faces  of  virtual  tetrahedra.  For  flat  boundaries,  it  suffices  to  check  that  all  these  

boundaries  are  preserved  with  machine  accuracy.  For  curved  boundaries,  you  need  to  make  sure  that  

the  topology  of  the  new  discrete  boundaries  matches  the  topology  of  the  original  boundaries.  For  

example,  suppose  that  the  faces  f124,  f145,  f157,  and  f172  in  Fig.  5.16,  a,  approximate  part  of  the  

curvilinear  boundary  of  the  geometric  model.  The  topology  of  this  boundary  is  preserved  for  one  of  

two  pairs  of  new  faces:  f245,  f257  or  f247,  f457.  As  in  two  dimensions,  analysis  of  the  topology  of  a  

boundary  is  made  easier  by  treating  the  basic  node  removal  operation  as  a  special  case  of  the  more  

general  edge  removal  operation.

Ch.  5.  Rearrangement  of  simplicial  grids

1, ...,

§  5.3.  Rearrangement  of  tetrahedrizations

...,  Q(ÿn)}  and  Q1  =  min{Q(ÿ  1), ...,  Q(ÿ  m)}  if  Q1  >  Q0  then  
Delete  node  v  from  the  

grid,  replace  tetrahedra  ÿ1, ...,  ÿn  tetrahedra  ÿ  Finish  the  algorithm  end  if  end  

loop  12:  end  loop

9:

The  seven  basic  algorithms  described  above  are  most  often  used  in  methods  for  improving  

mesh  quality  [86].  We  also  note  a  few  additional  mesh  operations  that  appear  in  the  literature.  To  

improve  the  shape  of  tetrahedra,  the  authors  of  [60]  propose  to  add  Steiner  nodes  to  the  mesh  using  

enough

on  the  boundary  of  the  superelement  

loop  i  =  1, ... ,  Mv  Split  the  

superelement  ÿ(v)  into  virtual  tetrahedra  ÿ  ÿ  connecting  the  boundary  vertex  vi  with  
the  other  1, ...,  boundary  vertices  not  connected  to  vi  by  edges  If  the  signs  of  the  algebraic  

volumes  of  the  tetrahedra  ÿk  and  ÿ

Rice.  5.16.  Local  modification  of  the  mesh  by  deleting  a  node  v1

10:

150

3:

7:

eleven:

l

Algorithm  41.  Deleting  a  node

is  a  polyhedron.

m,

First,  as  in  the  case  of  triangular  meshes,  it  is  necessary  to  maintain  a  list  of  tetrahedra  ordered  

in  ascending  order  of  their  quality.  As  in  the  two-dimensional  case  (see  §  5.2),  we  will  use  a  block  

structured  list  and  the  algorithms  for  modifying  it,  described  in  §  2.3.  Second,  for  each  vertex  v  of  the  

tetrahedron  ÿ,  it  is  necessary  to  quickly  find  tetrahedra  in  the  superelement  ÿ(ÿ).  To  do  this,  several  

optimal  

methods  with  arithmetic  complexity  O(1)  are  used.  The  simplest  method  is  to  build  a  structured  

list  of  nearest  neighbors  for  each  tetrahedron  of  the  grid  U(ÿh)  and  modify  it  after  each  basic  algorithm.  

The  number  of  such  neighbors  is  at  most  four.  The  initial  construction  of  such  an  ordered  list  requires  

O(Nt)  arithmetic,  where  Nt  is  the  number  of  tetrahedra  in  the  grid,  and  is  discussed  in  detail  in  §  4.3.  

Each  basic  operation  modifies  only  a  few  tetrahedra,  so  updating  this  list
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grids

has  optimal  difficulty.  The  construction  of  the  superelement  ÿ(ÿ)  is  based  on  the  
list  U(ÿh)  and  begins  with  ÿ.  After  that,  we  add  to  the  list  its  nearest  neighbors,  
and  then  the  neighbors  of  neighbors  that  have  a  common  vertex  with  ÿ.  This  
process  is  repeated  as  long  as  such  neighbors  exist.

Note  that  Algorithm  35  does  not  guarantee  meshing  with  high  quality  Q(ÿh),  
since  Q(ÿh)  is  always  equal  to  the  quality  of  the  worst  tetrahedron.  The  geometry  
of  the  model,  in  particular  the  presence  of  sharp  dihedral  angles,  imposes  a  
limitation  on  the  maximum  quality  of  near-boundary  tetrahedra  and  hence  on  the  
mesh  quality  that  can  be  achieved.  Nevertheless,  the  average  quality  of  tetrahedra  
can  be  rather  high.  Note  also  that  the  given  set  of  basic  algorithms  does  not  
guarantee  that  any  original  mesh  can  be  rebuilt  into  any  other  mesh  of  higher  
quality.

0.7

Algorithm  35  is  applicable  for  constructing  computational  grids  based  on  a  
very  coarse  initial  grid.  For  example,  the  mesh  shown  in  Fig.  5.17a  contains  24  
nodes  and  36  tetrahedra.  Note  that  the  initial  mesh  contains  only  four  more  nodes  
than  is  required  for  the  minimal  representation  of  a  parallelepiped  model  with  a  
hole  in  the  form  of  a  regular  hexagonal  prism.  The  parameter  Q0  =  0.81  was  
chosen  so  that  the  quality  of  the  canonical  

tetrahedron  was  less  than  Q0.  In  a  number  of  finite  element  methods,  
tetrahedra  with  dihedral  angles  not  exceeding  90°  make  it  possible  to  construct  
numerical  schemes  with  additional  properties,  such  as  the  discrete  maximum  
principle.

§  5.3.  Rearrangement  of  tetrahedrizations

Net
0.8

quasi-uniform  0  28  7002  8285  5998  2761  450

T  a  b  l  e  5.2  
Distribution  of  tetrahedra  by  quality

regular-2  0  5  8389  17  316  13  027  6018  1086

b

´

regular-1  0  0  3416  9455  6854  3244  506

152

0.4  0.5  0.6

Rice.  5.17.  Construction  of  a  quasi-uniform  grid  based  on  a  coarse  initial

with  approximately  the  same  number  of  tetrahedra,  which  thickens  towards  the  
hole.  The  quality  of  a  tetrahedron  is  determined  in  such  a  way  that  its  size  
increases  in  direct  proportion  to  the  square  of  the  distance  to  the  central  axis  of  
the  hole.  The  trace  of  the  grid  on  the  surface  of  the  region  is  shown  in  Fig.  5.18,  
a.  The  quality  of  the  reconstructed  grid  Q(ÿh)  =  0.53  with  an  average

We  now  rebuild  the  quasi-uniform  grid  into  a  regular  grid

Thirdly,  the  basic  algorithms  change  the  number  of  basic  mesh  objects:  nodes,  
tetrahedra,  and  boundary  faces.  These  objects  are  represented  by  structured  
lists  (see  §  2.3).  Adding  a  new  object  to  a  structured  list  is  the  same  as  adding  a  
new  row  to  a  two-dimensional  array.  Deleting  an  object  involves  shifting  all  objects  
below  the  deleted  object  by  one  line,  which  is  an  expensive  operation.  Instead,  
we  will  store  additional  lists  of  removed  nodes,  boundary  faces,  and  tetrahedra,  
i.e.,  the  numbers  of  the  corresponding  rows  in  structured  arrays.  When  adding  a  
new  object,  we  first  check  for  free  places  in  the  structured  list  and  fill  them.  After  
rebuilding  the  grid,  empty  spaces  in  the  structured  list  are  filled,  for  example,  by  
moving  grid  objects  from  the  end  of  the  list  to  empty  spaces.  Rebuilding  the  grid  
is  carried  out  by  algorithm  35,  described  in  §  5.2.  Since  the  adaptation  of  this  
algorithm  to  tetrahedral  meshes  consists  in  replacing  triangles  with  tetrahedra  and  
edges  with  faces,  we  will  not  repeat  the  structure  of  this  algorithm.  In  what  follows,  
we  will  refer  to  Algorithm  35  as  an  algorithm  

for  rebuilding  tetrahedral  meshes.

Quality

Ch.  5.  Rearrangement  of  simplicial  grids

Returning  to  the  grid  shown  in  Fig.  5.17b,  we  note  that  its  quality  is  Q(ÿh)  =  
0.45,  while  the  average  quality  of  tetrahedra  is  0.67.  Although  Q(ÿh)  is  much  
smaller  than  Q0,  nevertheless,  the  maximum  dihedral  angle  is  138ÿ  and  the  
minimum  is  22ÿ,  which  is  an  acceptable  result  for  tetrahedral  mesh  generators.  
The  second  line  in  the  table.  5.2  shows  the  quality  distribution  of  tetrahedra  in  this  
casi-uniform  mesh.  Note  that  only  28  tetrahedra  have  a  quality  in  the  range  (0.4,  
0.5].

by  local  changes  in  the  mesh  topology,  which  constantly  increase  its  quality.  
Despite  the  lack  of  theoretical  results,  in  practice  Algorithm  35  makes  it  possible  
to  successfully  build  grids  close  to  optimal  for  efficient  approximate  solution  of  
partial  differential  equations.
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Rice.  5.18.  Construction  of  regular  grids  based  on  a  quasi-uniform  grid

h .

§  5.4.  3D  Algorithm  Parallelization

Moreover,  the  computer  implementation  of  the  basic  algorithms  is  greatly  simplified.  A  more  rigorous  

approach  is  to  locally  reconstruct  the  curvilinear  boundary  and  is  discussed  in  the  appendix.

h

as  tetrahedra  0.70.  The  maximum  dihedral  angle  is  135ÿ  and  the  minimum  is  24ÿ.  Thus,  rebuilding  

the  grid  made  it  possible  not  only  to  change  the  spatial  distribution  of  tetrahedra,  but  also  to  preserve  

important  properties  of  the  grid.  This  is  confirmed  by  Table.  5.2,  in  the  third  line  of  which  the  

distribution  of  tetrahedra  by  quality  is  presented.

is  in  our

h ,

§  5.4.  3D  Algorithm  ParallelizationCh.  5.  Rearrangement  of  simplicial  grids

grids  into  connected  sets

155

b

154

Note  that  the  smoothness  of  the  surface  mesh  is  less  than  that  of  the  meshes  constructed  by  the  

advanced  edge  method.  The  smoothness  of  the  mesh  can  lead  to  superconvergence  of  finite  element  

solutions  if  the  differential  solution  is  sufficiently  smooth.  In  a  number  of  elasticity  problems,  especially  

in  problems  with  cracks,  the  main  error  is  concentrated  near  the  cracks,  where  the  solution  is  not  

smooth  enough,  so  that  there  is  no  superconvergence  effect.  In  such  applications  with  a  non-smooth  

solution,  the  visual  smoothness  of  the  mesh  does  not  lead  to  a  significant  improvement  in  the  

accuracy  of  the  finite  element  solutions.  We  conclude  this  section  with  one  useful  practical  tip  for  

remeshing  in  domains  with  curvilinear  boundaries.  If  the  analytical  representation  of  these  boundaries  

is  unknown,  then  we  recommend  fixing  the  grid  nodes  

at  these  boundaries  once  and  for  all.  In  this  case,  the  rebuilt  mesh  will  approximate  curvilinear  

boundaries  with  the  same  order  as  the  original  mesh.

set  layer

The  parallelization  of  the  algorithm  35  is  based  on  its  locality.  The  grid  can  be  rearranged  

simultaneously  in  several  places  provided  that  any  pair  of  reconfigurable  superelements  ÿ(ÿ)  and  ÿ(ÿ )  

does  not  have  common  tetrahedra.  As  a  rule,  the  rebuilding  of  triangular  grids  does  not  lead  to  

excessive  computational  work  and  can  be  performed  on  a  single  processor  computer.  Therefore,  we  

will  focus  on  rebuilding  tetrahedral  meshes.  The  simplest  model  of  a  parallel  algorithm  consists  of  a  

main  processor  (master),  which  distributes  work  among  other  processors  (slave),  sending  them  

superelements  ÿ(ÿ)  and  including  the  results  of  their  work  

in  the  grid.  Due  to  the  large  number  of  data  structures  that  are  associated  with  the  superelement  

ÿ(ÿ)  and  are  necessary  for  its  rebuilding,  the  time  for  sending  and  receiving  packets  can  exceed  the  

time  for  rebuilding  one  superelement.  Therefore,  this  model  is  designed  for  a  small  number  of  

processors.  Let  P  be  the  number  of  processors  in  a  parallel  computer.  The  proposed  model  of  the  

parallel  algorithm  is  based  on  the  partition  ÿ(i)  i  =  1, ... ,  P,  with  the  number  of  tetrahedra  approximately  

equal  to  ÿ(i).  An  important  requirement  for  the  set  to  be  nimization  of  its  boundary,  or  rather,  the  

number  of  tetrahedra  that  have  one  ÿ(i)  The  exception  is  those  boundaries  of  vertices  that  lie  on  the  

boundary  of  the  set,  which  are  also  the  boundaries  of  the  

original  mesh.  The  application  of  basic  operations  to  the  tetrahedron  ÿ  lying  in  the  boundary  ÿ(i)  

h  requires  data  exchange  with  neighboring  sets.  Therefore,  reducing  the  number  of  such  tetrahedra,  

called  interface  tetrahedra,  will  make  it  possible  to  

construct  a  more  efficient  parallel  algorithm.  Several  methods  are  known  

for  partitioning  the  grid  ÿh  into  P  approximately  equal  parts.  The  most  popular  methods  include  various  

variants  of  the  bisection  method.  The  spectral  bisection  method  [48,  75]  is  based  on  the  spectral  

properties  of  the  grid  graph,  such  as  the  eigenvector  corresponding  to  the  second  eigenvalue  of  the  

Laplace  grid  operator.  The  need  to  solve  the  eigenvalue  problem  multiple  times  in  the  course  of  

remeshing  makes  this  method  too  expensive  for  our  parallel  algorithm.  The  

inertial  bisection  method  [85]  is  much  cheaper  in  terms  of  computational  work,  but  generates  a  larger  

number  of  interface  tetrahedra.  Nevertheless,  in  view  of  the  possibility  of  a  strong  increase  or  

decrease  in  the  

number  of  tetrahedra  on  any  processor  during

To  show  the  reliability  of  the  mesh  rebuilding  algorithm,  we  will  rebuild  the  quasi-uniform  mesh  

into  a  mesh  that  not  only  thickens  towards  the  hole,  but  also  contains  twice  as  many  tetrahedra.  The  

trace  of  the  grid  on  the  surface  of  the  region  is  shown  in  Fig.  5.18b .  The  quality  of  the  reconstructed  

mesh  is  Q(ÿh)  =  0.49,  while  the  average  quality  of  tetrahedra  is  0.70.  The  maximum  dihedral  angle  

is  136ÿ  and  the  minimum  is  23ÿ.  The  last  line  in  the  table.  5.2  shows  an  approximately  twofold  

increase  in  the  number  of  tetrahedra  in  each  quality  range.  Thus,  both  regular  grids  have  

approximately  the  same  properties.
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1:  Calculate  the  inertia  tensor  T(ÿh)  on  a  processor  with  rank  0  2:  loop  k  =  1,  2,  3:  

3:

Algorithm  42  requires  several  additional  data  structures  to  be  implemented.  Assembling  a  

global  grid  from  subgrids  is  greatly  simplified  if  grid  nodes  at  the  boundaries  between  subgrids  

retain  information  about  the  original  global  numbering.  Comparison  of  global  indices  leads  to  

fast  and  reliable  finding  of  pairs  of  identical  grid  nodes.  Note  that  step  4  of  Algorithm  42  can  

lead  to  a  low  quality  of  near  boundary  tetrahedra  and,  as  a  consequence,  to  a  low  quality

where  x  ÿi  ÿ  R3  denotes  the  geometric  center  of  the  tetrahedron  ÿi  and  x  ÿh  is  the  grid  center:

Nt  (ÿh)

Ch.  5.  Rearrangement  of  simplicial  grids

pi  =  x  ÿi  ÿ  x  ÿh ,pi2  I3  -  pi  pt

A  processor  with  rank  0  selects  tetrahedra  whose  quality  is  less  than  Q0,  as  well  
as  all  their  neighbors.  The  set  of  selected  tetrahedra  is  divided  into  P  approximately  

equal  parts  using  the  inertial  bisection  method  for  the  kth  principal  axis  of  the  tensor  

T(ÿh)  and  distributed  over  all  processors.  A  processor  with  rank  m,  m  =  0, ... ,  P  ÿ  
1,  rearranges  its  subgrid  in  this  way  that  borders  

with  neighboring  subgrids

mesh  generation,  optimization  of  the  number  of  interface  tetrahedra  can  be  sacrificed  to  

minimize  computational  work.

=

,

x  ÿi .

A  processor  with  rank  0  collects  subgrids  from  other  processors  and  builds  a  new  

conformal  global  grid  ÿh.  If  Q(ÿh)  Q0,  then  the  algorithm  terminates  6:  end  loop  7:  

The  processor  with  rank  0  allocates  tetrahedra  whose  
vertices  

belonged  to  one  of  the  boundaries  between  subgrids  at  each  of  the  three  previous  steps,  

rebuilds  them,  and  proceeds  to  step  1

Algorithm  42.  Parallel  reconstruction  of  the  tetrahedral  mesh

4:

Rice.  5.19.  Partition  of  the  computational  domain  into  subdomains  by  planes  orthogonal  to  the  
first  (a)  and  second  (b)  eigenvectors  of  the  inertia  tensor

i=1

a  lot  of  time.  Thus,  rebuilding  the  subgrid  remains  the  most  time-consuming  operation.

Let  us  consider  a  body  consisting  of  unit  point  masses  located  at  the  geometric  centers  

of  the  tetrahedra  of  the  grid  ÿh.  The  inertia  tensor  of  this  body  is  defined  as  follows:

T(ÿh)  =

Nt(ÿh)

Each  of  the  terms  in  the  sum  (5.4.1)  is  a  positive  semidefinite  3  ×  3  matrix.  Therefore,  the  

tensor  T(ÿh)  is  positive  definite  for  a  system  of  four  or  more  points  not  lying  in  the  same  plane.  
Due  to  the  smallness  of  the  order  T(ÿh),  the  calculation  of  the  eigenvectors  of  the  inertia  tensor  

is  a  cheap  operation.

(5.4.1)

1

Using  the  inertia  tensor,  we  can  divide  the  grid  into  subgrids  with  approximately  the  same  

number  of  elements  by  planes  orthogonal  to  one  of  the  eigenvectors  of  this  tensor  (see  Fig.  

5.19).  To  avoid  creating  too  thin  subdomains,  we  recommend  using  a  small  number  of  splits.  

Consider  a  simplified  implementation  of  the  inertial  bisection  method.  This  implementation  is  

efficient  when  the  number  of  processors  is  

small,  but  each  processor  has  enough  RAM  to  contain  minimal  information  about  the  

entire  mesh.  Simple  calculations  show  that  the  storage  of  a  tetrahedral  mesh  containing  106  

elements  requires  about  34  MB  of  RAM,  which  is  hundreds  of  times  less  than  the  amount  of  

memory  in  modern  computers.  A  small  number  of  processors  allows  meshing  only  along  one  

direction.  After  partitioning  the  grid  into  P  approximately  equal  subgrids,  the  grid  rebuilding  

algorithm  is  applied  independently  to  each  subgrid.  To  preserve  the  conformality  of  the  global  

grid,  certain  restrictions  are  imposed  on  operations  with  tetrahedra  at  the  boundaries  between  

subgrids:  admissible  operations  must  not  change  the  grid  at  these  boundaries.  The  arithmetic  

complexity  of  mesh  

decomposition  (step  3  in  Algorithm  42)  and  conformal  mesh  assembly  (step  5)  is  

proportional  to  Nt(ÿh).  Numerical  experiments  confirm  that  these  steps  do  not  take

157

do  not  change
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i

xÿh

The  inertial  bisection  method  uses  only  the  coordinates  of  the  grid  nodes  to  calculate  the  

inertia  tensor,  followed  by  grid  splitting  along  its  main  axes.  The  computational  complexity  of  
this  method  is  proportional  to  the  number  of  tetrahedra  Nt(ÿh).

i=1

Nt(ÿh)
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Rice.  5.20.  Error  u  ÿ  uhLÿ(ÿ)  (a)  and  grid  quality  Q(ÿh)  (b)

Remeshing  time,  P  =  1,  L  =  20
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list  of  element  qualities.angle,  ÿ=(0,  1)3  \  [0,  0,5]  3,  and  singular  right-hand  side:

Nt(ÿh)

b

ÿ  ÿu  =  |x  ÿ  x0|  u  =  0  

on  ÿÿ,

58.6

731  1155  3747  3097  6075  11  147  18  904

1.9

On  fig.  Figure  5.20  shows  the  results  of  re-meshing  for  various  values  of  P.  Graphs  
in  fig.  5.20a  show  the  maximum  error  rate  between  u  and  the  finite  element  solution  uh

4.6

where  x0  =  (0.5,  0.5,  0.5).  The  properties  of  the  solution  to  problem  (5.4.2)  were  studied  
in  [27].  The  solution  has  weak  anisotropic  edge  singularities  and  a  strong  isotropic  
singularity  at  the  vertex  of  the  reentrant  angle.  To  solve  the  equation,  we  apply  the  finite  
element  method  with  piecewise  linear  basis  functions.  To  estimate  the  discretization  error,  
we  replace  the  unknown  exact  solution  u  with  a  discrete  solution  u  computed  on  a  very  
fine  adaptive  mesh  containing  approximately  1.5  ×  106  tetrahedra.  To  construct  an  
adaptive  grid,  problem  (5.4.2)  needs  to  be  solved  several  times  on  a  sequence  of  grids  
with  an  approximately  equal  number  of  cells.  We  use  20  iterations  of  the  adaptive  
algorithm  45  presented  in  the  application,  at  each  iteration  of  which  algorithm  42  is  used.

T  a  b  l  e  5.3

1.5

11.2

subgrids  and  the  global  grid.  Therefore,  changing  the  direction  of  cutting  the  grid  into  
subgrids  is  very  important  for  the  convergence  of  the  algorithm.  On  fig.  5.19b  shows  the  
case  when  all  boundary  tetrahedra  in  a  quasi-uniform  mesh  with  step  h  are  of  poor  
quality .  These  tetrahedra  and  their  neighbors,  schematically  represented  by  
parallelepipeds  of  thickness  2  h,  are  divided  into  subdomains  by  planes  orthogonal  to  the  
second  eigenvector  of  the  inertia  tensor.  The  eigenvectors  of  the  inertia  tensor  are  three  
orthogonal  directions  in  space.  However,  even  after  changing  

the  three  directions,  the  global  mesh  may  contain  tetrahedra  whose  vertices  always  
remain  at  the  boundaries  between  the  submesh.  As  a  result,  only  a  part  of  the  basic  
algorithms  was  applied  to  these  tetrahedra.  To  improve  their  quality,  the  last  step  in  
Algorithm  42  is  necessary.  The  number  of  such  tetrahedra  is  proportional  to  the  number  
of  intersections  of  different  triplets  of  parallel  planes,  equal  to  (P  ÿ  1)3.  Since  the  number  
of  processors  is  small,  the  last  step  of  the  algorithm  is  implemented  on  one  processor.  
Another  interesting  observation  is  that  the  dynamics  of  mesh  modifications  can  be  quite  
different  in  parallel  and  sequential  meshing  algorithms,  since  the  parallel  algorithm  
modifies  the  global  mesh  in  P  different  places  simultaneously  [66,  67].  Let's  consider  a  
model  example  showing  that  this  

can  greatly  affect  the  operation  of  the  algorithm.  Numerical  experiments  [66]  were  
carried  out  on  a  COMPAQ  Tru64  Cluster  parallel  computer  with  ev6  processors  with  a  
frequency  of  667  MHz.  Consider  the  Poisson  equation  in  the  domain  ÿ  with  one  input

Vtab.  Figure  5.4  shows  the  number  of  implemented  basic  operations  in  parallel  
computations  and  the  total  time  of  mesh  rebuilding.  It  is  pertinent  to  note  that  only  after  
the  10th  adaptive  iteration,  when  the  grid  was  practically  established,  the  time  of  grid  
rebuilding  became  proportional  to  the  number  of  implemented  basic  operations.  On  non-
stationary  meshes,  the  number  of  basic  operations  may  not  correlate  with  the  mesh  
rebuilding  time.  This  is  explained  by  different  spatial  distributions  of  local  modifications  of  
the  grid.

as  a  function  of  the  number  L  of  the  adaptive  iteration.  This  error  is  approximately  the  
same  for  all  parallel  calculations.  Graphs  in  fig.  5.20b  show  that  the  mesh  quality  after  five  
adaptive  iterations  is  greater  than  0.1  for  all  values  of  P,  which  indicates  the  robustness  
of  Algorithm  42.  The  next  two  tables  show  the  arithmetic  complexity  of  parallel  re-

meshing .  Arithmetic  complexity  is  measured  by  the  number  of  basic  #mod  operations  
implemented.  In  table.  Figure  5.3  shows  the  time  and  number  of  basic  operations  
performed  for  the  last,  twentieth,  iteration.  The  number  of  local  basic  operations  is  
proportional  to  N(ÿh),  and  the  execution  time  of  each  operation  is  approximately  
proportional  to  N(ÿh)1/2.  Apparently,  this  dependence  is  due  to  the  non-optimal  
implementation  of  algorithms  for  working  with  ordered

9735  19,359  28,151  36,134  52,079  100,075  160,944

3.1

in  ÿ,

4.7

#mod

159

cpu  time  1.2  cpu  time  

103  1.6  
#mod
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ÿ1

25.3

(5.4.2)
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1.8  1.5  1.3  1.3  1.4  1.9  2.2  2.6  2.8  2.9  3.1  3.4

For  complex  geometric  models,  mesh  generators  can  produce  topologically  
correct  but  physically  incorrect  meshes.  For  example,  using  simple  methods  to  
close  the  gaps  generated  in  the  advancing  front  method  completes  the  meshing  
process,  but  can  lead  to  a  confusing  mesh.  In  particular,  therefore,  in  §  3.7  we  
use  a  rather  complicated  method  to  close  gaps.  Another  source  of  entangled  
grids  is  Lagrangian  methods,  in  which  the  grid  moves  along  with  the  flow,  
becoming  entangled  in  the  process.  Remeshing  methods  will  help  correct  the  
mesh  in  both  cases.  Recall  that  the  quality  of  a  regular  mesh  is  defined  as  a  
positive  function:  0  <  Q(ÿh)  1.  In  order  to  apply  basic  meshing  algorithms  to  an  

entangled  mesh,  we  generalize  the  concept  of  the  quality  of  a  simplex  Q(ÿ)  
as  follows.  Let's  assume  that  for

12

6.1

P=2

6  33,018  74.6  19,332  38.8  7643  15.0  4841  11.2  3061  9.4

§  5.5.  Fixing  and  unraveling  meshes

L

3.8  3.4  3.3  3.8  4.6  6.7  7.5  9.3  10  10.1  9.7  10.1

P=6

T  a  b  l  e  5.5  
Acceleration  during  parallel  re-meshing  with  Nt(ÿh)  ÿ  160  000

T  a  b  l  e  5.4  
Number  of  basic  operations  and  re-meshing  time  with  Nt(ÿh)  ÿ  160  000

1  30  403  27.2  16  204  15.2  8752  7.9  6448  7.2  5484  6.5

Over  the  past  half  century,  many  methods  have  been  proposed  for  generating  
high  quality  triangular  meshes.  Unfortunately,  a  similar  statement  is  not  true  for  
tetrahedral  meshes,  since  each  of  the  methods  for  constructing  tetrahedral  
meshes  has  its  own  advantages  and  disadvantages.  For  example,  both  the  
advancing  front  method  and  the  Delaunay  tetrahedrization  method  can  be  used  
to  construct  strongly  flattened  tetrahedra  in  which  all  four  vertices  lie  practically  in  
the  same  plane  (slivers).  To  remove  such  tetrahedra  and  correct  the  mesh,  
various  methods  of  correcting  or  improving  the  quality  of  the  mesh  are  used.  In  
this  section,  to  correct  the  mesh,  we  apply  the  methods  of  mesh  rebuilding,  the  
distinguishing  feature  of  which  is

14  23  878  65.9  10  336  21.5  3741  9.8  1885  7.6  911  6.3

9

2

20  18  904  58.6  7902  15.6  3265  9.7  1384  6.0  785  6.1

1  2  3  4  5  6  7

4  28,027  48.7  22,585  38.4  9804  16.6  6570  12.8  5294  11.8

changing  the  mesh  topology.

eleven

P=1

4

2.4  1.9  2.0  2.1  2.9  3.4  4.4  5.3  4.9  5.4  5.1

8

Superlinear  acceleration  is  due  to  different  orders  of  execution  of  local  
modifications  of  the  grid.  It  turns  out  that  if  the  mesh  is  too  far  from  the  one  
established  in  the  course  of  adaptation,  then  the  most  efficient  sequence  of  its  
local  modifications  is  to  choose  a  tetrahedron  with  the  lowest  quality.  Therefore,  
the  total  number  of  basic  operations  is  less  for  P  =  1.  If  the  grid  is  approximately  
adapted  to  the  solution,  then  the  sequence

P

3.4  2.7  2.3  2.9  3.7  5.0  5.4  6.1  6.5  7.5  7.0  7.5

P=4

10  32,986  87.9  13,776  30.2  4996  11.7  2602  8.7  1445  7.2

the  tangled  mesh  is  topologically  correct,  which  is  true  in  the  vast  majority  of  
cases.  Then  checking  the  mesh  entanglement  reduces  to  checking  the  sign  of  
algebraic  areas  (in  two  dimensions)  or  algebraic  volumes  (in  three  dimensions)  of  
pairs  of  neighboring  simplexes.  Let  us  consider  triangular  meshes  in  more  detail,  
although  everything  said  will  be  true  for  tetrahedral  meshes  as  well.  An  entangled  
triangular  grid  always  contains  a  pair  of  cells  ÿ1  and  ÿ2  

with  a  common  edge  and  with  the  same  signs  of  algebraic  areas  [see  (5.2.1)],  
as  shown  in  fig.  5.21b :

Sÿ241  Sÿ243

P=8

18  25,056  75.8  9802  20.1  2842  8.6  1536  6.3  434  5.7

ÿÿÿÿ  L
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3

4.2  3.7  3.5  4.1  5.4  7.9  9.4  10.5  11.8  12.2  12.5  12.8

8

6
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(5.5.1)0.

its  local  modifications,  which  consists  in  choosing  the  worst  tetrahedra  in  subgrids.  
Being  separated  in  space,  such  local  modifications  improve  the  quality  of  a  larger  
number  of  tetrahedra,  which  leads  to  a  faster  decrease  in  #mod  on  6  and  8  
processors.

2  30  850  39.6  18  273  27.1  12  340  14.5  8231  11.6  6937  10.8

Another  interesting  observation  is  that  the  number  of  basic  operations  
implemented  on  one  processor  is  not  always  inversely  proportional  to  the  number  
of  processors.  At  the  first  adaptive  iterations,  the  total  number  of  basic  operations  
#mod  ·  P  grows  with  P.  However,  when  the  grid  is  established,  it  decreases,  
which  leads  to  a  superlinear  acceleration  of  the  grid  construction  time  (Table  5.5).  
We  emphasize  that  this  is  a  new  and  interesting  property  of  the  grid  generator.
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Q  (ÿ1)  =  ÿQ(ÿ1),  Q  (ÿ2)  =  ÿQ(ÿ2).  The  qualities  

of  the  remaining  triangles  do  not  change,  i.e.  Q  (ÿ)  =  Q(ÿ).  The  new  quality  of  the  
triangle  Q  (ÿ)  changes  continuously  from  ÿ1  to  1  and  equals  0  when  one  of  the  
entangled  triangles  degenerates  into  a  segment.  The  continuity  of  the  modified  
quality  Q  

(ÿ)  is  necessary  for  the  successful  implementation  of  basic  algorithms.  
Unraveling  the  grid  occurs  due  to  the  growth  of  quality  from  a  negative  value,  
through  zero,  to  a  positive  (real)  quality.  The  modified  quality  does  not  require  
changes  in  the  basic  algorithms,  except  for  the  extension  of  the  quality  calculation  
algorithm.  In  addition  to  the  existing  algorithm,  it  is  required  to  check  the  sign  in  
inequalities  (5.5.1)  and  change  the  quality  sign  of  the  triangle,  if  necessary.  Let's  
consider  two  examples.  The  initial  entangled  mesh  shown  in  Fig.  5.22,  a,  contains  
158  triangles.  The  mesh  was  artificially  tangled  by  random  

displacement  of  nodes.  Note  that  some  of  the  nodes  were  shifted  outside  the  
region.  The  quality  of  the  entangled  mesh  is  Q(ÿh)  =  ÿ0.93  with  the  average  
quality  of  triangles  being  0.24.

Rice.  5.21.  Pairs  of  untangled  (a)  and  tangled  (b)  triangles

162

The  geometric  model  of  the  gear  shown  in  fig.  5.23,  a,  was  created  using  
CAD.  It  contains  422  nodes,  636  curved  edges  and  217  curved  surfaces.  For  
this  model,  two  tetrahedral  meshes  with  different  numbers  of  elements  were  
constructed  by  combining  the  advanced  front  method  with  the  Delaunay  
tetrahedrization  method,  as  described  in  Chap.  3.  To  build  a  coarse  mesh,  the  
surface  of  the  gear  was  divided  into  7084  triangles  with  3530  nodes,  as  shown  
in  fig.  5.23b .  To  build  a  fine  grid,  the  model  surface  was  divided  into  38834  
triangles  with  19405  nodes.

163

Rice.  5.23.  Gear  model  (a)  and  surface  mesh  with  7084  triangles

Let's  mark  both  triangles  ÿ1  and  ÿ2  as  entangled  and  assign  negative  qualities  to  
them:

§  5.5.  Fixing  and  unraveling  meshes

To  correct  this  tangled  grid,  we  apply  Algorithm  35  with  the  modifications  
described  in  §  5.2.  To  preserve  the  boundary  of  the  region,  we  will  fix  the  grid  
nodes  on  this  boundary.  The  finite  quasi-uniform  mesh  ÿh  shown  in  Fig.  5.22b  
contains  145  triangles.  Its  quality  is  Q(ÿh)  =  0.53,  while  the  average  quality  of  
triangles  is  0.84.  The  second  example  illustrates  the  use  of  basic  meshing  
algorithms  

to  improve  the  quality  of  a  tetrahedral  mesh.  In  this  example,  the  quality  of  a  
tetrahedron  is  defined  as  the  quality  of  its  shape,  i.e.,  Q(ÿ)  =  1  only  on  a  regular  
tetrahedron  of  any  size.  A  detailed  description  of  the  various  qualities  is  given  in  
Chap.  6.

Recall  that  a  reliable  algorithm  for  constructing  a  three-dimensional  mesh  
(see  §  3.7)  successively  uses  the  advanced  front  (F)  and  Delaunay  
tetrahedrization  (D)  methods.  The  advanced  front  method  is  not  reliable  enough,  
and  in  our  example  it  was  only  able  to  mesh  a  patch  with  a  volume  of  99.96%  of  
the  domain  volume.  The  same  behavior  of  the  advancing  front  method  was  
observed  in  other  examples  considered  in  Chap.  3.  After  the  completion  of  the  
method,  32  triangles  in  the  coarse  grid  and  352  triangles  in  the  fine  grid  remained  
in  the  front.  The  quality  of  the  unfinished  grids  turned  out  to  be  quite  low

Rice.  5.22.  Unraveling  a  triangular  mesh  by  rebuilding  it
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8  min  40  s.  The  construction  of  the  spatial  grid  took  41  s,  and  its  rebuilding  took  only  12  s.

0

Method

Rice.  5.24.  Spatial  mesh  slice  for  the  gear.  The  mesh  contains  6870  nodes,  7084  boundary  
triangles  and  22456  tetrahedra

T  a  b  l  e  5.7  
Distribution  of  tetrahedra  by  quality  in  a  fine  mesh

F

0

Mesh  rebuilding  algorithms  (GR)  significantly  improved  their  quality  -  up  to  0.14  in  a  

coarse  grid  and  up  to  0.2  in  a  fine  grid.  The  low  quality  tetrahedrons  that  appeared  after  

the  Delaunay  tetrahedrization  were  successfully  rebuilt.  Part  of  the  spatial  grid  is  shown  in  

fig.  5.24.  Building  a  fine  grid  required  9  min  33  s.  Most  of  the  resources  were  spent  on  the  

formation  of  the  initial  front:

Q(ÿh)

Quality  distribution  of  tetrahedra  in  a  coarse  mesh

1.06  10ÿ2  13655  13375280  0  P+D  6.12  

10ÿ4  13687  13390290  5  P+D+PS  1.44  10ÿ1  25485  

25485  0

10-1  10-2  10-3  10-4  10-5

Q(ÿh)

0

Nt

0
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5

0

F+D
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0

0

§  5.5.  Fixing  and  unraveling  meshes

0

Other  examples  of  correction  of  tetrahedral  meshes  are  presented  in  §  3.7.

Method

(see  tables  5.6  and  5.7).  The  grids  were  completed  by  the  Delaunay  tetrahedrization  
method.  After  that,  the  quality  of  the  meshes  dropped  even  more—to  6.1  10ÿ4  in  the  fine  

mesh  and  to  1.6  10ÿ5  in  the  coarse  mesh.  The  detailed  distribution  of  tetrahedra  by  quality  

is  presented  in  Table.  5.6  and  5.7. F

T  a  b  l  e  5.6

Nt

0

01.01  10ÿ3  140,442  139,684,750  8  1.60  10ÿ5  

140,723  139,817,854  37

10-1  10-2  10-3  10-4  10-5
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Rice.  6.1.  Grids  constructed  by  the  advancing  front  method  (a)  and  the  multilevel  
hierarchical  refinement  method  (b)

Consider  the  unit  square  [0,  1]2  and  construct  a  regular  grid  there,  which  
condenses  to  the  point  (0,  0).  Define  the  function  h(x)  h(x)  =  10ÿ4  +  10ÿ2  x21/2,

where  x  denotes  the  Euclidean  norm  of  the  vector  x,  x2  =  x2  +  y2.  An  unstructured  
grid  constructed  by  the  advancing  edge  method  with  a  grid  step  h(x)  is  shown  in  
Fig.  6.1,  a.  It  contains 2

MANAGING  MESH  PROPERTIES

as

Both  grids  have  advantages  and  disadvantages.  In  an  unstructured  grid,  the  
size  of  triangles  changes  smoothly,  without  large  jumps.  In  the  numerical  solution  
of  partial  differential  equations,  the  smoothness  of  the  grid  can  lead  to  a  more  
accurate  discrete  solution.  On  the  other  hand,  the  implementation  of  a  number  
of  numerical  methods  is  simpler  on  hierarchical  or  structured  grids.  The  
hierarchical  nature  of  the  grid  makes  it  possible  to  use  more  efficient  methods  
for  solving  emerging  algebraic  problems  and  interpolating  grid  solutions  between  
two  grids  in  nonstationary  problems.

where  Rÿ  and  rÿ  denote  the  radii  of  the  circumscribed  and  inscribed  spheres,  
respectively,  and  the  constant  C  does  not  depend  on  the  simplex.  For  C  ÿ  1,  the  
regular  grid  does  not  contain  slivers  and  anisotropic  simplices.

d(d  +  1)  
pd  = Vd  =  1d!

Regular  grids  represent  an  important  class  of  grids  for  applications.  First,  
they  can  condense  to  the  features  of  the  model  or  to  the  features  of  the  solution  
according  to  the  law  specified  by  the  user.  Second,  the  vast  majority  of  theoretical  
results  on  the  stability  of  numerical  methods  and  estimates  of  the  accuracy  of  the  
numerical  solution  have  been  proved  for  regular  grids.  To  construct  regular  
grids,  it  is  necessary  to  specify  the  grid  step  

function  h(x),  which  determines  the  desired  diameter  of  the  simplex  at  the  
point  x.  In  this  section,  we  assume  that  the  function  h(x)  is  known  and  consider  
three  methods  for  constructing  regular  grids.

In  this  chapter,  we  will  look  at  various  methods  for  constructing  meshes  with  
given  properties,  including  controlling  the  local  size  of  simplices  (triangles  or  
tetrahedra),  pulling  simplices  in  a  given  direction,  and  controlling  the  number  of  
simplices  in  a  mesh.  The  control  is  carried  out  by  splitting  the  quality  of  the  
simplex  into  factors  that  are  responsible  for  its  size  and  shape.

§  6.1.  Controlling  properties  of  regular  grids

In  a  regular  grid,  simplices  can  vary  considerably  in  size,  while  remaining  
close  in  shape  to  regular  simplices.  More  precisely,  each  simplex  ÿ  in  a  regular  
grid  satisfies  the  following  condition:

,

Q(ÿ)  =  Qsize(ÿ)  Qshape(ÿ),

999  triangles  and  540  knots.  The  grid  constructed  by  the  method  of  multi-level  
hierarchical  refinement  is  shown  in  fig.  6.1b .  It  contains  908  triangles  and  494  
nodes.

Rÿ

Chapter  6

rÿ

each  of  which  varies  from  0  to  1.  The  first  factor  is  responsible  for  the  size  of  the  
simplex,  the  second  for  its  shape.  Let  pd  and  Vd  denote,  respectively,  the  sum  of  
the  edge  lengths  and  the  volume  of  a  regular  simplex  with  a  unit  edge,  where  d  =  
2  for  a  triangle  and  d  =  3  for  a  tetrahedron.  Simple  calculations  give:

b

c,

(6.1.1)

§  6.1.  Controlling  properties  of  regular  grids

The  third  method  for  constructing  regular  grids  uses  the  grid  rebuilding  
algorithms  described  in  Chap.  5.  These  algorithms  require  the  introduction  of  
the  quality  of  the  simplex  Q(ÿ).  Most  existing  approaches  define  the  quality  of  a  
simplex  as  the  product  of  two  factors:

d+12d
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A

pdd

Thus,  the  maximum  quality  value  Q(ÿ)  is  achieved  on  a  regular  simplex  with  edge  length  le  
=  h(x  ÿ).  Compared  to  the  formulas  in  §  2.1,  formula  (6.1.5)  contains  an  additional  factor  
F(ÿÿ).  Vtab.  Table  6.1  shows  the  shape  quality  (6.1.4)  and  size  quality  (6.1.3)  for  an  

isosceles  
triangle  with  angles  ÿ,  ÿ  =  180ÿ  ÿ  2ÿ  and  base  h(x  ÿ)  =  1.  Note  that  the  shape  quality  

Qshape(ÿ )  =  0.8  can  mean  both  obtuse  and  acute  isosceles  triangles.  This  is  insufficient  

for  constructing  good  meshes  for  finite  element  calculations.  The  size  quality  has  a  more  

pronounced  maximum  ÿ  =  60ÿ,  so  that  as  a  result  the  quality  Q(ÿ)  0.8  is  achieved  only  on  
an  acute  triangle.  The  balance  of  the  qualities  of  shape  and  size  can  be  adjusted  in  many  
ways,  for  example,

T  a  b  l  e  6.1  
Quality  of  an  isosceles  triangle  calculated  by  formula  (6.1.5)

Qsize(ÿ)  =  F(ÿÿ)  =  min  ÿÿ,

,  ÿÿ  =  
pdh(x  ÿ)  where  

x  ÿ  is  the  center  of  mass  of  the  simplex  ÿ,  p  ÿ  is  the  sum  of  the  lengths  of  its  edges:

For  a  detailed  analysis  of  various  qualities  of  the  simplex,  we  refer  the  reader  to  [62].  Let's  
put

In  a  two-dimensional  space,  another  common  formula  for  the  shape  quality  uses  the  sum  
of  squared  edge  lengths  instead  of  p2  ÿ.  Note  that  Qshape(ÿ)  is  a  dimensionless  quantity  

with  a  maximum  value  of  1,  which  is  achieved  only  on  a  regular  simplex.  In  general,  any  
combination  of  dimensionless  quantities  that  reaches  a  single  maximum  on  a  regular  
simplex  can  be  used  as  a  definition  of  the  shape  quality.  For  more

ÿ

Thus,  regardless  of  the  value  of  ÿÿ,  the  quality  Qsize(ÿ)  1.

pÿ

(6.1.4)

ÿÿ

1
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le.

5ÿ

pdd

.  (6.1.3)

b

(6.1.2)

Q(ÿ)  =  Qshape(ÿ)n  Qsize(ÿ)m,

(6.1.5)

Qshape(ÿ)  0.11  0.34  0.55  0.74  0.89  0.99  0.98  0.82  0.38

.

1

ÿÿ
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15ÿ  25ÿ  35ÿ  45ÿ  55ÿ  65ÿ  75ÿ  85ÿ

eÿÿ

Q(ÿ)  =

This  quality  increases  for  0  <  ÿ  ÿ  1,  decreases  for  ÿÿ  >  1,  and  has  a  single  maximum  
( Qsize(ÿ)  =  1)  at  the  point  ÿÿ  =  1  (see  Fig.  6.2).  The  factor  Qshape(ÿ),  which  is  responsible  

for  the  shape  of  the  simplex,  can  also  be  determined  in  a  nonunique  way.  In  the  
examples  below,  we  use  the  following  quality:

,

Qsize(ÿ)  0.70  0.72  0.76  0.81  0.89  0.98  0.96  0.62  0.08

Such  a  definition  of  Qsize(ÿ)  leads  to  the  discontinuity  of  the  derivatives  of  Qsize(ÿ)  
with  respect  to  ÿÿ  and  the  coordinates  of  the  vertices  of  the  simplex.  In  basic  algorithms  
for  optimizing  the  position  of  a  grid  node,  the  differentiability  of  the  quality  of  a  simplex  is  
an  optional  but  desirable  property.  Therefore,  in  the  examples  below,  we  will  determine  the  

quality  of  the  simplex  using  the  following  differentiable  function  F:

.

Vd

pÿ

2  ÿ  min  ÿÿ,

§  6.1.  Controlling  properties  of  regular  grids

170ÿ  150ÿ  130ÿ  110ÿ  90ÿ  70ÿ  50ÿ  30ÿ  10ÿ

pÿ

Vÿ

Qshape(ÿ)  =

3

Rice.  6.2.  Size  quality  Qsize(ÿ)  calculated  by  formulas  (6.1.2)  (a)  and  (6.1.3)  (b)  as  a  
function  of  ÿÿ

Q(ÿ)  0.08  0.24  0.41  0.60  0.79  0.96  0.95  0.51  0.03

where  n  and  m  are  some  positive  parameters.  Thus,  when  analyzing  the  properties  of  the  
constructed  grids,  it  is  necessary  to  use  an  analog  of  Table.  6.1  for  each  new  definition  of  
the  quality  of  a  triangle  or  tetrahedron.

Vd

In  practice,  the  construction  of  an  ideal  grid  with  quality  Q(ÿh)  =  1  is  unrealistic.  First,  
there  is  no  two-dimensional  condensing  grid  of  equilateral  triangles.  Second,  a  tetrahedral  
grid  of  regular  tetrahedra  cannot  cover  space.  Thirdly,  dihedral  and  planar  angles  in  the  
geometric  model  limit  the  maximum  possible  mesh  quality.  These  limitations  should  be  
taken  into  account  when  choosing  the  quality  Q0  in  the  remeshing  algorithm  35.

ÿÿ

Qsize(ÿ)  =  min  ÿÿ,

169

ÿ

F(ÿÿ),  ÿÿ  =  pd  ÿ  
pdh(x  ÿ)

=

1

The  multiplier  Qsize(ÿ)  is  usually  built  on  the  basis  of  the  grid  step  function  h(x),  for  
example:

Vÿpdÿ
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leads  to  the  grid  shown  in  Fig.  6.3b .  This  grid  was  obtained  by  rebuilding  the  grid  
in  Fig.  6.3,  a.

between  two  points  x1  and  x2  in  the  constant  metric  M  is  calculated  as  follows:

A  generalization  of  the  concept  of  distance  requires  the  introduction  of  the  matrix  
M,  which  is  a  symmetric  positive  definite  2  ×  2  matrix.  Distance

171

Eigenvectors  w1  and  w2  of  a  specific  matrix  5.89  2.51  2.51  

5.01

(6.2.1)

shown  in  fig.  6.4,  but  as  semi-axes  of  an  ellipse  centered  at  the  point  O.  They  
correspond  to  the  eigenvalues  ÿ1  =  8.0  and  ÿ2  =  2.9.  In  the  Clidean  metric,  
points  A  and  B  are  equidistant  from  the  center  O.  In  the  metric  M,  the  distance  

to  point  A  is  ÿ1/ÿ2  times  greater  than  to  point  B.  An  equilateral  triangle  in  the  
metric  M  is  shown  in  fig.  6.4,  b.  The  height  of  this  triangle  is  ÿ2/ÿ1  times  less  than  

the  height  of  an  equilateral  triangle  in  the  Euclidean  metric.  For  a  strongly  
anisotropic  metric  with  ÿ1  ÿ2,  shown  in  Fig.  

6.4,  b ,  an  equilateral  triangle  in  the  metric  M  will  look  like  a  strongly  flattened  
one  in  the  Euclidean  metric.  Another  feature  of  the  anisotropic  metric  is  that,  as  
an  equilateral  triangle  rotates  in  the  metric  M,  its  shape  will  change  strongly.  For  
example,  when  rotated  by  90ÿ,  instead  of  a  flattened  triangle,  we  get  a  highly  
elongated  needle-shaped  triangle.  The  ratio  of  eigenvalues  ÿ1/ÿ2  is  called  the  
condition  number  of  the  matrix  M,  or  the  anisotropy  of  the  metric.  Last

ÿM(x1,  x2)  =  (x1  ÿ  x2)TM  (x1  ÿ  x2).

M=

Rice.  6.3.  Meshes  generated  by  the  mesh  rebuilding  algorithm

The  high  quality  regular  grids  considered  in  §  6.1  usually  consist  of  triangles  
close  in  shape  to  a  regular  triangle.  The  size  of  these  triangles  is  controlled  by  
one  parameter,  the  local  grid  spacing.  The  construction  of  anisotropic  meshes,  
where  the  orientation  of  triangles  plays  an  important  role,  requires  the  introduction  
of  additional  parameters,  which  inevitably  lead  to  the  concept  of  a  tensor  metric.  
The  Wuclidean  metric  is  the  distance  between  two  points  x1  and  x2

170

The  distance  between  two  points  in  space  is  calculated  using  a  similar  formula,  
only  in  this  case  M  is  a  3  ×  3  symmetric  positive  definite  matrix.

§  6.2.  Managing  the  properties  of  anisotropic  meshes

Rice.  6.4:  a  are  the  2  ×  2  eigenvectors  of  the  matrix  M,  b  the  height  of  the  triangle  
is  ÿ  =  3ÿ2/(4ÿ1)

ÿ(x1,  x2)  =  (x1  ÿ  x2)2  +  (y1  ÿ  y2)2.

§  6.2.  Managing  the  properties  of  anisotropic  meshes

Let's  return  to  the  function  (6.1.1).  The  result  of  the  operation  of  the  mesh  
restructuring  algorithms  is  shown  in  Fig.  6.3,  a.  The  mesh  contains  1004  triangles  
and  545  nodes.  Despite  the  visual  sensation  of  the  mesh  being  non-smooth,  its  
quality  is  quite  high:  Q(ÿh)  =  0.797.  The  flexibility  of  this  approach  lies  in  the  ability  
to  rebuild  any  grid  into  a  grid  with  new  properties  by  replacing  the  grid  step  
function  h(x).  For  example,  the  choice

h(x)  =  10ÿ4  +  10ÿ2  x  ÿ  e21/2,  e  =  (1,  1)T,

on  a  plane  is  measured  according  to  the  Pythagorean  theorem:
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In  the  case  of  a  constant  metric,  formulas  (6.2.2)  and  (6.2.1)  coincide.  Note  also  that  in  
the  case  of  a  variable  metric,  a  straight  line  is  not  always  the  shortest  distance  between  
two  points.

x12=

id,

Using  the  formulas  for  the  length  of  an  edge  and  the  volume  of  a  simplex  in  the  
metric  M,  we  define  the  new  quality  of  a  simplex  as  the  product  of  the  qualities  of  size  and  
shape:

=
1

,

le,M  ÿ  (x1  ÿ  x2)TM(x12)  ( x1  ÿ  x2),

ÿ

The  example  shows  that  an  increase  in  the  anisotropy  of  the  metric  by  a  factor  of  100  
leads  to  a  stretching  (or  flattening)  of  the  triangle  by  a  factor  of  10.  In  three  dimensions,  
the  anisotropy  of  the  metric  is  defined  as  the  ratio  of  the  maximum  eigenvalue  of  the  
matrix  M  to  the  minimum.  A  further  generalization  of  the  concept  of  distance  assumes  
that  the  

elements  of  the  matrix  M  are  functions  of  the  spatial  coordinate  x.  Note  that  M(x)  
remains  a  symmetric  and  positive  definite  matrix  at  every  point  x.  Let  ÿ(t)  be  the  simplest  
parametrization  of  the  edge  e  =  [ x1,  x2]:  ÿ(t)  =  x1  +  t(x2  ÿ  x1),

le,M  = Q(ÿ)  =  Qsize,  M(ÿ)  Qshape,  M(ÿ),

0

2

=  Vÿ  ÿdetM.

detM(x)  dV.

Where

p  ÿ,M

=  Vÿ  h(x  ÿ)ÿd  Using  formulas  (6.2.3)  and  (6.2.2),  we  obtain  Vÿ,  M  =  h(x  ÿ)ÿ1p  ÿ,  which  
transforms  formulas  (6.2.4)  and  (6.2.  5)  to  for  and  p  ÿ,  M  mule  (6.1.5).  Quality  (6.2.4)  

reaches  its  

maximum  when  Qsize,  M(ÿ)  =  Qshape,  M(ÿ)  =  1.  The  first  factor  is  equal  to  1  if  all  

edges  of  ÿ  have  the  same  length  h  M(x  ÿ)  in  the  metric  of  M.  The  second  the  factor  is  
equal  to  1  when  the  ratio  Vÿ,  M/pd  ÿ,  M  reaches  its  maximum  value,  i.e.  also  on  a  regular  

simplex  considered  in  the  metric  M.

172

In  a  metric  space,  a  unit  of  length  in  the  direction  of  an  eigenvector  is  multiplied  by  the  
square  root  of  the  corresponding  eigenvalue.  Since  the  determinant  of  the  matrix  M  is  the  
product  of  its  eigenvalues,  we  have  the  following  formula  for  the  volume:

dt  =

When  rebuilding  the  meshes,  there  is  no  need  to  calculate  the  exact  length  of  the  
edge  in  the  metric  M  by  formula  (6.2.2).  It  is  enough  to  apply  a  quadrature  of  the  second  
order  with  a  central  point:

In  practice,  when  rebuilding  the  grid,  the  metric  is  calculated  either  at  each  simplex  or  
at  each  node  of  the  grid.  In  the  first  case,  the  metric  is  piecewise  constant  and  
discontinuous  between  simplices,  i.e.,  the  length  per  mesh  edges  depends  on  the  simplex  
on  which  it  is  calculated.  In  the  second  case,  the  metric  is  assumed  to  be  linear  in  each  
simplex  and  continuous  in  the  entire  domain,  so  the  edge  length  is  the  same  for  all  
simplices  containing  this  edge.  Therefore,  the  continuous  metric  leads  to  faster  rebuilding  
of  the  mesh.  All  meshing  examples  in  this  book  use  a  continuous  metric.  In  terms  of  the  
Wuclidean  metric,  the  volume  of  a  simplex  is  calculated  by  the  formula

Vÿ,  M

(6.2.5)

eÿÿ

Ch.  6.  Managing  grid  properties

(6.2.4)

Here  the  function  F  is  defined  by  formula  (6.1.3),  where

ÿ2

(6.2.3)

pdd

=

Thus,  in  a  metric  space,  there  is  no  need  to  introduce  a  separate  function  h(x),  which  

describes  the  size  of  the  simplex,  and  parameters  that  determine  its  orientation.  The  
metric  M  controls  both  the  orientation  of  the  simplex  and  its  size.

and  the  function  h  M(x  ÿ)  defines  the  step  of  a  regular  grid  in  a  space  with  metric  M.  The  
new  quality  of  the  simplex  is  constructed  in  such  a  way  that  it  coincides  with  the  quality  
(6.1.5)  for  the  isotropic  metric:

Vÿ,M  =

0

ÿÿ,  M

ÿT  t

p  ÿ,  M

M(x)  =  h(x)

0  t

(x2  ÿ  x1)TM(ÿ(t))  ( x2  ÿ  x1)  dt.  (6.2.2)

ÿ

Qsize,  M(ÿ)  =  F(ÿÿ,M),  Qshape,  M(ÿ)  =

=

dV.

§  6.2.  Managing  the  properties  of  anisotropic  meshes

for  which  ÿ  t(t)  =  x2  ÿ  x1.  The  edge  length  e  is  calculated  as  follows:

Vd

(x1  +  x2).

1,

.

1
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M(ÿ(t))  ÿ  t

le,M,

hM(xÿ)  =  1,

Vÿ,Mpd

pdh  M(xÿ)

In  the  case  of  a  constant  metric,  we  obtain  the  relation

Vÿ  =

where  Id  denotes  the  identity  matrix  of  order  d.  Indeed,  is

1

ÿ,M
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Thus,  to  construct  a  grid  with  N  simplices,  we  first  calculate  the  parameter  h  by  formula  
(6.2.7),  using  some  initial  triangulation  (tetrahedrization)  of  the  domain,  and  then  the  
quality  of  the  simplex  by  formulas  (6.2.4)–(6.2.6).  In  the  case  of  a  rough  initial  estimate  of  
the  parameter  h,  the  number  of  simplices  in  the  constructed  mesh  N(ÿh)  may  differ  
significantly  from  N.  In  this  case,  the  constructed  mesh  can  be  used  to  more  accurately  
estimate  the  parameter  h  and  the  mesh  rebuilding  process  can  be  repeated.  As  we  noted  
above,  in  the  overwhelming  majority  of  problems  it  is  unrealistic  to  construct  a  mesh  with  
the  maximum  quality  Q(ÿh)  =  1.  Therefore,  the  

desired  number  of  simplices  N  will  almost  always  be  reached  only  approximately.  
The  deviation  of  N  from  N(ÿh)  depends  on  the  quality  Q(ÿh)  of  the  constructed  grid.  The  
lower  the  average  quality  of  the  grid  elements,  the  greater  the  deviation  of  N(ÿh)  from  the  
desired  value.

h  =

N(ÿ0  h)

Ch.  6.  Managing  grid  properties

.

+10

0  1M  =  Rÿ/4

Consider  an  example  of  controlling  the  properties  of  regular  grids.  Using  the  isotropic  

metric  M  =  h(x)ÿ2  I2,  where

ÿ

(6.2.7)

Thus,  to  estimate  the  parameter  h,  it  suffices  to  calculate  the  area  (volume)  of  the  domain  
ÿ  in  the  given  metric  M:

h

1

h(x)  =  max{|(x  ÿ  0.4)
2

h  M(x  ÿ)  =  h,

ÿ  

ÿ

2

ÿ  

ÿ

1

i=1

ÿ4  |a/2},+  ( y  -  0.5)

0

Consider  an  example  of  controlling  the  properties  of  anisotropic  meshes.  Let  10

where  h  is  to  be  estimated.  The  area  (volume)  of  the  computational  domain  in  two  (three)  
dimensions  is  calculated  by  the  formula

2

Vÿi  det  M(xÿi )

NVd

Rice.  6.5.  Isotropic  grids  with  a  =  0.5  (a)  and  a  =  1  (b)

RTÿ/4,

|(x  ÿ  0.6)

det  M(x)  dV
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NVd

2

where  Rÿ/4  is  the  45ÿ  rotation  matrix.  Thus,  as  a  increases,  the  metric  becomes  stronger  
in  the  direction  (ÿ1,  1).  A  grid  that  is  quasi-uniform  in  such  a  metric  must  stretch  in  the  
perpendicular  direction  (1,  1).  Let  N  =  2000.  Consider  two  values  a  =  1  and  a  =  2.  In  both  
cases,  we  estimate  h  using  the  grid  

shown  in  Fig.  6.3,  a.  The  result  of  rebuilding  the  grid  is  shown  in  Fig.  6.6.  The  grid  in  
fig.  6.6,  a  contains  1850  triangles,  and  its  quality  is  Q(ÿh)  =  0.574,  while  the  average  
quality  of  elements  is  0.870.  Only  9  triangles  have  quality  below  0.8.  Note  that,  despite  
the  relatively  high  average  quality,  the  deviation  of  N(ÿh)  from  N  is  7.5%.  The  grid  in  fig.  
6.6,  b  contains  1867  triangles,  and  its  quality  is  Q(ÿh)  =  0.208  with  an  average  quality  of  
elements  of  0.864.  Multiple  triangles  near  the  top  left  and  bottom  right  corners  cannot

+  10  ÿ4|a/2,

Using  some  triangulation  (tetrahedrization)  ÿ0  of  the  computational  domain  and  applying  
a  quadrature  with  a  central  point,  we  obtain  a  simple  estimate  of  this  parameter:

§  6.2.  Managing  the  properties  of  anisotropic  meshes

h  ÿ

and  by  changing  the  value  of  the  parameter  a,  we  will  change  the  degree  of  concentration  

of  the  isotropic  grid  to  two  points  (0.4,  0.5)  and  (0.6,  0.5)  on  the  boundary  of  the  wing-
shaped  obstacle  (see  Fig.  6.5).  Both  grids  in  this  figure  contain  about  1800  triangles  each  
and  are  of  approximately  the  same  quality.  Note  that  the  grid  in  Fig.  6.5,  b  was  built  from  
the  grid  in  fig.  6.5,  and  with  the  help  of  the  triangular  mesh  rebuilding  methods  described  
in  Chap.  5.  The  main  drawback  of  the  metric  introduced  above  is  the  lack  of  control  over  
the  number  of  simplices  in  the  

constructed  grid.  To  return  this  control,  it  is  necessary  to  establish  a  correspondence  
between  the  desired  number  of  simplices  N  and  the  parameter  h  M(x  ÿ).  For  a  visual  grid  
consisting  of  regular  simplices  of  the  same  diameter  in  the  metric  M,  this  parameter  does  

not  depend  on  the  simplex  ÿ;  therefore,

(6.2.6)

|ÿ|M  =  N  Vd  hd .

+  ( y  -  0.5)

1/d

1/d
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Our  experience  shows  that  the  construction  of  highly  anisotropic  tetrahedral  
meshes  is  a  much  more  difficult  problem  than  the  construction  of  anisotropic  
triangular  meshes.  In  practice,  the  algorithms  described  in  Chap.  5  make  it  
possible  to  build  triangular  meshes  in  which  elements  can  be  easily  stretched  by  
a  factor  of  103–104  in  any  direction.  For  tetrahedral  meshes,  the  degree  of  
extrusion  of  elements  is  usually  limited  to  values  of  10–100.

SOME  PROBLEMS  OF  GRID  ADAPTATION

§  A.1.  Adaptation  to  external  and  internal  boundaries

By  grid  adaptation,  we  mean  the  process  of  constructing  or  rebuilding  a  
computational  grid  that  is  consistent  with  the  geometric  features  of  the  
computational  domain  and/or  with  the  features  of  the  grid  solution.  The  process  
of  grid  adaptation,  as  a  rule,  is  aimed  at  the  approximate  minimization  of  some  
functional  under  given  constraints.  In  the  appendix,  we  consider  several  typical  
examples  of  such  functionals  and  restrictions  on  rebuilding  some  initial  simplicial  
grid.

176

A  common  example  of  grid  adaptation  is  the  adaptation  of  the  initial  grid  to  a  
curvilinear  boundary,  which  can  be  either  external  or  internal.  The  main  purpose  
of  this  adaptation  is  to  improve  the  approximation  of  the  original  boundary  by  
boundary  edges  or  faces  of  the  adaptive  mesh.  As  a  functional  to  be  minimized,  
one  can  choose,  for  example,  the  error  of  approximation  of  a  curvilinear  boundary  
by  a  piecewise  linear  boundary  in  the  maximum  norm,  and  as  a  constraint,  the  
maximum  admissible  number  of  grid  nodes.  This  formulation  corresponds  to  the  
problem  of  constructing  an  adequate  discrete  model  in  the  class  of  simplicial  grids  
for  a  given  domain  with  a  curvilinear  boundary.

Rice.  6.6.  Anisotropic  grids  with  a  =  1  (a)  and  a  =  2  (b)

Ch.  6.  Managing  grid  properties

It  is  obvious  that  a  decrease  in  the  approximation  error  of  a  curvilinear  
boundary  by  a  piecewise  linear  boundary  implies  a  refinement  of  the  given  mesh  
in  the  vicinity  of  the  boundary,  i.e.,  an  improvement  in  the  resolution  of  the  
original  discrete  model.  Depending  on  the  mesh  refinement  method,  it  is  
necessary  to  implement  either  a  shift  of  the  boundary  nodes  along  the  boundary  
or  the  placement  of  new  nodes  on  the  boundary.  Both  operations  assume  the  
existence  of  curved  boundary  data.  Below  we  

consider  several  ways  to  use  curvilinear  boundary  data  to  adapt  the  grid  in  its  
vicinity.  For  simplicity  of  presentation,  we  restrict  ourselves  to  the  case  when  all  
boundary  nodes  of  the  original  grid  lie  on  the  boundary  of  the  domain.

be  strongly  elongated  in  the  direction  (1,  1),  which  leads  to  a  decrease  in  their  
quality  and,  consequently,  in  the  quality  of  the  grid.  However,  due  to  the  high  
average  quality  of  triangles,  the  deviation  of  N(ÿh)  from  N  is  only  6.7%.
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T  a  b  l  e  A.1  

Parameter  of  the  midpoint  of  a  segment  
calculated  by  formulas  (A.1.1)–(A.1.3).

Clause  1.1.  Adaptation  of  triangulation  to  a  curvilinear  parameterized  
boundary

(A.1.3)

1.

te

Formula  (A.1.1)  (A.1.2)  (A.1.3)

0.5tv

(A.1.1)

t2

b

i ,

t

ÿi  =  {(x,  y)  |  x  =  ÿi(t),  y  =  ÿi(t),  t  ÿ  [t

i

Rice.  P.1.  An  example  of  an  area  with  three  
curved  borders

t

Vtab.  Item  1  shows  the  values  of  the  parameter  tv  for  the  middle  of  a  curved  segment  

(part  of  a  parabola),  defined  as  follows:

§  A.1.  Adaptation  to  external  and  internal  boundaries

Clause  1.2.  Adaptation  of  tetrahedralization  

to  a  smooth  parametrized  surface

If  the  midpoint  of  the  curved  segment  is  a  point  equidistant  from  the  vertices  v1  and  v2,  then  tv  

is  a  solution  to  the  nonlinear  equation

tv  =  (t1  +  t2) /2.

The  root  tv  belonging  to  the  interval  (t1,t2)  can  be  found  by  the  bisection  method  or  by  

Newton's  method.  If  the  midpoint  of  the  curvilinear

v

ti ,

ÿ  =

Application.  Some  problems  of  grid  adaptation

ÿ2(t)  +  ÿ2(t)  dt  =

Thus,  the  shift  of  any  point  v  with  the  

parameter  tv  along  the  boundary  segment  ÿi  

reduces  to  a  successive  increase  or  decrease  

in  the  parameter  tv.  Inserting  a  new  node  v  

with  coordinates  (xv,  yv)  and  parameter  tv  

into  the  middle  of  a  curved  segment  

parametrized  by  the  functions  ÿ,  ÿ  and  

connecting  two  vertices  v1,  v2  with  parameters  t1,  t2  depends  on  the  definition  of  the  middle  of  

a  curved  segment.  If  the  midpoint  is  the  image  of  the  midpoint  of  a  segment  in  the  parametric  

space,  then

179

ÿ2(t)  +  ÿ2(t)dt.

ÿ(t)  =  t,  ÿ(t)  =  t  2,  0  t

Here  tb  

The  notation  introduced  is  shown  in  Figs.  P.1.

0.618  0.611

segment  is  a  point  from  which  the  paths  along  the  segment  to  the  vertices  v1  and  v2  are  

equal,  then  tv  is  a  solution  to  a  more  complex  nonlinear  equation

t1

Where

are  the  ends  of  the  curve  ÿi  in  the  parametric  space.

Although  from  a  mathematical  point  of  view,  the  definition  of  the  midpoint  of  a  curved  

segment  by  the  formula  (A.1.3)  is  the  only  correct  one,  our  practical  experience  shows  that  the  

use  of  simpler  definitions  (A.1.1)  and  (A.1.2)  does  not  lead  to  serious  distortions  of  the  mesh  

quality  when  its  adaptation  to  a  curvilinear  boundary,  since  in  the  methods  of  re-meshing  

(Chapter  5)  the  position  of  the  middle  of  the  segment  is  corrected  by  the  basic  node  shift  

operation.  We  also  note  that  if  the  length  of  the  grid  edge  tends  to  zero,  then  the  solutions  

found  by  formulas  (A.1.2)  and  (A.1.3)  converge  to  each  other  with  the  second  order.

(x1  ÿ  ÿ(tv))2  +  ( y1  ÿ  ÿ(tv))2  =  ( x2  ÿ  ÿ(tv))2  +  ( y2  ÿ  ÿ(tv))2 .  (A.1.2)

Since  all  boundary  nodes  of  the  original  

grid  lie  on  the  boundary  ÿ,  then  for  any  point  
v  ÿ  ÿi  with  coordinates  (xv,  yv)  lying  between  

the  two  nearest  boundary  nodes  v1  and  v2  

with  parameters  t1  and  t2,  respectively,  

there  exists  a  parameter  tv  ÿ  [t1,  t2]  such  

that  xv  =  ÿi(tv),  yv  =  ÿi(tv).

For  3D  regions,  the  availability  of  parameterization  of  external  or  internal  boundaries  

depends  on  the  specific  application.  In  some  cases  such  parametrizations  are  known  explicitly,  

as,  for  example,  when  the  boundary  is  specified  by  a  finite  set  of  parametrized  surfaces.  In  

other  cases,  these  parameterizations  are  known  implicitly,  as,  for  example,  when  interacting  

with  the  CAD  kernel.  In  this  case,  regardless  of  the  method  of  setting,  each  piece  of  the  surface  

ÿi  is  parametrized  by  three  continuous  functions  

of  two  real  variables,  called  parameters  p  and  s,  which

In  the  two  dimensional  case,  the  curvilinear  boundary  can  be  parametrized  by  a  set  of  

functions  of  one  real  variable  called  the  parameter  t.  In  this  case,  the  boundary  is  covered  by  

a  finite  set  of  curves,  each  of  which  is  described  by  continuous  functions  of  the  point  coordinates:

m

i]}.
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ÿi  =  {(x,  y,  z) :  x  =  ÿi(p,  s),  y  =  ÿi(p,  s),  z  =  ÿi(p,  s),  (p,  s)  ÿ  ÿi}.

are  given  in  some  domains  ÿi  of  the  two  dimensional  parametric  space.  Let

Secondly,  one  can  construct  a  point  equidistant  from  the  vertices  v1  and  v2,  whose  
inverse  image  in  the  parametric  space  lies  on  the  segment  connecting  (p1,  s1)  and  
(p2,  s2),  i.e.

where  ÿ  ÿ  (0,  1)  is  the  solution  of  the  non-linear  equation

181

Where

pv  =  p1ÿ  +  p2(1  ÿ  ÿ),  sv  =  s1ÿ  +  s2(1  ÿ  ÿ),

m

Rice.  P.2.  An  example  of  mesh  adaptation  that  degrades  boundary  approximation

+  ( y2  ÿ  ÿ(pv(ÿ),  sv(ÿ)))2  +  (z2  ÿ  ÿ(pv(ÿ),  sv(ÿ)))2 .  (A.1.5)  This  equation  

can  be  solved  by  the  bisection  method  in  the  interval  (0,  1)  or  by  Newton's  method.  
Note  that  the  bisection  method  relies  exclusively  on  the  procedure  for  estimating  a  
function  of  one  variable  at  some  points;  therefore,  the  method  for  calculating  the  
functions  ÿ(pv(ÿ),  sv(ÿ)),  ÿ(pv(ÿ),  sv(ÿ))  and  ÿ  (pv(ÿ),  sv(ÿ))  is  not  important  for  this  
approach.

Clause  1.3.  Adaptation  of  
meshes  to  boundaries  with  unknown  parameterization

Due  to  the  continuity  of  the  parametrizing  functions,  for  any  point  v  ÿ  ÿi  with  coordinates  
(xv,  yv,  zv)  there  exists  a  point  in  the  parametric  domain  (pv,  sv)  ÿ  ÿi  such  that  xv  =  
ÿi(pv,  sv),  yv  =  ÿi(pv,  sv )  and  zv  =  ÿi(pv,  sv).  One  of  the  basic  operations  for  rebuilding  
a  mesh  is  

shifting  a  node  along  a  curved  surface.  A  shift  of  a  point  v  with  parameters  (pv,  sv)  
along  a  piece  of  the  parametrized  surface  ÿi  reduces  to  changing  these  parameters.  
Insertion  of  a  new  vertex  v  with  coordinates  (xv,  yv,  zv)  and  parametric  coordinates  
(pv,  sv)  on  the  surface  parametrized  by  the  functions  ÿ,  ÿ,  ÿ,  midway  between  two  
vertices  v1,  v2  with  parameters  (p1,  s1),  (p2 ,  s2)  can  be  implemented  in  several  
ways.  First,  we  can  construct  the  image  of  the  midpoint  of  the  segment  in  the  
parametric  space:

The  simplest  approach  is  to  place  new  nodes  on  the  current  (in  the  process  of  
adaptation)  boundary  of  the  grid  area.  As  the  simple  two  dimensional  example  shown  
in  Fig.  A.2,  the  removal  of  boundary  nodes,  which  is  possible  during  adaptation,  can  
lead  to  a  significant  error  in  the  approximation  of  the  original  boundary  by  the  
boundary  edges  of  the  grid,  even  though  the  step  of  the  adapted  mesh  is  less  than  the  
step  of  the  initial  mesh.

(A.1.4)

(x1  ÿ  ÿ(pv(ÿ),  sv(ÿ)))2  +  ( y1  ÿ  ÿ(pv(ÿ),  sv(ÿ)))2  +  +  (z1  ÿ  

ÿ(pv(ÿ),  sv(ÿ )))2  =  ( x2  ÿ  ÿ(pv(ÿ),  sv(ÿ)))2  +

§  A.1.  Adaptation  to  external  and  internal  boundaries

The  accuracy  of  surface  approximation  can  be  substantially  improved  by  restoring  
a  higher  order  surface  based  on  a  given  piecewise  linear  surface.  Several

In  those  cases  where  parameterization  of  the  domain  boundary  is  not  available,  it  
is  difficult  to  construct  a  mesh  adapted  to  the  boundary.  In  this  case,  as  a  rule,  the  
boundary  of  the  region  is  specified  using  surface  triangulation.  Let  us  consider  ways  
of  adapting  a  tetrahedral  mesh  to  a  boundary  of  this  type.

pv  =  (p1  +  p2)/2,  sv  =  (s1  +  s2)/2.

Another  way  to  search  for  a  pair  (pv,  sv)  is  to  compose  and  solve  a  system  of  two  
nonlinear  equations  expressing  the  equidistance  of  v  from  the  vertices  v1  and  v2  and  
the  minimum  distance  from  v  to  (v1  +  v2)/2.  In  addition  to  the  possible  non-uniqueness  
of  the  solution  of  such  a  system,  the  search  for  a  solution  can  be  difficult  (see  also  
Section  3.4.3).

i=1

Another  solution  to  the  problem  is  to  use  the  result  of  the  adaptive  calculation  as  
feedback  from  the  CAD  system  to  build  a  new  surface  triangulation.  This  approach  
requires  direct  user  intervention  and  may  be  too  complex  for  some  applications.  The  
third  solution  of  the  problem  is  based  on  the  assumption  that  if  the  unknown  surface  
of  the  boundary  

is  sufficiently  smooth  (or  piecewise  smooth),  then  its  triangulation  implicitly  carries  
additional  information  about  this  surface.  Below,  we  consider  a  method  for  constructing  
a  new  discrete  surface  for  which  the  error  in  the  approximation  of  a  smooth  boundary  
is  substantially  smaller  than  for  a  piecewise  linear  triangulation.

Application.  Some  problems  of  grid  adaptation

ÿ  = ÿi,

The  simplest  solution  to  this  problem  is  to  preserve  the  initial  surface  triangulation  
by  refining  it  or  shifting  the  node  only  along  the  original  piecewise  linear  surface  [43].  
Such  an  approach,  which  "freezes"  the  original  boundary,  naturally  preserves  the  
approximation  error  of  the  curvilinear  boundary  by  the  original  set  of  boundary  faces.  
In  the  numerical  solution  of  the  equations  of  mathematical  physics,  an  insufficiently  
high  resolution  of  the  boundary  surface  can  lead  to  a  significant  error  and  even  negate  
the  efforts  expended  on  constructing  an  adaptive  grid  inside  the  domain.
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si

Here  ÿi  is  the  coordinate  vector  of  the  vertex  of  the  triangle  vi,  ÿi(ÿ)  is  the  value  in  ÿ  
of  a  linear  function  equal  to  1  in  vi  and  0  in  the  remaining  vertices  of  the  triangle  ft.  
This  formula  for  specifying  a  quadratic  function  is  a  consequence  of  Taylor's  
multipoint  formula  [39]  for  representing  the  error  function  of  linear  interpolation  of  a  
doubly  differentiable  function  on  a  triangle  ft.  The  construction  of  the  Hessian  Hÿ2  
consists  of  two  steps.  First,  we  calculate  the  Hessian  at  the  

nodes  of  the  grid  ÿh  and  then  extend  it  into  triangles  ft  ÿ  ÿh  in  such  a  way  that  
the  functions  ÿ2,  t(ÿ)  restored  on  ft  form  a  continuous  surface  ÿh.  Step  1.  For  each  
internal  node  vi  of  the  grid  ÿh,  consider  the  superelement  ÿ(vi)  and  define  a  plane  
approximating  the  nodes  of  this  superelement  in  the  sense  

of  minimum  squares  and  approximating  the  plane  tangent  to  ÿ  at  vi.  Let  (ÿ1,  
ÿ2)  denote  the  local  coordinate  system  for  this  plane.  We  define  the  superelement  
ÿi  as  the  orthogonal  projection  of  triangles  from  ÿi  onto  the  (ÿ1,  ÿ2)-plane.  On  fig.  
Item  3  shows  the  superelement  ÿi,  its  projection  ÿi,  and  some  triangle  from  ÿi  and  
its  projection  onto  the  plane  (ÿ1,  ÿ2)  are  also  shaded.  Using  a  change  of  variables,  
we  define  a  continuous  function  ÿi  (ÿ1,  ÿ2)  locally  representing  the  surface  ÿ,

and  a  continuous  piecewise  linear  function  ÿi  h(ÿ1,  ÿ2)  locally  representing  ÿh.  Let  
us  assume  that  both  functions  are  single-valued  over  ÿi.  Finally,  we  denote  the  
Hessian  ÿi  by  Hÿ  and  the  discrete  Hessian  ÿh  by  Hh.

km

Rice.  P.3.  Local  coordinate  system  for  the  superelement  ÿ(v1)

3

Hhkm(vi)ÿh  dS  =  ÿ

i

k,  m  =  1,  2,

by  analogy  with  the  finite  element  method.

1  ÿ2(ÿ)  =  ÿ

§  A.1.  Adaptation  to  external  and  internal  boundaries

Let  the  local  extrapolation  ft  be  described  by  a  quadratic  function  ÿ2,  t.  Below  
we  will  omit  the  index  t  if  this  does  not  lead  to  confusion.  Let  us  describe  the  function  
ÿ2  in  the  local  coordinate  system  ÿ  =  ( ÿ1,  ÿ2)  convenient  for  us  and  associated  
with  the  plane  of  the  triangle  ft,  ÿ2  ÿ2  using  its  Hessian  Hÿ2  =  {Hÿ2  km}2  ÿÿkÿÿ  m

si

2

k,m=1,

Application.  Some  problems  of  grid  adaptation 183

ÿ

The  eigenvalues  and  vectors  of  the  Hessian  Hÿ(vi)  are  related  to  the  principal  
curvatures  and  principal  directions  of  the  surface  ÿ  at  the  point  vi;  therefore,  its  
projection  (Hÿ(vi)e,  e)  onto  any  unit  vector  e  in  the  plane  tangent  to  ÿ  is  the  normal  
curvature  in  the  direction  e.  If  the  components  of  the  discrete  Hessian  Hhkm(vi)  at  
the  site  vi  approximate  the  components  of  the  differential  Hessian  Hÿkm(vi),  then  
the  quantity  (Hhe,  e)  approximates  the  normal  curvature  of  the  surface  ÿ  in  the  
direction  e.  In  [51],  a  method  was  proposed  for  calculating  the  curvatures  of  a  
discrete  surface  ÿh  converging  to  the  curvatures  of  a  smooth  surface  ÿ  in  the  
maximum  norm  as  h  tends  to  zero.  We  use  a  different  approach  to  estimating  
normal  curvatures,  which  is  simple  and  works  well  in  practice,  despite  the  lack  of  
theoretical  justification.  In  this  approach,  the  components  of  the  discrete  Hessian  
Hh  at  the  node  vi  are  defined  in  terms  of  the  weak  formulation:

methods  of  local  restoration  of  such  a  surface,  see  [53,  70,  71,  73]  and  references  
therein.  We  describe  a  method  [43]  that  uses  discrete  differential  geometry  to  
compute  a  piecewise  quadratic  continuous  function  approximating  the  reconstructed  
surface.  The  continuity  of  this  function  is  a  hallmark  of  this  method.  The  Hessian  
(matrix  of  second  derivatives)  of  this  function  is  calculated  based  on  the  weak  
formulation,

:

ÿÿi  h  ÿÿh  
dS,  

ÿÿk  ÿÿ  m

Consider  a  smooth  piece  of  the  surface  ÿ  with  boundary  ÿ.  Let  ÿh  be  some  
piecewise  linear  approximation  of  ÿ  with  discrete  boundary  ÿh.  We  assume  that  
the  nodes  ÿh  and  ÿh  lie  on  ÿ  and  ÿ,  respectively,  although  this  assumption  is  not  
necessary  in  practice.  A  piecewise  quadratic  extrapolation  ÿh  of  a  triangulation  ÿh  
is  defined  as  a  continuous  surface  consisting  of  local  quadratic  extrapolations  ft  ÿ  
ÿh  over  triangles  ft  ÿ  ÿh.

(Hÿ2  (ÿ  ÿ  ÿi),  ÿ  ÿ  ÿi)  ÿi(ÿ).

(A.1.6)
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V

eij1  eij1  Hÿ2  +  eij2  eij2  Hÿ2  +  2  eij1  eij2  Hÿ2

G

which  must  hold  for  any  continuous  piecewise  linear  functions  ÿh  that  vanish  on  ÿÿi.

12

(A.1.7)

3

aij  = 2 (A.1.8)

Hÿ2

eleven

=  16|ft|3  >  0,

Step  2.  The  extension  of  the  Hessian  inside  the  triangles  is  based  on  the  quantities  ÿij  

representing  the  projections  of  the  Hessian  onto  the  edges  eij  of  the  triangle  ft.  Here  and  below,  

we  assume  that  the  vector  eij  starts  at  the  vertex  vi  and  ends  at  vj  =  vi+1,  where  v4  ÿ  v1.  In  the  

local  coordinate  system,  the  vectors  eij  are  given  by  two  coordinates:  eij  =  (eij1 ,  eij2 ).  Then,  by  

definition  of  ÿij,  we  have:  eij1  eij2  which  generates  a  system  of  three  linear  equations  with  three  

unknown  matrix  elements:

22

Since  the  function  ÿ2,  t  is  quadratic  on  the  edge  of  the  triangle,  it  is  uniquely  determined  by  

the  values  at  the  vertices  of  the  edge  and  the  corresponding  value  ÿij .  Therefore,  to  construct  a  

continuous  surface  ÿh,  we  assume  that  it  contains  the  nodes  of  the  original  grid  ÿh  and  that  the  

value  of  ÿij  on  the  edge  eij  is  calculated  in  the  same  way  for  all  triangles  containing  this  edge.  We  

define  ÿij  as  the  average  of  two  nodal  approximations  of  the  Hessian:

This  definition  has  two  exceptions.  If  vi  ÿ  ÿh  and  vj  ÿ/  ÿh,  then  ÿij  =  (Hh(vj )eij ,  eij ).  If  vi  ÿ  ÿh  and  vj  

ÿ  ÿh,  then  ÿij  =  0.  This  is  the

b

Hÿ2

§  A.1.  Adaptation  to  external  and  internal  boundaries

It  is  believed  that  the  nodal  approximation  of  the  Hessian  is  not  restored  at  the  boundaries  of  

smooth  pieces.  This  also  means  that  the  traces  of  ÿh  and  ÿ  h  coincide  on  ÿh.

ÿ  ÿ  ÿ2,  tLÿ(ft)  ÿ  ÿ  ÿhLÿ(ft).

eij1  

eij2

The  following  result  shows  that  the  matrix  of  the  system  is  nondegenerate,  i.e.,  the  solution  (A.1.7)  

exists  and  is  unique.  Lemma  A.1.1.  The  matrix  B  of  system  (A.1.7)  

coefficients  is  nondegenerate.  Proof.  Direct  calculations  of  the  determinant  of  the  matrix  B

12
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eleven

i  =  1,  2,  3.

given  e12  +  e23  +  e31  =  0  give

((Hh(vi)  eij ,  eij )+(Hh(vj )  eij ,  eij )).

As  an  illustration,  consider  a  sphere  ÿ  of  radius  0.18,  a  smooth  surface  without  boundary,  ÿ  

=  ÿ.  Consider  a  sequence  of  quasi  uniform  surface  triangulations  ÿh  with  steps  h  =  0.1;  0.05;  

0.025;  0.0125  shown  in  fig.  P.4.

=  ÿij ,

=  ÿij ,

|  de  B|  =  2  e121  e232  ÿ  e231  e132  

where  |ft|  is  the  area  of  the  triangle  ft.

Vtab.  Item  2  presents  the  maximum  error  rate  for  approximating  the  surface  ÿ  by  piecewise  

linear  surfaces  ÿh  and  reconstructed  piecewise  quadratic  surfaces  ÿh.  These  tables  confirm  that  

piecewise  quadratic  completion  can  significantly  reduce  the  representation  error  of  a  smooth  

surface  given  by  surface  triangulation.  Note  that  the  components  of  the  discrete  Hessian  

reconstructed  by  formula  (A.1.6)  may  not  converge  in  the  maximum  norm  to  the  corresponding  

components  of  the  Hessian  Hÿ  as  h  ÿ  0.  This  explains  

why  we  do  not  observe  a  cubic  decrease  in  the  error  in  the  right

Rice.  P.4.  Quasi-uniform  triangulations  of  a  sphere  of  radius  0.18  with  steps  h  =  0.1  (a);  0.05  (b);  
0.025  (c)  and  0.0125  (d)

If  the  surface  ÿ  can  be  represented  by  a  smooth  function,  then  the  proposed  piecewise  

quadratic  extrapolation  ÿh  provides  a  better  approximation  error  ÿ  than  ÿh  [43].  In  other  words,

,

12
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4:

cÿ  ÿ  u  ÿ  uhÿ,  ÿ  Cÿ  ÿ,

5:

where  c,  C  are  constants  of  the  order  of  unity,  and  ÿ,  ÿ  are  some  error  norm  on  the  cell  ÿ.  
Various  approaches  to  calculating  a  posteriori  error  estimates  will  be  considered  at  the  
end  of  the  section.  The  adaptive  construction  of  the  computational  

grid  by  local  hierarchical  refinement  can  be  implemented  based  on  the  available  a  
posteriori  error  estimate  ÿ  ÿ  and  a  given  threshold  ÿ  for  the  maximum  error.  Algorithm  43  
serves  as  an  example  of  such  an  implementation.  Let  us  note  the  following  features  of  the  
algorithm.  This  adaptation  algorithm  does  not  provide  a  strict  equipartition  of  the  error,  
but  only  

does  not  refine  the  grid  where  the  local  estimate  is  below  a  given  threshold.  The  initial  
grid  must  be  coarse  enough  to  satisfy  ÿ  ÿ  >  ÿ  on  all  its  cells.  Otherwise,  on  those  cells  
where  ÿ  ÿ  ÿ,  the  principle  of  equipartition  of  the  error  estimate  will  be  violated.

column.  Nevertheless,  the  use  of  quantities  (A.1.6)  gives  a  significant  gain  when  using  
piecewise  quadratic  completion  in  practical  calculations.  The  use  of  a  more  complicated  
method  [51]  for  estimating  the  curvatures  of  a  discrete  surface  ÿh  can  further  reduce  the  
error  in  representing  the  surface  ÿ  by  a  reconstructed  piecewise  quadratic  surface  ÿh.

Calculate  the  local  a  posteriori  error  estimate  ÿ  ÿ  Add  a  cell  to  the  set  M  
if  ÿ  ÿ  >  ÿ

chemical  grinding

7:  end  loop  
Calculate  ÿmax  =  max  8:  ÿ  ÿ  ÿ  ÿh  Construct  a  new  grid  ÿh  by  bisecting  

cells  
from  the  set  M  (see  Algorithms  21  and  24)  10:  end  while

0.1

9:

0.05

1:  Construct  the  initial  grid  ÿh.  Put  ÿmax  =  ÿ  2:  while  while  ÿmax  >  ÿ  
do  3:  Find  the  numerical  solution  
uh  on  the  grid  ÿh.  Put  M  =  ÿ

§  A.2.  Adaptation  to  the  solution  by  local  hierarchical  refinement  187

0.0125

If,  in  addition  to  the  local  mesh  refinement  procedure,  there  is  a  local  mesh  coarsening  
procedure,  then  the  adaptive  algorithm  can  be  strengthened.  To  do  this,  we  need  to  
require  that  the  initial  mesh  admits  multilevel  coarsening  (see  §  4.4).  Algorithm  44  
generates  a  grid  in  which  the  error  estimate  for  all  cells  lies  in  the  interval  [ÿÿ,  ÿ],  0  <ÿ<  1.  
The  parameter  ÿ  is  chosen  in  such  a  way  that

loop  over  all  cells  ÿ  ÿ  ÿh

Application.  Some  problems  of  grid  adaptation

1.4  10ÿ3  

2.3  10ÿ4  

5.7  10ÿ5  

3.4  10ÿ5

T  a  b  l  e  A.2  
Errors  in  representing  the  sphere  by  
piecewise  linear  ( ÿh)  and  reconstructed  
piecewise  quadratic  ( ÿh)  surfaces

1.3  10ÿ2  

3.5  10ÿ3  

8.9  10ÿ4  

2.4  10ÿ4

6:

h

Algorithm  43.  Adaptive  meshing  by  local  hierarchy

The  fundamental  principle  of  constructing  adaptive  computational  grids  is  the  principle  
of  equipartition  of  the  numerical  solution  error  u  ÿ  uh  over  grid  cells  ÿh.  According  to  this  
principle,  a  grid  provides  the  minimum  error  rate,  i.e.,  minimizes  the  error  functional,  
among  all  grids  with  a  given  number  of  cells,  if  the  error  rate  is  the  same  on  all  its  cells.  In  
this  case,  the  specific  type  of  norm  does  not  matter.  The  application  of  the  error  
equipartition  principle  is  based  on  the  monotonic  dependence  of  the  error  rate  on  each  
grid  cell  on  its  size  and  on  the  possibility  of  modifying  a  grid  with  an  unequally  distributed  
error  in  such  a  way  that  the  error  rate  decreases.  In  many  applications,  however,  the  
principle  of  error  equipartition  cannot  be  realized,  since  the  error  of  the  numerical  solution  
cannot  be  calculated  due  to  the  unavailability  of  the  exact  solution.  In  these  cases,  the  
principle  of  

equipartition  of  the  a  posteriori  error  estimate  ÿ  ÿ  is  applied,  which  can  be  calculated  
without  an  exact  solution.  The  error  rates  of  a  numerical  solution  on  a  grid  with  an  equally  
distributed  error  and  on  a  grid  with  an  equally  distributed  a  posteriori  error  estimate  will  be  
comparable  if  the  local  error  estimate  approximates  the  local  error  well:

0.025

§  A.2.  Adaptation  to  the  solution  through  

local  hierarchical  refinement

In  the  case  of  a  domain  with  a  curvilinear  boundary,  hierarchical  refinement  in  the  
vicinity  of  the  boundary,  strictly  speaking,  does  not  make  sense,  since  new  nodes  may  
not  lie  on  the  boundary  of  the  domain.  In  such  cases,  newly  appeared  boundary  nodes  
must  be  projected  onto  the  boundary  (see  §  A.1)  and  the  hierarchical  nesting  of  meshes  
will  be  violated.  However,  from  a  topological  point  of  view,  the  hierarchical  nesting  of  grids  
is  preserved  and  the  method  of  multilevel  grid  refinement  can  be  modified  for  this  case.
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10:

As  an  example  of  local  hierarchical  refinement,  consider  the  approximate  
solution  of  the  diffusion  equation

The  above  adaptive  algorithms  are  mainly  applicable  to  the  approximate  
solution  of  stationary  equations  of  mathematical  physics.  For  nonstationary  
problems,  the  following  circumstances  should  be  taken  into  account.

The  initial  mesh  is  shown  in  fig.  P.6,  a.  To  construct  an  adaptive  grid  shown  
in  Fig.  A.6,  b,  Algorithm  43  was  used,  in  which  the  a  posteriori

6:

Rice.  P.5.  Split  into  three  subregions

Algorithm  44.  Adaptive  meshing  by  local  hierarchical  refinement  and  coarsening

ÿdiv  ÿ  ÿ  u  =  f

ÿ  ÿ  and  ÿmin  =  min

2)  Adaptive  re-meshing  based  on  a  posteriori  error  estimate  can  be  done  not  
at  every  time  step,  but  once  in  several  time  steps  [46].  3)  Cell  coarsening  is  an  
integral  part  of  mesh  adaptation.  

Otherwise,  an  increase  in  the  number  of  grid  cells  over  time  can  slow  down  
or  even  block  the  calculation.

ÿ1

In  some  applications,  hierarchical  mesh  adaptation  can  be  accompanied  by  
node  shifting  to  achieve  a  better  approximation  of  solution  discontinuities  such  as  
shock  waves  and  shocks  in  gas  dynamics,  material  discontinuities  and  cracking  
in  solid  mechanics,  and  model  geometry.

once.

ÿ  ÿ  
ÿ  ÿh

§  A.2.  Adaptation  to  the  solution  by  local  hierarchical  refinement  189

ÿ  ÿ  ÿh

Rice.  P.6.  Initial  mesh  (a)  and  refined  hierarchical  mesh  (b)

M2  =  ÿ  
loop  over  all  cells  ÿ  ÿ  ÿh

Application.  Some  problems  of  grid  adaptation

Calculate  the  local  a  posteriori  error  estimate  ÿ  ÿ  Add  a  cell  to  the  
set  M1  if  ÿ  ÿ  >  ÿ  Add  a  cell  to  the  set  M2  if  ÿ  ÿ  <  ÿÿ  from  
the  set  M1  11:  end  while

so  that  local  refinement  (roughening)  of  the  cell  reduces  (increases)  the  error  by  
no  more  than  ÿ

5:

1)  In  addition  to  adaptive  control  over  the  spatial  grid  step,  adaptive  control  
over  the  time  step  is  required.  Time  discretization  should  provide  an  error  
comparable  to  the  spatial  discretization  error.

(A.2.1)

with  the  homogeneous  Dirichlet  condition  by  the  finite  element  method  on  an  
adaptive  triangular  grid  [57].  The  equation  is  considered  in  a  unit  square  divided  
into  three  subdomains  ÿ1,  ÿ2,  and  ÿ3,  with  ÿ2  being  the  inner  ring  (see  Fig.  A.5).  
The  diffusion  coefficient  ÿ(x)  =  ÿi  in  the  subdomain  ÿi  is  defined  as  ÿ1  =  ÿ3  =  1,  ÿ2  
=  10000,  and  the  right  hand  side  f(x)  =  1.  The  mechanical  analogy  of  the  
considered  boundary  value  problem  is  the  strain  under  load  of  a  composite  
material  with  fixed  boundaries .

7:

´

1:  Construct  an  initial  grid  ÿh  that  allows  multilevel  coarsening.  Set  ÿmax  =  ÿ,  
ÿmin  =  0  2:  while  ÿmax  >  ÿ  and  ÿmin  <  ÿÿ  do  3:  

Find  the  numerical  solution  uh  on  the  
grid  ÿh.  Put  M1  =  ÿ,

9:

´
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ÿ

ÿ  ÿ  U  =  fÿuh  ÿwdV .

.

ÿ

,

ÿv  =  sup  wÿH1  
(ÿ),ÿw=1 ÿ

ÿ  uh  ÿw  dV  =  fw  dV  ÿ  ÿÿÿh  ÿ

[ne  ÿ  uh]e  =  ne  ÿ  uh|ÿ+  ÿ  ne  ÿ  uh|ÿÿ .

Taking  these  considerations  into  account,  the  local  a  posteriori  estimate  of  the  residual  
error  can  be  written  as

parts  on  each  triangle  is  carried  out  with  the  help  of  quadrature  formulas.  Moreover,  it  is  

possible  to  replace  the  integrable  function  f  by  its  mean  value

over  all  triangles,  the  integral  over  each  internal

ÿuh  ÿvdV

U=uh

=  ÿ(Uh  ÿ  uh)L2(ÿ  ÿ).

ÿR,ÿ =  (diam(ÿ))2  f2

u  =  0  on  ÿÿ.

0

ÿ

§  A.2.  Adaptation  to  the  solution  by  local  hierarchical  refinement  191

1/2

1  fÿ  =  |
ÿ|

ÿ

sup  
wÿH1  (ÿ),ÿw=1

L2(e)

Clause  2.1.  A  posteriori  estimation  of  the  residual  error

ÿv  ÿw  dV

by  the  finite  element  method,  in  which  on  each  triangle  ÿ(v1,  v2,  v3)  the  space  of  polynomials  

of  the  first  order  is  enriched  with  the  bubble  function  bÿ  =  ÿ  ÿ,  1  ÿ  ÿ,  2  ÿ  ÿ,  3.  Here  and  below,  ÿ  

ÿ,  i  denotes  a  linear  finite  element  basis  function  on  ÿ,  i.e.,  ÿ  ÿ,  i(vj )  =  ÿij .  Note  that  the  

piecewise  cubic  function  Uh  is  piecewise  linear  on  ÿÿ  ÿ.  A  posteriori  error  estimate  based  on  

the  solution  of  local

+,

190

R,  ÿ

,

in  ÿ  ÿ,

ÿ

|e|  [ne  ÿuh]e2

(A.2.2)

The  main  principle  of  all  a  posteriori  error  estimates  based  on  the  solution  of  local  

subproblems  is  the  formation  of  a  large  number  of  problems  with  a  small  number  of  unknowns.  

When  solving  auxiliary  problems,  it  is  necessary  to  use  higher  order  finite  element  spaces  

than  when  solving  the  original  problem  (A.2.2).  For  each  triangle  ÿ,  we  form  a  subdomain  ÿ  ÿ  

containing  ÿ  and  triangles  adjacent  to  ÿ  along  an  edge.  In  each  subdomain  ÿ  ÿ  we  consider  an  
approximate  

solution  Uh  of  the  local  problem

ÿ

,

fw  dV  ÿ

1

ÿ  ÿu  =  f  in  ÿ,

valid  for  a  generalized  solution  u  ÿ  H1  (ÿ)  of  problem  (A.2.2)  and  any  function  v  ÿ  H1  (ÿ),  where  

H1  (ÿ)  is  the  Sobolev  space  of  functions  with  zero  trace  on  ÿ  ÿ  and  an  integrable  square  of  the  
generalized  derivative  [39] .  Because  the

Factor

Clause  2.2.  A  posteriori  error  estimate  based  on  the  
solution  of  local  subproblems

on  ÿÿ  ÿ

(A.2.4)

(A.2.3)

The  a  posteriori  residual  error  estimate  is  based  on  the  identity

+

More  details  about  the  methods  of  a  posteriori  error  estimation  and  their  application  to  a  wider  

class  of  problems  can  be  found  in  [83].

0

Integrating  by  parts  and  using  the  fact  that  the  solution  is  linear  on  each  triangle,  we  can  show  

that

Application.  Some  problems  of  grid  adaptation

1

where  |ÿ|  denotes  the  area  of  triangle  ÿ.

the  gradient  error  ÿ(u  ÿ  uh)  can  be  estimated  in  terms  of  the  residual  norm  of  the  finite  element  
solution  in  the  dual  space  with  the  norm

where  [ne  ÿ  uh]e  denotes  the  jump  of  the  normal  component  of  the  flow  of  the  function  uh  
through  the  inner  mesh  edge  e  separating  two  triangles  ÿ  ÿ  ÿ:

in  the  second  term  takes  into  account  that  when  summing

fv  dV  ÿ

0

ÿ

ÿ  L,  ÿ

residual  error  estimate  given  below,  and  local  refinement  was  provided  by  the  red–green  

partitioning  method  [30],  an  alternative  to  the  bisection  method.  The  error  is  proportional  to  

the  diffusion  coefficient,  which  leads  to  a  strong  refinement  of  the  grid  in  the  subregion  ÿ2.  Let  

us  briefly  describe  several  approaches  to  the  formation  of  a  posteriori  error  estimates  for  a  

piecewise  linear  finite  element  solution  uh  of  a  two  dimensional  elliptic  equation  on  regular  

triangulations.  For  simplicity,  we  consider  the  Poisson  equation  with  the  Dirichlet  boundary  

condition:

values  of  ÿ2,  

its  edge  enters  it  twice.  In  practice,  the  calculation  of  the  L2-norm  of  the  right

ÿ

fw  dV  ÿ

f  dV

0

L2(ÿ)  2  eÿÿ,  
e /ÿÿÿ

[ne  ÿ  uh]ew  dS,  
eÿÿh,  e /ÿÿÿ  e

0

subtasks,  calculated  by  the  formula

2

ÿ(u  ÿ  uh)  ÿv  dV  =
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The  hierarchical  a  posteriori  error  estimate  [41]  for  solving  problem  (A.2.2)  is  
based  on  the  enrichment  of  the  original  space  of  piecewise  linear  finite  elements.  Let  
ÿi  denote  the  piecewise  linear  basis  function  associated  with  node  vi.  For  each  edge  
eij  we  define  a  bubble  function  bij  =  4  ÿiÿj .  The  enriched  space  is  constructed  by  
adding  edge  functions  of  bubbles  bij  to  the  original  basis  ÿi .  Let  Uh  denote  a  finite  
element  solution  of  problem  (A.2.2)  in  an  enriched  space.  The  main  assumption  of  
the  method  is  

that  the  difference  between  the  piecewise  linear  solution  uh  and  the  piecewise  
quadratic  solution  Uh  is  a  good  approximation  to  the  error  u  ÿ  uh:

L2(ÿ)

for  basic  functions:

ALL  u  L

vi

D

in  ÿ,  

on  ÿ  ÿ  ÿ  ÿ  ÿ,

This  problem  is  solved  by  the  space  enriched  finite  element  method  described  above.
FQ  ÿ  AQL  u  L

Therefore,  the  value

ÿ  H,  ÿ

eij

1  ÿ  ÿ

And

then  the  coefficients  of  this  expansion  satisfy  the  system  of  linear  equations

[ne  ÿuh]e
ÿu

from  which  it  follows  that  D

ÿ(uh  ÿ  Uh)L2(ÿ)  ÿ  ÿ(uh  ÿ  u)L2(ÿ).  To  estimate  

ÿ(uh  ÿ  Uh)L2(ÿ),  we  decompose  uh  and  Uh

=
ÿ(u  ÿ  uh)

(A.2.7)
DQ

2

ÿ(uh  ÿ  Uh)L2(ÿ).

UQ,  ij  bij .

=  FL

eij
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L,  iÿi  +

D

on  ÿ  ÿ  \  ÿ  ÿ.

AQQ  DQ  =  FQ  ÿ  AQL  u  L.  (A.2.8)  The  matrix  AQQ  is  well  

conditioned  on  grids  with  regular  cells,  so  system  (A.2.8)  can  be  effectively  solved,  for  
example,  by  the  conjugate  gradient  method.  It  can  also  be  shown  [41]  that

u  L,  iÿi,  Uh  =

The  coefficients  of  this  expansion  satisfy  the  systems  of  linear  equations

ALL  ALQ

=

D

1

The  a  posteriori  estimate  of  the  error  over  the  mean  gradient  is  based  on

.
Guh  -  ÿ  uh

192

1

=  0,  and  the  vector  DQ  satisfies  the  system

(A.2.5)

UL The  triangle  inequality  leads  to  a  two-sided  error  estimate:

FL  ÿ  ALL  u  L

ALL  O

(A.2.9)

uh  =

2

on  an  easily  computable  approximation  Guh  of  the  function  ÿ  u,  for  which

FQ

L

=  ÿ

DQ,ij  ÿbij

ÿn

Clause  2.3.  Hierarchical  posterior  error  estimate

is  an  easily  computed  hierarchical  a  posteriori  estimate  of  the  local  gradient  error.

AQL  AQQ

The  approximation  Guh  is  defined  as  the  discrete  L2  projection  of  a  piecewise  
constant  vector  function  ÿ  uh  onto  the  space  of  continuous  piecewise  linear  vector  
functions.  Projection  resolution

Guh  -  ÿ  uh.

,

L

FQ  ÿ  AQL  u  L

About  AQQ

eij

vi

UQ
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ÿÿÿ

=

=

1

If  we  expand  the  function  uh  ÿ  Uh  in  terms  of  basis  functions:

ÿ  ÿu  =  f  ÿ

DQ

DQ,  ij  ÿbij  
eijÿÿ

ÿ  u  ÿ  Guh  ÿÿ(u  ÿ  uh),  0  ÿ  <  1.

FL

1+ÿ

Other  options  for  the  formation  of  local  subtasks  are  also  possible.  For  example,  
instead  of  the  superelement  ÿ  ÿ,  we  can  consider  the  superelement  ÿ(v)  formed  by  
triangles  with  a  common  vertex  v.  Besides  the  local  Dirichlet  problem,  one  can  also  
consider  the  local  Neumann  problem  on  the  inner  triangle  and  the  mixed  boundary  
value  problem  on  the  boundary  triangle:

ÿÿÿ

L

Clause  2.4.  A  posteriori  error  estimate  from  
the  averaged  gradient

uh  ÿ  Uh  =

(A.2.6)

FL  ÿ  ALL  u  L

L2(ÿ)

ALL  ALQ  

AQL  AQQ  

where  the  vectors  FL,  FQ  and  u  L  are  known.  However,  the  solution  of  the  system  
(A.2.7)  is  too  costly,  requiring  more  arithmetic  work  than  the  solution  of  the  original  
system  (A.2.6).  To  construct  an  easily  computed  a  posteriori  estimate,  we  replace  
system  (A.2.7)  with  a  simplified  system

vi

UL,  iÿi  +

1

DQ,  ijbij ,

u  =  uh

,
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ÿ  Z,  ÿ

ÿuh  
ÿxk

In  a  certain  sense,  all  considered  a  posteriori  error  estimates  are  equivalent,  since  they  

provide  upper  and  lower  error  estimates  for  the  finite  element  solution  [83].

ÿÿh  
ÿx

Suppose  that  the  method  for  constructing  a  tensor  metric  is  given,  then  the  algorithm  for  

constructing  an  adaptive  grid  with  a  given  number  of  cells  looks  very  simple.

Clause  3.1.  Tensor  metric  based  on  Hessian  recovery

Construct  an  M-quasi-uniform  grid  ÿh  with  N  elements  Calculate  the  grid  solution  

uh  Calculate  a  new  tensor  metric  M  from  

uh  5:  6:  end  while

ÿ(vi)

min
N(ÿh)  N

3:

where  x1  =  x,  x2  =  y,  x3  =  z.  Because  in  most

dx

Algorithm  45.  Building  an  adaptive  grid  with  N  elements

As  shown  in  §  6.2,  controlling  the  properties  of  a  grid  using  a  tensor  metric  is  the  most  

flexible  means  of  controlling  the  properties  of  grid  cells.  The  main  reason  that  distinguishes  

metric  control  from  other  methods  of  control  is  the  possibility  of  constructing  anisotropic  grids  

with  highly  elongated  cells.  The  advanced  front  and  Delaunay  triangulation  methods  become  

much  less  reliable  when  constructing  anisotropic  meshes.  Section  6.2  considers  a  method  for  

constructing  anisotropic  meshes  using  the  tensor  metric  M(x)  as  a  control.  The  method  

reduces  to  constructing  a  grid  that  is  quasi  uniform  in  a  given  metric  M(x)  by  means  of  a  

sequence  of  local  modifications  of  the  current  grid.  We  will  call  such  a  grid  an  M-quasi-uniform  

grid.

(A.3.1)

1:  Construct  the  initial  grid  ÿh,  find  the  grid  solution  uh  and  calculate  the  tensor  metric  M

4:
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=  Guh  ÿ  ÿ  uhL2(ÿ).

When  developing  methods  for  constructing  triangular  or  tetrahedral  meshes  that  are  

adapted  to  the  mesh  solution,  the  main  problem  is  the  construction  of  a  tensor  metric  based  

on  the  current  mesh  solution.  The  choice  of  a  metric  is  associated  with  the  approximate  

minimization  of  a  certain  error  norm  of  the  grid  solution  on  the  set  of  conformal  grids  ÿh  with  

a  limited  number  of  cells  N(ÿh):

Such  a  replacement  leads  to  the  local  calculation  of  the  function  Guh  at  any  node  of  the  grid  

v:

Application.  Some  problems  of  grid  adaptation

Thus,  the  a  posteriori  error  estimate  for  the  averaged  gradient  is  defined  as  follows:

for  any  continuous  piecewise  linear  finite  element  function  ÿh  vanishing  at  the  boundary  of  

the  superelement  ÿ(vi).  In  the  boundary

is  expressed  in  a  special  choice  of  the  scalar  product  based  on  the  replacement  of  the  integral  

over  a  triangle  by  the  quadrature  formula  of  rectangles:

2:  while  the  grid  ÿh  is  not  M-quasi-uniform  do

§  A.3.  Adaptation  to  the  grid  solution  through  local  modifications

Hh,  km(vi)  ÿh  dx  =  ÿ

u  ÿ  uhÿ.

|ÿ|  
ÿ  dV  ÿ  (ÿ(v1)  +  ÿ(v2)  +  ÿ(v3)).  3

Below,  we  consider  several  methods  for  constructing  a  tensor  metric  based  on  a  grid  

solution  and  illustrate  the  resulting  adaptive  algorithms  with  numerical  results.

The  first  method  for  constructing  a  tensor  metric  uses  methods  for  restoring  the  Hessian  

of  the  grid  function  uh.  Recall  that  the  Hessian  H  of  a  scalar  doubly  differentiable  function  u  is  

the  matrix  of  second  partial  derivatives  of  this  function  with  elements  ÿ2  u  Hkm(u)  =  ÿxkÿxm  In  

applications,  grid  solutions  are  not  classically  doubly  differentiable  functions,  the  classical  

partial  
derivatives  are  

replaced  by  into  generalized  ones.  We  present  two  methods  for  computing  a  continuous  

piecewise  linear  grid  Hessian  Hh  from  a  continuous  piecewise  linear  function  uh.  To  do  this,  it  

suffices  to  determine  the  values  of  the  Hh  components  at  the  grid  nodes.  Let  d  denote  the  

dimension  of  the  space,  d  =  2,  3.  The  most  common  method  for  calculating  the  Hessian  values  

of  the  grid  function  uh  at  grid  nodes,  based  on  the  idea  of  finite  element  discretization  of  

second  order  elliptic  equations,  was  briefly  described  in  §  A.1.  

Consider  the  superelement  ÿ(vi)  as  the  union  of  all  simplices  containing  vi.  The  

components  of  the  grid  Hessian  Hh,  km(vi),  k,  m  =  1, ... ,  d,  are  reconstructed  at  the  internal  

node  vi  of  the  grid  ÿh  as  follows:

ÿ(vi)
m

ÿ(v1,  v2,  v3)

Guh(v)  =

,

194

|ÿ|  
ÿuh|ÿ.  |ÿ(v)|  

ÿÿÿ(v)
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(A.3.2)

The  above  analysis  is  directly  confirmed  by  a  numerical  experiment.  Consider  
the  problem  of  optimizing  the  error  of  piecewise  linear  interpolation  of  the  function

where  ÿ1(H)  denotes  the  eigenvalue  of  H  closest  to  zero.  Then  the  error  estimate

ÿ  =  diag{ÿi},
min  

ÿ  h:N(ÿ  h)  N

The  main  advantage  of  the  above  method  for  constructing  a  tensor  metric  
from  a  grid  function  uh  is  its  independence  from  the  problem  the  solution  of  which  
is  this  function.  The  disadvantage  of  this  approach  is  the  possibility  of  a  large  error  
in  estimating  the  grid  Hessian  using  formula  (A.3.1),  which  is  clearly  manifested  in  
the  vicinity  of  the  singularities  of  the  solution.  This  caused  the  impossibility  to  carry  
out  a  theoretical  analysis  of  the  adaptive  algorithm,  although  the  algorithm  has  
proven  itself  well  in  practice  [5,  9,  66].

,

Iÿh(u),  which  uses  the  value  of  the  function  at  the  grid  points  and  returns  a  
continuous  piecewise  linear  function.  Theorem  A.3.1.  

Let  u  ÿ  C2(ÿ),  det  H  =  0,  and  ÿh  be  an  |H|-quasi-uniformly  dimensional  grid  
with  N  elements.  Further,  let  ÿ  ÿ  ÿh  be  the  element  at  which  the  maximum  error  of  
piecewise  linear  interpolation  is  reached,  and  H  =  H(x  ÿ),  where  x  ÿ  |  detH(x)|.  
Finally,  =  arg  max  xÿÿ,  let  Hh  be  a  consistent  approximation  of  the  Hessian  H  on  the  elements  of  ÿ  
for  which

(A.3.3)

q  >  0,

h

The  mathematical  substantiation  of  the  adaptive  construction  of  an  Mh-quasi-
uniform  grid  with  metric  (A.3.1)–(A.3.2)  is  the  following  result  for  the  optimal  
interpolation  problem  [5,  23].  For  a  continuous  function  u,  we  define  the  
interpolation  operator

ÿ  

ÿ

In  the  choice  of  weights,  we  follow  [23],  where  the  weight  is  defined  as  the  measure  
of  the  intersection  of  two  superelements:

Hh(vi)  =  W  ÿ  WT,

Mp  =  (det|H|)  ÿ1/(2p+d)  |H|.
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Hh(v)  =

.

values.

ÿi  =  |ÿ(v)  ÿ  ÿ(vi)|

u  ÿ  Iÿ

(u)Lp(ÿ)  CN  ÿ2/d

196

H  ÿ  HhL  ÿ(ÿ)  <

...

u(x,  y)  =  yx2  +  y3  +  th(6(sin(5y)  ÿ  2x))

viÿÿ(v),vi=v

where  W  is  an  orthonormal  matrix  of  eigenvectors  Hh(vi),  ÿ  is  a  diagonal  matrix  of  
eigenvalues  ordered  in  non-decreasing  order  of  their  absolute  value:

(A.3.4)

with  a  constant  C  depending  on  q,  |H|,  ÿ,  but  independent  of  p  and  N.

ÿi  =  1.  
viÿÿ(v),vi=v

Note  that  the  requirement  of  consistent  approximation  is  always  satisfied  for  
a  fixed  function  u  for  sufficiently  large  values  of  N.  It  can  also  be  shown  [5,  23]  
that  for  a  

function  u  ÿ  C2(ÿ)

In  the  case  of  a  degenerate  Hessian  Hh,  the  metric  is  formed  by  formula  
(A.3.2)  using  the  matrix  of  perturbed  eigenvalues

.

Thus,  under  reasonable  constraints,  an  |H|-quasi-uniform  mesh  with  N  
elements  ensures  an  asymptotically  optimal  rate  of  decay  of  the  interpolation  error  
in  the  maximum  norm,  i.e.,  it  is  quasi-optimal.  The  error  estimates  in  the  maximum  
norm  can  be  generalized  [6]  to  the  Lp-norm  1),  p  >  0.  Moreover,  the  metric  M  =  |H|  
should  be  replaced  by  the  following  metric:

1)  For  0  <p<  1,  the  norm  becomes  a  quasi-norm.

|ÿ(v)  ÿ  ÿ(vi)|

(u)Lÿ(ÿ).

ÿ1

born  Hessian  for  sufficiently  large  N,  we  have  the  estimate

|ÿ| :=  diag{max{|  ÿ1|;  ÿ}, ...,  max{|  ÿ3|;  ÿ}} .

Application.  Some  problems  of  grid  adaptation

u  ÿ  Iÿh  (u)L  ÿ(ÿ)  C(q,  |H|,  ÿ)  N  ÿ2/d

We  define  the  following  tensor  metric:

h

q2

|ÿ1|

u  ÿ  Iÿ

grid  node,  the  Hessian  Hh(v)  is  defined  as  a  convex  linear  combination  of  the  
Hessian  values  at  the  nearest  internal  nodes:  ÿi  Hh(vi),

The  grid  Hessian  Hh(vi)  is  a  symmetric  matrix  that  may  be  indefinite.  Therefore,  
to  construct  a  metric  (a  positive  definite  matrix),  the  spectral  modulus  |Hh(vi)|  
matrices  Hh(vi).  Consider  the  spectral  decomposition  of  this  matrix:

Mh(vi)  =  |Hh(vi)|  =  W  |ÿ|  WT,  where  

|ÿ|  is  the  diagonal  matrix  of  the  absolute  values  of  the  eigenvalues

(A.3.5)

CN-2/d

Let  ÿh  be  an  Mp-quasi-uniform  mesh  with  N  simplices.  Then  the  asymptotic  
decay  rate  of  the  interpolation  error  in  the  Lp-norm  will  be  the  same  as  for  the  
maximum  norm:

ÿ  

ÿviÿÿ(v),vi=v
|ÿ1(H)|,

|ÿd|.
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4000

convergence  from  unity  lies  in  the  fact  that  the  finite  element  method

8000

mentov  minimizes  the  energy  error  norm  ÿ(u  ÿ  uh)L2(ÿ).

(r,  ÿ)  (see  Fig.  A.8).  The  problem  is  defined  in  a  unit  circle  ÿ  
centered  at  the  origin  without  a  cut  S  given  by  the  conditions  x  >  0  
and  y  =  0:

Rice.  P.8.  Isolines  for  solving  the  problem  of  a  crack  (a)  and  an  adaptive  grid  (b)

on  Sÿ,

N

ÿuÿn  =  0

Rice.  P.7.  Isolines  of  the  interpolated  function  (a)  and  quasioptimal  grids  
with  approximately  1000  triangles  minimizing  the  interpolation  error  in  

the  L1  (b)  and  Lÿ  (c)  norms

Consider,  for  example,  the  classical  boundary  value  problem  of  a  
crack  with  the  exact  solution  u(r,  ÿ)  =  r1/4  sin(ÿ/4)  in  polar  coordinates

ÿu  =  0

ÿ0.9

u  ÿ  uhLÿ(ÿ)  0.056  0.016  0.005  0.0014

ÿÿÿÿÿÿÿÿÿÿÿÿÿ

where  S+  and  Sÿ  denote  the  sides  of  the  cut  S  facing  the  half  
planes  x  >  0  and  y  <  0,  respectively.
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2000

A  theoretical  analysis  of  the  asymptotic  properties  of  |Hh|-
quasiuniformly  dimensional  grids  is  presented  only  for  the  problem  of  
piecewise  linear  interpolation.  Note  that  Algorithm  45  can  use  any  grid  
solution  uh  on  the  grid  ÿh,  for  example,  a  finite  element  solution  of  a  
boundary  value  problem.  Despite  the  lack  of  substantiation  of  both  
the  convergence  of  adaptive  iterations  and  the  asymptotic  properties  
of  the  adaptive  grid  constructed  in  this  way,  numerical  experiments  
show  the  applicability  of  such  an  extension  even  for  problems  with  singularities.

Table  A.3  
Interpolation  errors  of  function  (A.3.5)  on  
quasi-optimal  grids  in  the  L1  and  Lÿ  

norms

Application.  Some  problems  of  grid  adaptation

(A.3.6)

on  grids  with  a  given  number  of  cells.  To  minimize  the  error  in  the  
Lÿ-  and  L1-norms,  we  use  Algorithm  45,  in  which  the  metric  is  
recovered  by  formulas  (A.3.1),  (A.3.2),  and  (A.3.4).

on  S+,

abs

T  a  b  l  e  A.4  
Maximum  error  rate  of  the  finite  element  

solution  for  the  crack  problem

in  ÿ\S,

u  =  0

We  will  look  for  a  solution  to  this  problem  in  the  space  of  
continuous  piecewise  linear  functions  defined  on  conformal  
triangulations,  and  reconstruct  the  grid  Hessian  using  formulas  
(A.3.1)  and  (A.3.2),  ignoring  the  singularity  at  the  origin  of  the  polar  
coordinate  system.  As  can  be  seen  from  Table.  A.4,  on  the  
constructed  adaptive  grids  (see  Fig.  A.8,  b),  the  maximum  error  
rate  of  the  finite  element  solution  demonstrates  an  almost  optimal  

convergence  rate: ).  Cause  of  slight  speed  deviation

1000  4000  16000  64000

Table  A.3  shows  that  the  measured  error  rates  are  inversely  
proportional  to  the  number  N  of  triangles  in  the  grid.  On  fig.  Item  7  shows  
isolines  of  the  function  u  and  adaptive  grids  for  p  =  1  and  p  =  ÿ.  As  can  
be  seen  from  the  figure,  a  larger  value  of  p  leads  to  a  more  intensive  
refinement  of  the  grid  around  the  singularity  of  the  function.

N  u  ÿ  uhL1(ÿ)  u  ÿ  uhLÿ(ÿ)  2.4  10ÿ2  
4.4  10ÿ2  1000  1.2  10ÿ2  2.2  

10ÿ2  5.6  10ÿ3  9.0  10ÿ3  2.8  

10ÿ3  5.0  10ÿ3

u  ÿ  uhLÿ(ÿ)  =  O(N

198

u  =  sin  ÿ4  on  ÿÿ  \  S,
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u  =  0  on  ÿ  ÿ  \  (ÿin  ÿ  ÿout).

.

b

ÿÿÿÿÿ  

ÿÿÿÿÿ

V

ÿ  ÿ  0.01  ÿ  u  +  b  ÿ  u  =  0  in  ÿ,

Because  the  maximum  error  rate  is  not  subject  to  the  energy  norm,  it  can  fall  at  a  
slower  asymptotic  rate. a

Rice.  P.10.  Convergence  of  the  grid  solution:  in  the  domain  with  the  analytical  
representation  of  the  sphere  ÿ  (a),  in  the  domains  with  three  discrete  models  ÿ0.05,  
ÿ0.025,  and  ÿ0.0125  for  the  sphere  ÿ  (b;  denoted  by  lines  0.05,  0.025,  0.0125 ),  in  
domains  with  discrete  models  ÿ0.0125,  ÿ0.025,  and  ÿ0.05  for  the  sphere  ÿ  (c;  denoted  

by  lines  0.0125,  0.025,  0.05)

(A.3.7)

V

u  =  g  on  ÿin,  ÿu

Algorithm  45  and  the  metric  recovery  method  (A.3.1),  (A.3.2)  are  successfully  
used  for  adaptive  solution  of  boundary  value  problems  with  non  self  adjoint  operators  
and  anisotropic  singularities  of  the  solution,  such  as  boundary  layers  [5,  9,  43,  66].  
Moreover,  quadratic  extrapolation  of  piecewise-linear  approximations  of  curvilinear  
boundaries  (see  §  A.1)  makes  it  possible  to  efficiently  adapt  the  mesh  around  a  
curvilinear  boundary.  As  an  illustration,  consider  the  convection–diffusion  equation
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ÿn

Note  that  the  constructed  adaptive  grids  provide  a  much  smaller  error  than  
conventional  quasi-uniform  triangulations:  the  error  rate  on  a  grid  with  64,000  triangles  
is  0.16,  which  is  two  orders  of  magnitude  greater  than  the  value  of  0.0014  from  Table  
1.  P.4.

=  0  on  ÿout,

b

Application.  Some  problems  of  grid  adaptation

Here  b  =  (1,  0,  0)T  is  the  constant  velocity  field,  ÿ  =  (0,  1)3  \  B0.5(0.18)  is  the  cubic  
computational  domain  with  the  removed  ball  B0.5(r)  of  radius  r  =  0.18  centered  at  (0.5,  
0.5,  0.5).  The  boundaries  of  the  computational  domain  are  the  surface  of  a  sphere,  ÿ  
=  ÿB0.5(0.18),  and  the  surface  of  a  cube.  On  the  surface  of  the  cube,  we  select  the  
planes  ÿin  =  {x  ÿ  ÿÿ:  x  =  0}  and  ÿout  =  {x  ÿ  ÿÿ:  x  =  1}.  Finally,  g(y,  z)  =  16  y(1  ÿ  y)z(1  ÿ  
z)  denotes  the  standard  Poiseuille  flow  profile.  The  solution  to  problem  (A.3.7)  has  a  
boundary  layer  along  the  leeward  part  of  the  spherical  boundary  ÿ  and  is  very  smooth  
in  the  

shadow  zone  behind  the  obstacle.  Since  the  exact  solution  is  unknown,  in  the  
experiments  it  was  replaced  by  a  piecewise  linear  finite  element  solution  uÿ  calculated  
on  a  very  fine  adaptive  (quasi-optimal)  grid  containing  more  than  1.28  ×  106  tetrahedra  
(see  Fig.  A.9).  To  generate  this  adaptive  grid,  the  analytical  representation  ÿ  ÿ  was  
used.  The  first  experiment  (plot  in  Fig.  A.10,  a)  confirms  the  asymptotic  result  (A.3.3)  
with  uÿ  instead  of  u.  The  error  in  the  maximum  ÿ2/3  norm  almost  coincides  with  the  
analytical  curve  60  N  In  the  second  experiment  (graph  in  Fig.  A.10,  b),  the  boundary  
ÿ  is  

approximated  by  a  quasi-uniform  triangulation  ÿh.  We  present  the  maximum  
adaptive  decision  error  rate  as  a  function  of  N  for  three  different  values  of  h.  The  graph  

shows  the  saturation  of  this

Rice.  P.9.  Adaptive  mesh  trace  on  the  obstacle  (a),  mesh  cut  (b)  and  from  the  solution  
line  uÿ  (c)  in  the  xy  plane  passing  through  the  center  of  the  obstacle

200
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L2(ÿ)
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ÿ

|dk|

(A.3.8)

=
3

Application.  Some  problems  of  grid  adaptation

k=1

ÿ1

finite  element  solution.  Its  main  advantages  are  its  applicability  to  a  wider  class  of  functions,  
including  functions  with  singularities,  the  possibility  of  a  posteriori  estimating  the  energy  
error  rate,  and  the  minimization  of  the  error  rate,  which  is  natural  for  the  finite  element  
method.  Consequently,  an  adaptive  procedure  using  such  a  metric  ensures  the  optimal  
rate  of  convergence  of  the  grid  solution  to  the  differential  solution  and  control  of  the  

discretization  error  uh  ÿ  u  [25].  In  §  A.2  we  considered  a  hierarchical  method  for  estimating  
the  a  posteriori  error  based  on  the  assumption  (A.2.5)  that  the  difference  between  the  
piecewise  linear  finite  element  solution  uh  and  the  

piecewise  quadratic  finite  element  solution  Uh  gives  a  good  approximation  to  the  error  
uh  ÿ  u .  For  an  efficient  approximate  calculation  of  uh  ÿ  Uh  on  each  triangle  ÿ,  a  linear  
combination  (A.2.9)  of  bubble  functions  bij  associated  with  the  edges  eij  of  the  triangle  ÿ  
was  taken.  The  coefficients  of  this  combination  satisfy  the  system  (A.2.8):

1

=  |ÿ|(B  d,  d),

We  fix  a  triangle  ÿ  and  introduce  a  vector  d  ÿ  R3  with  coefficients  DQ,  ij  corresponding  

to  the  edges  of  this  triangle.  The  gradient  L2-norm  of  the  a  posteriori  estimated  error  ÿh  
can  be  written  as  follows:

=  |ÿ|
k=1

Clause  3.2.  Tensor  metric  based  on  edge  error  estimates

3

(A.3.9)

ÿbk  ÿbm  dV.

ÿk,  ÿk  =  |dk|(B  d,  d)

DQ,  ijbij .  
eijÿÿ

The  splitting  of  the  error  rate  into  three  edge  quantities  ÿk  has  a  simple  justification.  Such  a  
choice  additionally  equally  distributes  the  maximum  discretization  error  rate  on  the  edges  of  
the  triangle,  and,  consequently,  on  all  edges  of  the  grid  [24,  26].

.  (A.3.10)

uh  ÿ  u  ÿ  ÿh  ÿ

L2(ÿ)

Unfortunately,  the  error  rate  on  a  triangle  is  a  number  that  does  not  provide  enough  
information  to  determine  the  tensor  metric  M.  In  order  to  determine  the  tensor  metric,  we  
split  the  error  into  three  edge  components  ÿk  0  such  that

2

L2(ÿ)  

where  the  summation  goes  over  the  edges  e12,  e23,  e31,  and  B  denotes  a  3  ×  3  symmetric  
positive  definite  matrix  with  entries

3
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k=1
ÿÿh2

errors  due  to  inaccurate  resolution  of  the  curvilinear  boundary.  Note  that  the  saturable  error  
ÿh  is  almost  inversely  proportional  to  h2:  ÿ0.05  =  0.2,  ÿ0.025  =  0.067,  and  ÿ0.0125  =  0.021.  

This  is  probably  related  to  the  second-order  approximation  by  the  piecewise  linear  manifold  
ÿh  for  a  smooth  boundary  ÿ.

ÿÿh2

The  disadvantages  of  the  adaptive  procedure  based  on  the  metric  obtained  by  restoring  
the  Hessian  of  the  grid  function  are  large  errors  in  restoring  the  Hessian  in  the  vicinity  of  the  
singularities  of  the  solution,  the  lack  of  control  over  the  interpolation  or  discretization  error,  
and  the  fact  that  it  generates  grids  minimizing  the  Lp-norm  of  the  error,  0  <  p  ÿ,  while  finite  
element  solutions  tend  to  minimize  the  energy  norm  of  the  error.  Minimization  of  the  energy  
error  rate  is  of  greater  interest  for  elasticity  problems,  since  it  leads  to  a  more  accurate  
calculation  of  stresses  in  prefracture  zones.  The  energy  norm  is  related  to  the  L2-norm  of  
the  gradient  error;  therefore,  to  optimize  the  finite  element  discretization  error,  one  must  be  
able  to  construct  a  metric  that  generates  grids  minimizing  the  L2-norm  of  the  gradient  error.  
The  proposed  method  for  constructing  a  tensor  metric  is  based  on  the  use  of  edge  a  

posteriori  estimates  of  the  energy  error

The  third  experiment  (graph  in  Fig.  A.10,  c)  studies  the  effect  of  piecewise  quadratic  

completion  ÿh  for  ÿh  on  the  accuracy  of  a  discrete  solution.  Saturation  errors  are  compared  
for  three  fixed  surface  grids  with  the  same  number  of  nodes:  the  first  grid  is  a  quasi-uniform  
triangulation  ÿ0.0125,  the  second  and  third  grids  are  obtained  from  the  grid  ÿ0.0125  by  

projecting  its  nodes  onto  the  reconstructed  piecewise-quadratic  surfaces  ÿ0.025  and  ÿ0.05  
respectively,  i.e.  they  use  edge  information  with  a  resolution  of  h  =  0.025  and  h  =  0.05.  For  

convenience,  we  also  denote  the  second  and  third  grids  by  ÿ0.025  and  ÿ0.05.  The  
dependence  plots  of  the  adaptive  solution  error  in  regions  with  fixed  boundaries  ÿ0.0125  
and  ÿ0.025  actually  coincide,  which  leads  to  an  approximate  equality  of  saturation  errors:  

ÿ0.025  ÿ  ÿ0.0125  ÿ  0.021.  Note  that  the  saturation  error  ÿ0.025  in  a  region  with  a  fixed  

boundary  ÿ0.025  with  a  resolution  h  =  0.025  exceeds  ÿ0.025  by  more  than  three  times.  A  
coarser  piecewise  linear  representation  of  the  boundary  with  a  resolution  h  =  0.05  

demonstrates  an  even  greater  difference  in  saturation  errors:  ÿ0.05  =  0.2  for  the  region  with  
the  boundary  ÿ0.05  and  ÿ0.05  =  0.03  for  the  region  with  the  boundary  ÿ0  .05.  Thus,  
piecewise  quadratic  completion  makes  it  possible  to  significantly  reduce  the  saturation  error  
of  grid  adaptation  in  regions  with  curvilinear  boundaries,  which  are  represented  by  surface  

triangulations.

dkÿbk

Bk,m  =  |
ÿ|
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VM  ÿ,  ÿ

ÿÿhL2(ÿ)  ÿ  N  In  

computational  practice,  the  piecewise  constant  tensor  metric  is  replaced  by  a  
continuous  metric,  which  ensures  faster  convergence  of  the  algorithm  45.  The  
continuous  tensor  metric  is  formed  based  on  the  values  at  the  grid  nodes  and  linear  
interpolation

technologies.

Method

T  a  b  l  e  A.6  
Energy  norms  of  error  and  error  estimates  for  an  
adaptive  finite  element  solution  for  the  crack  problem

L2(ÿ)

ÿÿhL2

In  the  case  of  tetrahedral  meshes,  the  derivation  of  the  metric  repeats  
calculations  (A.3.9)–(A.3.11)  with  the  correction  that  the  tetrahedron  has  six  edges,  
and  the  scaling  in  (A.3.11)  is  changed:  =  (det|H2|)  ÿ1/5  

|H2|.

1  v2  =  ÿ  
2  k=1  

we  set

0.11  0.053  0.027  0.015

The  constructed  metric  M  ÿ  connects  the  L2-norm  of  the  gradient  error  (A.3.10)  
with  the  geometric  properties  of  the  triangle  ÿ.  The  following  inequalities  were  
proved  in  [24,  26]:

1  |ÿh|M.

M

M

ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  N

2

error
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2

ÿ  |  p  M  ÿ,  ÿ|

inside  each  element.  The  value  at  the  node  v  is  taken  equal  to  the  value  of  the  
metric  on  the  simplex  from  the  set  ÿ(v)  that  has  the  largest  determinant.

(A.3.11)

ÿ,  ÿ  |p  M  ÿ,  ÿ|  2.

As  the  experiment  on  constructing  an  adaptive  grid  in  the  crack  problem  (A.3.6)  
shows,  both  methods  of  constructing  the  metric  (using  the  restoration  of  the  grid  
Hessian  and  using  the  a  posteriori  hierarchical  error  estimate)  provide  the  
asymptotically  optimal  ( N  ÿ1/2 )  rate  of  fall  of  the  energy  norm  ki  errors.  Vtab.  A.5  

shows  the  energy  norms  of  the  finite  element  error  for  two  methods  of  constructing  
the  metric:  a)  by  formulas  (A.3.1),  (A.3.2)  and  b)  by  formulas  (A.2.8),  (A.3.9)–
(A.3.11 ).  The  data  in  the  table  confirm  a  twofold  drop  in  the  energy  norm  of  the  
finite  element  error  with  a  fourfold  increase  in  the  number  of  grid  elements,  which  
confirms  the  asymptotic  behavior  of  N  ÿ1/2.  error  rates  due  to  the  known  a  posteriori  
estimate  (A.3.8).  Vtab.  In  Section  6,  we  compare  the  energy  norms  of  the  exact  

error  uh  ÿ  u  and  the  a  posteriori  estimated  error  ÿh.  Table  
values  demonstrate  the  closeness  of  the  norms  of  both  errors.  Controlling  the  

error  of  a  finite  element  solution  in  engineering  calculations  is  an  important  property  
of  this  computational

204

(A.3.1),  (A.3.2)

N(ÿh)

.

3

V

ÿ

ÿÿhL2(ÿ)  ÿ  N  ÿ1/2

T  a  b  l  e  A.5  
Energy  norms  of  the  error  of  the  adaptive  finite  element  solution  ÿ(uh  ÿ  
u)L2(ÿ)  of  the  crack  problem,  for  two  methods  for  constructing  the  tensor  

metric

5

(A.3.13)

(A.2.8),  (A.3.9)–(A.3.11)

1000  4000  16000  64000

ÿ1/3

where  |H2|  is  the  spectral  modulus  of  the  matrix  H2.  Otherwise,  we  slightly  increase  
the  largest  of  the  three  edge  errors  so  that  the  Hessian  of  the  modified  quadratic  
function  v2  becomes  a  nondegenerate  matrix.  In  practice,  a  1%  increase  is

VM

ÿkbk  and  denote  its  Hessian  by  H2.  If  det  H2  =  0,

M

ÿ(uh  ÿ  u)L2  0.11  0.053  0.027  0.015  0.10  0.051  

0.026  0.013

Application.  Some  problems  of  grid  adaptation

metric  recovery

The  principle  of  error  equipartition  underlying  adaptive  meshing  leads  to  the  
equipartition  of  the  following  geometric  properties:

(A.3.14)  

As  for  triangular  meshes,  M-quasi-uniform  meshes  containing  N  tetrahedra  provide  
an  asymptotically  optimal  decay  rate  for  the  gradient  error  estimate  [24,  26]:

1000  4000  16000  64000

(A.3.12)

.

Three  numbers  ÿk  allow  us  to  determine  three  elements  of  the  metric  tensor  M  
ÿ  on  the  triangle  ÿ.  To  do  this,  we  introduce  the  quadratic  function

0.11  0.053  0.026  0.013

2

.

=  (det|H2|)  ÿ1/4  |H2|,

ÿÿh2

Thus,  we  need  to  build  grids  with  the  same  areas  of  triangles  and  the  same  
perimeters  of  triangles  measured  in  the  tensor  metric  M,  which  is  composed  of  
piecewise  constant  metrics  M  ÿ.  According  to  (A.3.13),  an  M-quasi-uniform  mesh  ÿh  
containing  N  triangles  ensures  the  asymptotically  optimal  decay  rate  of  the  gradient  
error  estimate

sufficient.

N
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DEAR  COLLEAGUES!

5.  If  you  are  interested  in  introducing  an  innovative  component  into  the  
educational  process  at  your  university,  then  we  suggest  creating  
(deploying)  a  “Virtual  Laboratory  for  Strength  Engineering  Analysis  
Courses”  as  a  private  cloud  of  your  university.  This  will  allow  teachers  to  
conduct  classes  remotely,  and  students  to  use  tablets  or  even  
smartphones  when  teaching.  In  this  case,  we  can  offer  the  joint  
development  of  laboratory  work.

We  offer  you  cooperation  in  a  number  of  areas:  1.  If  you  have  an  
industrial  module  for  an  engineering  analysis  package,  then  we  offer  

its  integration  with  CAE  Fidesys  for  their  joint  promotion  to  the  market.  2.  
If  you  have  a  scientific  software  

product  (for  any  type  of  engineering  analysis)  or  you  are  working  on  its  
creation,  then  we  are  ready  to  assist  in  its  commercialization  by  integrating  
with  the  Fidesys  CAE  package.

The  specified  private  cloud  can  be  supplemented  with  the  ability  to  use  
the  Fidesys  CAE  package  in  the  work  of  the  engineering  center  of  your  
university.  In  

addition,  when  a  university  purchases  one  commercial  license,  we  are  
ready  to  supply  up  to  5  educational  licenses  in  an  industrial  configuration.  
At  the  same  time,  we  propose  the  creation  of  joint  training  centers  with  
your  university  for  industrial  users  of  CAE  Fidesys.

3.  If  you  are  cooperating  with  industrial  enterprises,  then  we  offer  to  
work  with  you  on  the  basis  of  the  Fidesys  CAE  package  to  create  a  new  
software  product  -  a  specialized  industry  solution  -  and  transfer  it  to  the  
enterprise  (industry).  Scientific  and  methodological  guidance  remains  
with  you  and /  or  representatives  of  the  enterprise  (industry).  4.  If  you  are  

developing  a  new  direction  in  engineering  analysis,  then  we  are  ready  
to  consider  algorithmization  and  software  implementation  and,  if  necessary,  
act  as  an  "industrial  partner".

CAE  Fidesys

We  are  also  interested  in  the  industrial  use  of  modern  numerical  
methods,  for  example,  the  discontinuous  Galerkin  method,  isogeometry

STRENGTH  ENGINEERING  ANALYSIS  
APPLICATION  PACKAGE  A  trial  version  (1  month)  of  

the  product  and  a  user  manual  with  step-by-step  examples  
are  available  at  http://www.cae-fidesys.com  Tel.:  +7  (495)  

930-87-53,  e  -mail:  
contact@cae-fidesys.com

cal  analysis.
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