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1 Introduction

Computational analysis of functionality of the cardiovascular system is based on
equations describing incompressible fluid flows. Blood flows interact inevitably
with surrounding elastic tissues. The most general approach to hemodynamic
simulations is the solution of fluid–structure interaction (FSI) problems [1–4]. The
numerical solution of 3D FSI problems is computationally expensive, is time-
consuming, and requires usage of parallel computers. In addition, FSI simulations
are hard to personalize since elastic properties of vessels cannot be retrieved in vivo
with appropriate accuracy. To overcome these difficulties, reduced hemodynamic
models have been developed in the last few decades [5, 6]. The reduced models,
however, cannot represent 3D flows and thus cannot provide important characteris-
tics such as vorticity, wall shear stress, etc.

Several applications allow us to simulate 3D blood flows with less computational
cost than the numerical solution of the 3D FSI problems. In this paper we address
two such applications: blood flow in the left ventricle of a patient, and blood flow
in the aortic bifurcation. In the first case the input data is dynamic ceCT medical
images [7]; in the second case the input corresponds to a benchmark [8]. We
consider mathematical formulations which can replace FSI formulations and still
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provide feasible 3D solutions. For theoretical study and numerical details we refer
to [1, 7, 9] for the first application and [8, 10] for the second application.

The paper is organized as follows. In Sect. 2 we pose the 3D FSI problem
in a monolithic setting. In Sect. 3 we discuss the incompressible Navier–Stokes
equations for flows in a time-dependent domain whose walls are moving (e.g. heart
ventricles). In Sect. 4 we introduce a multiscale model for blood flows in the aortic
bifurcation and compare it with the reference FSI solution.

2 Fluid–Structure Interaction

In the fluid–structure interaction setting, a time-dependent domain �(t) ⊂ R
3

is partitioned into fluid subdomain �f (t) and structure subdomain �s(t) with
interface �f s(t) := ∂�f (t) ∩ ∂�s(t) where the fluid–structure interaction occurs.
The reference domains

�f = �f (0), �s = �s(0)

are mapped by a deformation

ξ s : �s × [0, t] →
⋃

t∈[0,T ]
�s(t), ξf : �f × [0, t] →

⋃
t∈[0,T ]

�f (t).

For the structure, the deformation is naturally related to the displacement us via
us(x, t) := ξ s(x, t) − x and velocity vs := ∂tus = ∂tξ

s(x, t). For the fluid, the
deformation is artificial and is defined by a continuous extension uf := Ext(us) of
the displacement field us to �f :

ξf (x, t) = uf + x in �f × [0, t], ξf = ξ s on �f s × [0, t],

where �f s := �f s(0). There exist methods providing a mapping ξf [1]. Of course,
ξf is not Lagrangian since it does not follow fluid particles trajectories.

In contrast to equations for the structure, equations for the fluid deal with the
velocity vector field vf and the pressure scalar field pf given in the current domain
�f (t) for t ∈ [0, T ]. We set ps = 0 in �s and define the global pressure variable
p = pf,s . For simplicity, we shall exploit the notations in the current configuration
as vf (x, t) := vf (ξf (x, t), t), pf (x, t) := pf (ξf (x, t), t).

The monolithic approach [11] sets equations for displacements u = uf,s and
velocities v = vf,s both in �f and �s . The globally defined deformation gradient
F = I + ∇u and its Jacobian J := det(F) contribute to each dynamic equation in
the monolithic method:
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∂v
∂t

=

⎧⎪⎨
⎪⎩

ρ−1
s div (J (σ s ◦ ξ s)F−T ) in �s,

(Jρf )
−1div (J (σ f ◦ ξf )F−T )− (∇v)

(
F
−1
(

v − ∂u
∂t

))
in �f .

(1)
Here ρs and ρf are the solid and fluid densities, and σ s and σ f are the Cauchy
stress tensors. Note that the dynamics of structure is given in the Lagrangian
coordinates, whereas the dynamics of fluid is given in the Arbitrary Lagrangian–
Eulerian framework. The kinematic equation in the structure

∂u
∂t

= v in �s (2)

and incompressibility constraint in the fluid

div (JF−1v) = 0 in �f (3)

complete the system of the monolithic approach equations.
The above equations are complemented with initial conditions

u(x, 0) = 0, v(x, 0) = v0(x) in �(0) (4)

and appropriate boundary conditions on the outer boundary. On the fluid–structure
interface no-slip no-penetration of fluid and the balance of normal stresses are
imposed

vs = vf and σ fF
−T n = σ sF

−T n on �f s, (5)

where n is the unit normal vector on �f s .
The solution of the FSI problem implies finding pressure p in fluid and

continuous velocity and displacement fields v, u in �̄f ∪ �̄s satisfying the set
of Eqs. (1)–(5) and the boundary conditions. It is assumed that an extension rule
uf := Ext(us) is given.

It remains to define the Cauchy tensors for the fluid and the structure. They
depend on chosen rheological model. For instance, for Newtonian fluid with
viscosity μf

σ f = −pf I+ μf (∇vF−1 + F
−T (∇v)T ) (6)

and for Saint Venant–Kirchhoff material of the structure with Lame constants λs, μs

σ s = 1

J
F(λs tr(E)I+ 2μsE)F

T , (7)

where E = 1
2

(
F
T
F− I
)

is the Lagrange–Green strain tensor.
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The common approach to the solution of the FSI problem in domains with
complex geometry is the finite element method on unstructured tetrahedral meshes
since these meshes can be generated in any domain, and may be locally refined.
Fractional time stepping is computationally cheaper than implicit schemes, but
imposes restrictions on the time step. Implicit and semi-implicit schemes may afford
large time steps [1, 11–13]. In any case, the solution of a 3D FSI problem is compu-
tationally expensive: passing 3D benchmarks may require hundreds and thousands
of core-hours. Moreover, patient-specific simulations require personalized elastic
models of wall tissues which cannot be retrieved in clinical practice.

3 Navier–Stokes Equations in Time-Dependent Domain

Let the computational domain contain only fluid and the mapping �(t) = ξ(�0 ×
{t}) be given, the deformation gradient F = ∇xξ and its Jacobian J = det(F) satisfy

inf
Q
J ≥ cJ > 0, sup

Q

(‖F‖F + ‖F−1‖F ) ≤ CF , with ‖F‖F := tr(FFT )
1
2 ,

(8)
whereQ := �0×[0, T ] denotes the space-time cylinder and CF , cJ denote positive
constants.

The dynamics of incompressible Newtonian fluid is described by the fluid subset
of Eqs. (1)–(5) for velocity v and pressure p defined inQ

⎧⎪⎨
⎪⎩
∂v
∂t

− (Jρf )−1div (J (σ f ◦ ξ)F−T )+ (∇v)
(
F
−1
(

v − ∂ξ

∂t

))
= f

div (JF−1v) = 0

in Q,

(9)
with body forces f (e.g. gravity) and the initial condition v(x, 0) = v0(x) in �0.
The fluid is assumed to be Newtonian (6) although a nonlinear rheological law is
also applicable.

The boundary conditions depend on physical characteristics of boundary parts:
on the wall part one imposes no-penetration no-slip or slip condition for velocity, on
the inlet/outlet one may impose the free flow condition involving the Cauchy tensor;
for details we refer to [1, 9].

An approximate solution of (9) may be obtained by the finite element method on
a tetrahedral mesh in �0. A popular choice is P2-P1 Taylor–Hood elements (piece-
wise quadratic continuous velocities and piecewise linear continuous pressures).
According to the stability and convergence analysis [9], the Taylor–Hood elements
and the backward Euler discretization in time (with linearized inertia term) provide
the optimal error bound O(max{h2;�t}) under feasible assumptions. The error
norm is the same for the stability and the convergence estimates and is typical for
the numerical analysis of the finite element solution of the Navier–Stokes equations.
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The time step �t is not limited by the CFL restriction. The second order in time
approximation can be achieved by using the second order backward differences
in time instead of the backward Euler time stepping. Numerical tests confirm the
second order (in space) convergence of the Taylor–Hood solution to an analytical
solution [9].

In practice, the mapping ξ may be defined by a sequence of topologically
invariant meshes which differ only in nodes positions. The first mesh in the sequence
is referred to as the reference mesh at time t = 0 with reference mesh nodes. Let
ξ(x, tk) be the position of a reference mesh node with position x at time t = tk .
We define the mapping ξ k as the continuous piecewise linear vector function with
values ξ(x, t) at mesh nodes for t = tk , and define the function ξ(x, t) as the linear
interpolation between mappings ξ k−1 and ξ k for tk−1 < t < tk . Such continuous
in space and time piecewise linear in mesh cells and time intervals mapping is
an approximation of an unknown smooth mapping ξ contributing an additional
modelling error. However, this error is small and does not pollute the solution
essentially. The approach was successfully applied to simulation of 3D blood flow
in the left ventricle of a patient [1, 7]. Figure 1 demonstrates the computational
tetrahedral mesh and computed blood velocities at two instants of the systole.

If the mapping ξ is reconstructed from medical images, no-penetration no-slip
condition requires both normal and tangential components of the wall velocity. The
normal velocity may be recovered from any dynamic sequence of medical images
by v� = n · (ξ t ◦ ξ−1), whereas the tangential velocity needs special treatment of
the images, e.g. speckle tracking.

Fig. 1 Computational mesh for the left ventricle (top), blood velocities at two instants of the
systole (bottom left, bottom right)
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4 Multiscale Hemodynamic Model in Compliant Bifurcations

It is known [14] that pulsatile flows in vessels with rigid and compliant walls differs
considerably. One cannot use the solution of the Navier–Stokes equations as an
approximation to the solution of the FSI problem: flow rates and pressures are
essentially different even for a straight tube. However, in case of compliant vessel
bifurcation, one can use the Navier–Stokes equations in a domain with a rigid wall
provided that the domain is a vicinity of the bifurcation and the 3D Navier–Stokes
equations are coupled to 1D and 0D reduced hemodynamic models in a multiscale
hemodynamic model [10].

The 3D Navier–Stokes equations in a short bifurcation domain�with rigid walls
are reduced to

⎧⎪⎨
⎪⎩
∂v
∂t

− ρ−1
f div σ f + (∇v)v = f

div v = 0
in �, (10)

with the initial condition v(x, 0) = v0(x), no-slip boundary condition on the rigid
wall, and interface boundary conditions on the inlet and two outlets. The latter
conditions couple (10) with a 0D hydraulic model of an absorber which mimics
an elastic sphere �0D filled with fluid. The parameters of the absorber model are
volume V (t) and variable p0D(t) denoting the difference between fluid and external
pressures. The kinematic equation for the elastic sphere filled with fluid is

I
d2V

dt2
+ R0

dV

dt
+ V − V0

C
= p0D, (11)

where V0 is the volume at rest under p0D = 0; I ,C,R0 are inertia, expansibility, and
resistance parameters of the sphere. The 0D absorber model mimics the compliance
of the original compliant 3D bifurcation and interfaces the 3D Navier–Stokes
equations in rigid walls from one side and 1D hemodynamic equations in the
branches of the bifurcation, from the other side.

The 1D equations represent a reduced model for pulsatile flow in tubes with
elastic walls. They are able to reproduce the pulse wave propagation under
assumption of small ratio of tube diameter to its length. These equations stem from
the mass and momentum conservation laws:

∂A/∂t + ∂(Av) /∂x = 0, (12)

∂v/∂t + ∂
(
v2/2 + p/ρb

)
/∂x = fv, (13)

where x is the coordinate along the tube, A(t, x) is the cross-section area of the
tube, v(t, x) and p are the averaged over the cross-section linear velocity and
fluid pressure, ρb is the fluid density, fv = −2(n + 2)μbπvA−1ρ−1

b is the flow
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deceleration friction term. The latter term is derived under assumption of the
axisymmetric velocity profile [8]. The third equation of the 1D reduced model
incorporates elastic properties of the tube wall via pressure to cross-section area
relationship p(A)

p = pd + βA−1
d (

√
A−√Ad), β = 4

√
πEh/3, (14)

whereAd is the diastolic cross-sectional area, pd = 9.5 kPa is the diastolic pressure,
E and h are the Young’s modulus and thickness of the wall, respectively. For a
review of different variants of (14) we refer to [6, 15].

The coupling equations at the 1D-0D and 3D-0D interfaces are

dV
dt

= Q1D −Q3D, conservation of mass
p − p0D = R1DODQ1D, Poiseuille law
p0D − p = R0D3DQ3D, Poiseuille law

(15)

where Q1D = Av is the 1D fluid flux, Q3D = − ∫
�

v · nds is the 3D fluid
flux through inlet/outlet from �0D to �3D , R1D0D and R0D3D are the resistance
coefficients. Positive parameters R0, R1D0D and R0D3D are shown to produce
dissipation in the cumulative energy balance of the complete 1D–0D–3D system
[16].

For numerical examination, we consider an idealized model of the aortic bifur-
cation [8]. The abdominal aorta is represented by the inlet cylinder �a with length
La = 8.6 cm, radius ra = 0.86 cm, diastolic cross-sectional area Aa = 1.8062 cm2,
wall thickness ha = 1.032 mm, Young’s modulus Ea = 500 kPa, density ρw =
1 g/cm3. The iliac arteries are represented by two equal outlet cylinders with length
Li = 8.5 cm, radius ri = 0.60cm, diastolic cross-sectional area Ai = 0.9479 cm2,
wall thickness hi = 0.72 mm, Young’s modulusEi = 700 kPa, and the same density
ρw = 1 g/cm3. The blood with viscosity μb = 4 mPa s, density ρb = 1060 kg/m3,
mean flow rate Q̄a = 0.4791 l/min, and pulsatile velocity profile at the inlet
v(ξ, t) = v(t)n−1(n + 2)[1 − (ξr−1)n], where r is the lumen radius, ξ is the
radial coordinate, n = 9 is the polynomial order providing a good approximation of
experimentally measured profile, v(t) is a given axial blood flow velocity averaged
over the cross-section [8]. Each iliac cylinder is coupled with a three-element 0D
Windkessel model [10].

The numerical solution of the 1D equation is based on the grid-characteristic
method [1, 17, 18]. The numerical solution of the 3D Navier–Stokes equations
is based on the P2-P1 Taylor–Hood finite elements and the backward Euler dis-
cretization in time (with linearized inertia term) on a tetrahedral mesh in bifurcation
domain �. Coupling between the 1D,0D,3D models is achieved via iterations
for (15) at the interfaces.

Table 1 presents the average relative error avg% and the maximum relative error
max% for the flux and the pressure. The reference solution is provided by the 3D
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Table 1 Error at the iliac arteries junction: flow rate and pressure computed by the numerical
solutions of the Navier–Stokes equations in rigid walls and the multiscale method

Flux Pressure

Error in method avg% max% avg% max%

NSE with rigid walls 9.15 30.02 1.41 8.31

Multiscale 1.15 4.49 2.02 3.48

FSI equations. The error produced by the Navier–Stokes equations in rigid walls is
prohibitively large.
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