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a b s t r a c t

We describe our approach to treatment of surface tension in free surface flow
simulations on adaptive octree-type grids. The approach is based on the semi-
Lagrangian method for the transport and momentum equations and the pressure
projection method to enforce the incompressibility constrain. The surface tension
contributes to the Dirichlet boundary condition for the pressure equation at the
projection step. The treatment of surface tension is based either on accurate finite
difference calculation of the mean curvature or on a curvature estimation by the
implicit solution of conservative mean curvature flow problem. The first method
provides almost the second order accuracy in space for surface tension forces. The
second method is characterized by greater stability and essentially larger time steps.
Numerical experiments illustrate the main features of the methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate numerical treatment of surface tension remains the challenge for many years since it requires
accurate evaluation of the free surface curvature. The accuracy of the numerical free surface approximation
depends on the accuracy of numerical treatment of both viscous incompressible fluid flow and transport of
the free surface. The height function method [1] was suggested for an accurate estimation of the curvature.
According to Popinet [2], although high-order curvature estimation schemes have been introduced, the overall
splitting schemes, present in the literature, are still formally first-order accurate.

Our splitting method involves accurate approximations of transport, eikonal, momentum, Poisson
equations, as well as the second-order method for estimation of the free surface curvature. The numerically
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observed convergence rate of the resulting method demonstrates almost the second order. The momentum
equation is solved with a novel combination of BDF2 (backward difference formula) and MacCormack
predictor–corrector schemes. Advective terms within the scheme are treated with the semi-Lagrangian
approach. Incompressibility condition is enforced with the projection method. The surface tension contributes
to the Dirichlet boundary condition for the pressure equation at the projection step [3]. We consider the
treatment of the surface tension by two methods: accurate finite difference calculation of the mean curvature,
and curvature estimation by the implicit solution of a conservative mean curvature flow problem [4]. The first
method provides almost the second order accuracy in space for surface tension forces. The second method
allows us to relax considerably the time step restriction imposed by explicit and semi-implicit approaches [2].

The paper is organized as follows. Section 1 reviews the mathematical model and outlines the numerical
methods used for the free surface flow modeling. Section 2 introduces two approaches for the accurate
numerical treatment of the surface curvature. Section 3 presents the results of numerical experiments with
an oscillating droplet driven by the surface tension.

2. Equations of free surface flow dynamics and their discretization in time

The mathematical model couples the equations of dynamics of viscous incompressible fluid, the Navier–
Stokes equations for fluid velocity vector field u and pressure p⎧⎨⎩ ρ

(
∂u
∂t

+ (u · ∇)u
)

− div
(
ν[∇u + (∇u)T ] − p I

)
= g

∇ · u = 0
in Ω(t), t ∈ (0, T ], (2.1)

and the transport equation for a Lipschitz continuous level set function ϕ(t, x). Given a transport field ũ
(extension of u to R3), the transport equation is [5]:

∂ϕ

∂t
+ ũ · ∇ϕ = 0 in R3 × (0, T ]. (2.2)

Zero level of function ϕ(t, x) defines the boundary Γ (t) of the fluid domain Ω(t) where ϕ(t, x) < 0. The
initial conditions u|t=0 = u0 with ∇ · u0 = 0 and Ω(0) = Ω0 define the velocity field and the level set
function ϕ(0, x), respectively. Other parameters in Eqs. (2.1) are the external force g, the density ρ, and
the kinematic viscosity ν. Eqs. (2.1) and (2.2) are coupled through the boundary conditions for (2.1) and
definitions of ũ and Ω(t).

For simplicity, we assume that the entire boundary Γ (t) is a free surface, with the normal vector
n = ∇ϕ/|∇ϕ| and the mean curvature κ = div (∇ϕ/|∇ϕ|). The flows of our interest are governed by the
capillary forces which are balanced on Γ (t) by the normal stress

(
ν[∇u + (∇u)T ] − p I

)
n = σκn on Γ (t),

where σ is the surface tension parameter.
The time-stepping splits the coupled Eqs. (2.1)–(2.2) into the transport problem for ϕ, convection–

diffusion problem for u and the Poisson problem for p. The divergence-free constrain is enforced by the
standard pressure projection [6,7]. For detailed description of the fractional steps and the discretization in
space we refer to [8] and [9,10], respectively. A simpler semi-discrete method was shown to conserve global
momentum and angular momentum, and to satisfy an energy inequality [11]. The numerical scheme [8–10]
has been developed for simulations on dynamic octree meshes refined adaptively to the free surface. For
the sake of stability, the velocity components and pressure unknowns are staggered to cell faces and cell
centers, respectively. Mesh adaptivity and approximation errors require additional efforts: remeshing, re-
interpolation, volume correction, re-initialization. For brevity, we skip these otherwise important steps and
present only steps of the scheme which are crucial in the accurate treatment of surface tension effects.

Given un, ϕn such that div (un) = 0, |∇ϕn| = 1, for n = 0, 1, . . . , we find un+1, pn+1, ϕn+1 by performing
the following steps:
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1: Semi-Lagrangian step. Given ϕn and un, solve (2.2) by a semi-Lagrangian method to find ϕn+1
d and set

ϕn+1 = ϕn+1
d + η where η solves the volume conservation equation |V (ϕn+1

d + η) − V (ϕn)| = 0. Set Ωn+1
by ϕn+1(x) < 0 and Γn+1 by ϕn+1(x) = 0;

2: Convection–diffusion solver. Compute the new velocity field ũn+1 in Ωn+1 by solving the convection–
diffusion equation

(2△t)−1(3ũn+1 − 4un
d + un−1

d ) − ν∆ũn+1 = 0, (2.3)

where uk
d is the semi-Lagrangian solution of the transport equation for u on time step tk refined by a

predictor–corrector method, which allows to extend the accuracy of the second-order interpolation of
the velocity field to the whole solution. For k = n − 1, n we define △tk = tn+1 − tk and for each final
position of characteristic xf (where a degree of freedom resides) we define the backward and forward
characteristic departure points xk

d± = xf ± uk(xf ± 1
2 △tkuk)∆t. Then uk

d = ûn+1 + (uk − ûk)/2, where

ûn+1,k = uk(xk
d−) − ρ−1∇pn△tk + g△tk, ûk = ûn+1,k(xk

d+) + ρ−1∇pn△tk − g△tk.

3: Projection step. Project the vector field ũn+1 onto the discrete divergence-free subspace. Compute the
new pressure pn+1 and velocity un+1 from

−ρ−1△t∆
(
pn+1 − pn

)
= 1.5∇ · ũn+1 in Ωn+1,

(
pn+1 − pn

)
= σ(κn+1 − κn) on Γn+1

and un+1 = ũn+1 + 2△t
3ρ ∇

(
pn+1 − pn

)
, respectively.

Thus the projection step implies the solution of the Poisson equation with non-homogeneous Dirichlet
boundary condition based on the mean curvature to be defined on the position of interface Γn+1 for given
functions ϕn+1 and ϕn. Position of Γn+1 is calculated by solving the quadratic equation for ϕn+1 and the
curvature is interpolated linearly. The main objective of this paper is to present and study numerically two
methods of the mean curvature computation at the cell centers of an octree mesh.

3. Two methods of mean curvature computation

For a level-set function ϕ ∈ C2(Ω), the mean curvature is computed [12] by the formula:

κ(ϕ) =
(
ϕxx

(
ϕ2

y + ϕ2
z

)
+ ϕyy

(
ϕ2

x + ϕ2
z

)
+ ϕzz

(
ϕ2

x + ϕ2
y

)
−

2 (ϕxϕyϕxy + ϕyϕzϕyz + ϕxϕzϕxz)) /
(
ϕ2

x + ϕ2
y + ϕ2

z

) 3
2 .

(3.1)

A simpler formula κ(ϕ) = div (∇ϕ) assumes that ϕ has the signed distance property |∇ϕ| = 1 and thus is
more restrictive than (3.1).

In [9] we demonstrated how to obtain the second order approximations ϕh
xx, ϕh

yy, ϕh
zz of ϕxx, ϕyy, ϕzz at

nodes of an octree cell. However, this is insufficient for the curvature estimation with (3.1), so the additional
terms must be calculated.

First we find the third order approximations of ϕx at mid-edge e1 by

ϕh
x

⏐⏐
e1

= (ϕ2 − ϕ1)/h − h/24
(

ϕh
xx

⏐⏐
2 − ϕh

xx

⏐⏐
1

)
,

and similarly for mid-edges e2, . . . , e4 (blue) and for ϕy at mid-edges e5, . . . , e8 (cyan), ϕz at mid-edges
e9, . . . , e12 (green), see Fig. 3.1.

The mixed derivative ϕxy at the cell center is approximated with the second order of accuracy by

ϕh
xy =

(
ϕh

x

⏐⏐
e2

− ϕh
x

⏐⏐
e1

+ ϕh
x

⏐⏐
e4

− ϕh
x

⏐⏐
e3

)
/(4h) +

(
ϕh

y

⏐⏐
e6

− ϕh
y

⏐⏐
e5

+ ϕh
y

⏐⏐
e8

− ϕh
y

⏐⏐
e7

)
/(4h)

and similarly for ϕyz, ϕxz.
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Fig. 3.1. Collocation points for ϕh, ϕh
x, ϕh

y and ϕh
z .

The second order approximation ϕh
x of the first derivative ϕx at the cell center is obtained by averaging

of the central finite differences at mid-edges e1, . . . , e4. Similarly we derive ϕh
y , ϕh

z at the cell center. The
second order approximation ϕh

xx of ϕxx at the cell center is computed by averaging of the second order
approximations ϕh

xx given at nodes.
As a result we have all the necessary entries for the second order evaluation of the mean curvature κ(ϕn+1)

at cell centers by (3.1).
The alternative method of computing the curvature κ(ϕn+1) is based on the numerical solution of the

unsteady mean curvature flow problem [4]

∂ϕ

∂t
− σκ(ϕ)|∇ϕ| = 0 in R3 × (0, △t]. (3.2)

For (3.2) we apply splitting of the nonlinear spatial operator [3]:

κ(ϕ)|∇ϕ|=∇ · ∇ϕ − ∂n|∇ϕ|,
∂n|∇ϕ|= |∇ϕ|−2(ϕxxϕ2

x+ϕyyϕ2
y +ϕzzϕ2

z +2(ϕxyϕxϕy +ϕxzϕxϕz +ϕyzϕyϕz)).
(3.3)

Note that ∂n|∇ϕ| = 0 for ϕ satisfying |∇ϕ| = 1. Therefore, the nonlinear part of κ(ϕ)|∇ϕ| is important
for functions violating the signed distance property. One time step of the operator splitting procedure is

(2△t)−1(3ϕ̂n+1 − 4ϕn+1 + ϕn) − σ∆ϕ̂n+1 = −σ∂n|∇ϕn+1|, (3.4)

which implies the solution of a linear system. We update further ϕ̂n+1 to enforce the volume conservation
and the signed distance property |∇ϕ̂n+1| = 1.

On the other hand, function ϕ̂n+1 satisfies at least up to O(△t) the equation

(2△t)−1(3ϕ̂n+1 − 4ϕn+1 + ϕn) − σκ(ϕ̂n+1)|∇ϕ̂n+1| = O(△t)

which implies due to |∇ϕ̂n+1| = 1

σκ(ϕ̂n+1) = (2△t)−1(3ϕ̂n+1 − 4ϕn+1 + ϕn) + O(△t). (3.5)

As the alternative to (3.1), we use (3.5) for evaluation of surface tension forces σκ(ϕn+1). We note that
both methods define mean curvature κ(ϕn+1) in all cells of the mesh, not only on cells intersecting Γn+1.

4. Numerical test

For experimental study of the mean curvature evaluations we consider a free droplet (g = 0) whose
oscillations are driven only by surface tension forces. The problem is challenging for the surface tension
force approximation since it requires computation of an accurate and smooth curvature field. This is the
benchmark test for free surface and two-phase fluid flow solvers, see, e.g., [13–17].
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Table 4.1
Convergence (in space–time) to the reference value Tref , two methods of curvature calculation.

Mesh 10/(3hmin) Time step △t Period T Period error |T − Tref | Ratio Period T Period error |T − Tref | Ratio

Finite differences (3.1) Mean curvature (3.5)

32 0.0134 2.44616 0.22476 – 2.34712 0.12572 –
64 0.00474 2.28401 0.06261 1.84392 2.24766 0.02626 2.259

128 0.00168 2.24034 0.01894 1.72495 2.20632 0.01508 0.8002

Table 4.2
Convergence (in time) to the reference value Tref , mean curvature estimation by (3.5).

Time step △t Period T Period error |T − Tref | Ratio

1/10 2.9 0.6786 –
1/20 2.55 0.3286 1.0462
1/40 2.35 0.1286 1.3534
1/80 2.275 0.0536 1.2626

At time t = 0, the fluid is assumed to be at rest and Ω(0) is a perturbation of a sphere: in spherical
coordinates (r, θ, φ) Γ (0) is given by r = r0(1 + ϵS2(π/2 − θ)), where S2 is the second spherical harmonic.
Since the mean curvature of Γ (0) is not constant, the non-uniform surface force causes droplet motion.
The oscillatory motion demonstrates the continuous transition between the kinetic and free surface energy.
The fluid viscosity results in the exponential decay of the oscillations due to the dissipation [11]. According
to [18,19], the period and the damping factor for oscillations are Tref = 2π

√
ρr3

0/(8σ) and δref = r2
0/(5ν),

given that the flow is irrotational. In a number of works [13–16,19–21], one compares these values to the
values recovered in the numerical experiment. The numerical error for the period is assumed to represent
the error for surface tension forces, whereas the damping factor can be used in estimation of the numerical
viscosity.

We set r0 = 1, σ = 1, ϵ = 0.3, ν = 0, ρ = 1 which imply Tref = 2.2214 and δref = ∞ (numerical damping is
due to the numerical viscosity only). The octree mesh for the cube [0, 10/3]3 is refined dynamically towards
Γ (t) with minimal mesh size hmin = 10/(3 · 2k), k = 5, 6, 7, 8, the largest mesh size is hmax = 10/(3 · 24)
in all the cases. Table 4.1 shows the computed period of the oscillations for computation of the curvature
by the finite differences (3.1) and the mean curvature flow (3.5) on different meshes. In order to ensure the
stability, we used the time step △t ≤ C

√
ρ

2πσ △x3/2 [2]. One observes almost the second order convergence
rate for |T −Tref | for the explicit method of calculation and considerable reduction in convergence rate for the
implicit method. A possible reason for deterioration of the convergence rate is higher numerical dispersion
and dissipation, see comments to Fig. 4.1 (right).

Table 4.2 presents the computed period of the oscillations for the curvature computation by the transport
equation on the mesh with hmin = 10/(3 · 26). Since the method has no practical restrictions on the time
step, we vary △t from 0.1 to 1/80. One clearly observes the first order of convergence in time. Table 4.3
demonstrates the convergence of the period T for the mean curvature calculation by the mean curvature
flow on different meshes. Fig. 4.1 (left) compares the dynamics of the droplet diameter along z axis for
two simulations on the mesh with hmin = 10/(3 · 26): finite differences calculation of the curvature with
△t = 0.00474 versus the curvature computed implicitly by the transport equation, △t = 0.1. The large time
step produces the dispersion error and high numerical viscosity: the oscillations are damped faster and their
period is larger.

For equal small time steps both methods provide close results, but oscillations damp a bit faster with the
implicit method, see Fig. 4.1 (right) indicating its higher numerical dispersion and dissipation. If we account
presence of very large cells hmax = 10/(3 · 24), we conclude that both methods demonstrate low numerical
dissipation.
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Table 4.3
Convergence (in space–time) to the reference value Tref , mean curvature estimation by (3.5).

Mesh 10/(3hmin) Time step △t Period T Period error |T − Tref | Ratio

32 1/50 2.38 0.1586 –
64 1/100 2.3 0.0786 1.0182

128 1/200 2.255 0.0336 1.2261
256 1/400 2.2325 0.0111 1.5979

Fig. 4.1. Droplet diameter along z axis: finite difference calculation of curvature with △t = 0.00474 vs. curvature computed
implicitly with △t = 0.1 (left); finite difference calculation of curvature with △t = 0.00474 vs. curvature computed implicitly with
△t = 0.00474.
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