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Abstract—To construct constitutive equations for hyperelastic materials, one increasingly of-
ten proposes new strain measures, which result in significant simplifications and error reduction
in experimental data processing. One such strain measure is based on the upper triangu-
lar (QR) decomposition of the deformation gradient. We describe a finite element method for
solving nonlinear elasticity problems in the framework of finite strains for the case in which
the constitutive equations are written with the use of the QR-decomposition of the deformation
gradient. The method permits developing an efficient, easy-to-implement tool for modeling the
stress–strain state of any hyperelastic material.
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1. INTRODUCTION

In mechanics of deformable solids, constitutive equations (equations of state) are relations ex-
pressing the dependence of the stress tensor on the variables characterizing the motion of medium
particles [1, p. 80]. This dependence completely determines the mechanical behavior of the ma-
terial under study and plays a key role in solving applied problems. The form of a constitutive
equation significantly depends on the chosen strain measure, and the constitutive equation must
satisfy several conditions [1, p. 386; 2, p. 187 of the Russian translation]. For example, the consti-
tutive equations must reflect the symmetry of physical properties of the material in question and
be independent of the reference system.

The model of a hyperelastic material is widely used in studies of the stress–strain state of soft
biological tissues. In the framework of this model, it is postulated that there exists an elastic
potential completely determining the constitutive equations [1, p. 103; 2, p. 171 of the Russian
translation]. The right Cauchy–Green strain tensor is the most common strain measure used when
dealing with hyperelastic materials. This is due to the relatively simple form of constitutive equa-
tions and the existence of well-developed techniques for solving nonlinear elasticity problems in the
case of this measure. This strain measure also has a drawback: determining the form of constitutive
equations from experimental data encounters difficulties due to the correlation between the terms
in these equations [3]. In this connection, one proposes new strain measures leading to constitu-
tive equations with uncorrelated terms (the orthogonality property) [4–7]. One such measure is
based on the upper triangular (QR) decomposition of the deformation gradient. The orthogonal-
ity property allows one to obtain a simple description of the mechanical behavior of soft tissues
without using any a priori given constitutive equation and minimizes errors in experimental data
processing.

In the present paper, we describe an approach to modeling the deformation of hyperelastic
materials with the use of a strain measure based on the QR-decomposition of the deformation
gradient. In the framework of this approach, we suggest to use the interpolation properties of
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barycentric coordinates and the principle of minimum potential energy, which, in the case of linear
triangular finite elements, permits obtaining all necessary formulas in the analytical and concise
representation. The concept was first proposed in [8] for a Saint-Venant–Kirchhoff material and
was further described for the entire class of isotropic hyperelastic materials in [9].

The paper is organized as follows. In Section 2, we introduce basic notation and definitions. Fur-
ther, we use the new strain characteristics to pose the problem on the equilibrium of an elastic body
(Section 3) and its finite element discretization (Section 4). The results of numerical experiments
are described in Section 5. All problems considered in this paper are posed in the two-dimensional
statement, but our approach can be used in a similar way in the three-dimensional case.

2. CONSTITUTIVE EQUATIONS FOR SOFT TISSUES

2.1 Kinematics

Consider the domain Ωt ⊂ R
2 occupied by an elastic body at time t. Let Ω0 be the domain

at the initial time. The position of a point at the initial time is denoted by X = (X1,X2), and
the position of the point at time t, by x = (x1, x2). For the Cartesian frame {E1,E2} fixed to the
initial configuration Ω0 and the Cartesian frame {e1, e2} fixed to the actual configuration Ωt, we can
write

X = X1E1 +X2E2, x = x1e1 + x2e2.

The deformation x = φ(X, t) of the elastic body is defined as a one-to-one mapping

φ : Ω0 × [0, t] → Ωt,

and the corresponding displacements have the form u(X, t) := φ(X, t)−X.

The deformation gradient F, which is a key characteristic of the kinematics, is determined by
the relation

F = F(X, t) =
∂φ

∂X
=

∂x

∂X
=

2∑

i=1

2∑

j=1

∂xi

∂Xj

ei ⊗Ej ,

where ⊗ is the tensor product, a ⊗ b := (a1, a2)
T(b1, b2). The components of the deformation

gradient matrix F have the form

[F]ij = Fij =
∂xi

∂Xj

.

Its determinant is subjected to the constraint J = detF > 0. Note that the deformation gradient
is related to the displacements u of points of the body as follows :

F = I+
∂u

∂X
,

where I is the unit tensor.

The deformation gradient F contains information about changes in the distance between the
points of the body and about rigid rotations of the body. A rigid rotation does not cause additional
stresses in the body, and hence one introduces various strain measures eliminating such rotations.

2.2 Strain Measures

The polar decomposition of the deformation gradient F is widely used in the construction of
strain measures [2, p. 127 of the Russian translation].

Theorem 1 (on the polar decomposition of invertible matrices). Every invertible real matrix F
can uniquely be represented in any of the forms F = RU and F = VR, where R is an orthogonal
matrix and U and V are symmetric positive definite matrices.

An application of the polar decomposition theorem to the deformation gradient permits one to
single out the rotation tensor R, the right stretch tensor U, and the left stretch tensor V. In other
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words, the total deformation of a material element can be viewed as the superposition of a rigid
rotation and an extension of this element.

Examples of measures based on the polar decomposition are given by the right Cauchy–Green
strain tensor C = FTF = U2, the Lagrange strain tensor E = (C − I)/2, the left Cauchy–
Green tensor B = FFT = V2, and the logarithmic (Hencky) measure EH = lnB/2 = ln(V) and
eH = lnC/2 = ln(U). The tensor C characterizes the variations in the lengths (distances between
points) after a deformation of a solid body; at the same time, the Lagrange strain tensor E serves
as the measure of deviation of a given deformation from a rigid deformation (C = I).

It was proposed in [6] to use a strain measure based on the QR-decomposition rather than the
polar decomposition of the deformation gradient.

Theorem 2 (QR-decomposition [10, p. 168]). Every nonsingular real matrix F has a decompo-
sition F = QR, where Q is an orthogonal matrix and R is an upper triangular matrix with positive
diagonal entries.

Thus, the QR-decomposition of the deformation gradient also permits one to treat the total
deformation of a material element as the superposition of a rigid rotation (Q) and a variation (R)
in the shape of this element [6, 7].

By the QR-decomposition theorem, for the deformation gradient F there exists a matrix Q =
e′
i ⊗Ei such that

QTF = F̃ =

i,j=1,2∑

i≤j

F̃ijEi ⊗Ej , [F̃ij ] :=

(
F̃11 F̃12

0 F̃22

)
,

where e′
i is a new orthonormal basis, which can be obtained by the Gram–Schmidt orthogonalization

of the vector system {FE1,FE2}.
Since C = FTF = F̃TF̃, it follows that the components of the tensor F̃ can be obtained by the

Cholesky factorization of the Cauchy–Green strain tensor C,

F̃11 =
√

C11, F̃12 = C12/F̃11, F̃22 =

√
C22 − F̃ 2

12. (2.1)

Like the tensors U and V, the tensor F̃ characterizes the deformation of a body as a variation
in the distances between points, and all of its components have a physical meaning [6]. For strain
measures one takes the following variables ξi, i = 1, 2, 3 :

ξ1 = ln F̃11, ξ2 = ln F̃22, ξ3 = F̃12/F̃11.

2.3 Hyperelastic Material

By the definition of hyperelastic material, there exists an elastic potential ψ(F) such that the
Cauchy stress tensor σ has the form [2, p. 171 of the Russian translation]

σ =
1

J

∂ψ(F)

∂F
FT.

Here the potential energy U of the elastic body can be expressed via the elastic potential as well,

U =

∫

Ω0

ψ(F) dΩ =

∫

Ωt

J−1ψ(F) dΩ. (2.2)

Further, the elastic potential must satisfy the condition of material independence of the reference
system; i.e.,

ψ(F) = ψ(QF) for any matrix Q ∈ SO(2), (2.3)

DIFFERENTIAL EQUATIONS Vol. 54 No. 7 2018



974 SALAMATOVA et al.

where SO(2) is the group of proper rotations of the two-dimensional space. If there exists a symme-
try of the physical properties of the material under study, then the constitutive equations must be
invariant under all transformations of material coordinates belonging to the symmetry group of the
material. The form of the strain energy function (the elastic potential) is subjected to some more
restrictions, which are described in detail in the monographs [1, p. 386; 2, p. 187 of the Russian
translation].

As was shown in the monograph [2, p. 176 of the Russian translation], the condition of material
independence of the reference system is satisfied for hyperelastic materials if and only if the elastic
potential is a function of FTF; i.e., ψ(F) = W̃ (FTF). Therefore, one often expresses the elastic
potential ψ as a function of the right Cauchy–Green strain tensor C; then

σ =
2

J
F
∂ψ(C)

∂C
FT.

If the strain measure based on the QR-decomposition is used, then the elastic potential is
a function of the ξi,

ψ = ψQR(ξ1, ξ2, ξ3).

By relations (2.1) between the components of the tensors F̃ and C = FTF, the condition of
independence of the reference system (2.3) is satisfied. If such a strain measure is used, then the
constitutive equations become

σ =
1

J

3∑

i=1

∂ψQR

∂ξi
Ai,

A1 = e′
1 ⊗ e′

1, A2 = e′
2 ⊗ e′

2, A3 =
F̃22

2F̃11

(e′
1 ⊗ e′

2 + e′
2 ⊗ e′

1).

One advantage of this measure from the viewpoint of determining the constitutive equations is the
possibility of constructing a dependence with uncorrelated terms; i.e., Ai : Aj = tr (AT

i Aj) = 0
for i �= j. This property permits reconstructing the functions ∂ψQR/∂ξi directly from experimental
data (stress–strain curves), because

1

J

∂ψQR

∂ξi
= σ : Ai. (2.4)

If the orthogonality condition is not satisfied (for example, when the invariants of the Cauchy–
Green tensor are used), then the corresponding partial derivatives of the elastic potential depend
on each other, which complicates their determination from experimental data, and the errors in the
results are larger in this case [3]. The use of the orthogonality property and formulas (2.4) allows
one to diminish the errors when determining the functions ∂ψQR/∂ξi.

3. EQUILIBRIUM EQUATIONS

The equilibrium equations of an elastic body in differential statement become

divσ + b = 0 in the domain Ωt, (3.1)

where b is the bulk force density.

Let ∂Ωt be the boundary of the domain Ωt, and let ∂Ωt = Γu(t) ∪ Γσ(t), where Γu(t) = Γu(t).
Consider the mixed boundary conditions

u = ū on Γu(t), σn = t0 on Γσ(t), (3.2)

where n is the outward normal on ∂Ωt and ū and t0 are given displacements and forces on the
boundaries Γu(t) and Γσ(t), respectively.
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Since there exists an elastic potential for hyperelastic materials, it follows that the finite-element
approach to the approximate solution of Eqs. (3.1), (3.2) can be based on the virtual work princi-

ple [11, p. 177 of the Russian translation] : find a function u ∈ H̃1(Ωt) such that

δW − δU = 0, (3.3)

where the internal energy variation

δU =

∫

Ωt

σ : ∇δu dS

is due to the work

δW =

∫

Γσ(t)

t0 · δu dS +

∫

Ωt

b · δu dΩ

of the applied bulk and surface forces and the set H̃1(Ωt) of functions is defined as

H̃1(Ωt) = {v ∈ H1(Ωt) : v = ū on Γu(t)}.
In view of (2.2), we can write Eq. (3.3) as

δW − ∂

∂u

( ∫

Ω0

ψ(F) dΩ

)
· δu = 0. (3.4)

4. FINITE-ELEMENT DISCRETIZATION
OF THE EQUILIBRIUM EQUATIONS

The approach used in this paper was proposed in [9]. Let us recall its main points.

Given a conformal triangulation of the domain Ωs, consider the finite element method in which
the displacement field is approximated by continuous functions linear on each triangle.

Consider a triangle TP of computational mesh with vertices P1,P2,P3 which, after the deforma-
tion φ(X, t), becomes a triangle TQ with vertices Q1,Q2,Q3. We denote the areas of the triangles
TP and TQ by Ap and Aq, respectively; then J = Aq/Ap.

If λ1(X), λ2(X), λ3(X) are the barycentric coordinates of a point X, then the coordinates of any
point X ∈ TP of the triangle before the deformation and of the corresponding point x = φ(X) ∈ TQ

of the triangle after the deformation can be written as

X =

3∑

i=1

λi(X)Pi, x =

3∑

i=1

λi(X)Qi. (4.1)

For the deformation gradient F = ∂x/∂X, with regard to (4.1), we obtain the representation

F =

3∑

i=1

Qi ⊗Di, (4.2)

where Di := ∂λi/∂X and the vectors Di are completely determined by the geometry of the trian-
gle TP ,

Di =
1

2Ap

(Pi+1 −Pi+2)
⊥, i = 1, 2, 3.

Here and below, we use the notation P4 := P1, P5 := P2, and X⊥ := (X2,−X1)
T if X = (X1,X2)

T.

We use the representation (4.2) to obtain the following expressions for the right Cauchy–Green
strain tensor :

C = FTF =

3∑

i=1

3∑

j=1

(Qi ·Qj)Di ⊗Dj.

This formula, with (2.1) taken into account, also completely determines the components of the

matrix F̃ and hence the strain characteristics ξ1, ξ2, ξ3.
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Since the basis functions are linear, it follows that the value of the elastic potential ψ(F) is
constant on the triangle and, by (2.2), the contribution Up of the triangle TP to the internal energy
is given by Up = Apψ(G), where G is an arbitrary point of the triangle TP .

Now, using Eq. (3.4) for the approximate solution of the problem, we can obtain equations for
the new coordinates of the nodes. Consider the contribution of each triangle containing the ith
node to the nodal forces. Let Fi(TP ) be the elastic force, and let Fi,ext(TP ) be the external force
at the ith node of the triangle TP ; then

Fi(TP ) = −∂Up

∂Qi

, Fi,ext(TP ) =

∫

Γe
σ(t)

t0λi dS +

∫

TQ

bλi dΩ,

where Γe
σ(t) is the triangle edge along which the prescribed forces t0 are distributed. Assembling

over the neighboring triangles, we obtain the static equilibrium equation for the ith node of the
triangle in the form ∑

Tp∈Si

(Fi(Tp) + Fi,ext(TP )) = 0, (4.3)

where Si is the set of triangles containing the ith node. We have the following assertion.

Theorem 3. For a hyperelastic material with elastic potential ψ(G) = ψQR(ξ1, ξ2, ξ3), the ex-
pression for the elastic forces at the ith node of the triangle has the form

Fi = −∂Up

∂Qi

= −Ap

3∑

s=1

∂ψQR

∂ξs

∂ξs
∂Qi

, (4.4)

∂ξ1
∂Qi

=
1

2C11

∂C11

∂Qi

, (4.5)

∂ξ2
∂Qi

=
C11

2(C11C22 − C2
12)

(
∂C22

∂Qi

− 2
C12

C11

∂C12

∂Qi

+
C2

12

C2
11

∂C11

∂Qi

)
, (4.6)

∂ξ3
∂Qi

=
1

C11

(
∂C12

∂Qi

− C12

C11

∂C11

∂Qi

)
, (4.7)

∂Cij

∂Qk

=

3∑

n=1

Qn(Dn ⊗Dk +Dk ⊗Dn)ij . (4.8)

The derivatives ∂ψQR/∂ξi are completely determined by the form of constitutive equations or can
be directly reconstructed from experimental data. If necessary, one can obtain analytical formulas
for the derivatives ∂Fi/∂Qj .

The solution of the nonlinear system (4.3) can be obtained either by the classical Newton
method (the corresponding Jacobian can be written out) or by the Jacobian-free Newton–Krylov
method [12, 13].

A distinguishing feature of the proposed approach is its generality; namely, formulas (4.5)–(4.8)
hold for any hyperelastic material whose constitutive equation can be written with the use of the
QR-decomposition of the deformation gradient. The material behavior is solely determined by the
partial derivatives ∂ψQR/∂ξi of the potential. These derivatives can be given explicitly or obtained
from experimental data due to the orthogonality property (2.4). Thus, formulas (4.4)–(4.8) permit
developing efficient and easy-to-implement techniques for modeling the stress–strain state of any
hyperelastic material.

5. NUMERICAL EXPERIMENTS

Consider the problem of uniaxial extension of a square membrane by a force P . In this case,
the deformation is

x1 = λ1X1, x2 = λ2X2. (5.1)

The variables λ1, λ2 are called the principal elongations, because x = (x1, x2)
T, X = (X1,X2)

T.
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The principal elongations λ1 and λ2 for various parameters of the neo-Hookean model and the Gent model
calculated by formulas (4.3)–(4.8).

P , 105 N/cm d
Gent model neo-Hookean model

λ1 λ2 λ1 λ2

1 10 0.99246 1.00912 0.99252 1.00920

1 100 0.99178 1.00845 0.99178 1.00845

1 1000 0.99171 1.00837 0.99171 1.00838

5 10 0.96298 1.04578 0.96306 1.04665

5 100 0.95975 1.04273 0.95962 1.04291

5 1000 0.95939 1.04240 0.95927 1.04254

To perform numerical experiments, we consider isotropic models for the membrane, which were
previously used in [9], namely, the neo-Hookean model and the Gent model. In the case of uniaxial
extension, using the strain measure based on the QR-decomposition, one can write these models
as follows : neo-Hookean model,

WNH =
μ

2
(exp(2ξ1) + exp(2ξ2)− 2) +

μ

2
(d(exp (2ξ1 + 2ξ2)− 1)− 2(d + 1)(exp (ξ1 + ξ2)− 1));

Gent model,

WGent = −μ

2
Jm ln

(
1− exp(2ξ1) + exp(2ξ2)− 2

Jm

)

+
μ

2
(d(exp (2ξ1 + 2ξ2)− 1)− 2(d+ 1)(exp (ξ1 + ξ2)− 1)).

Here and below, μ, d, and Jm are material constants.

The following values for a human artery were used as the material parameters [14] : μ =
3 · 106 N/cm, Jm = 2.3, and d = 10, 102, 103. The membrane dimensions are 1 cm× 1 cm.

The principal elongations λ1 and λ2 obtained by solving system (4.3) for two materials are
shown in the table and coincide with the finite-element solutions obtained by the approaches de-
scribed in [9]. Since the exact solution (5.1) is linear, it follows that the approximation error is zero
regardless of the triangulation.

6. CONCLUSION

In the present paper, we describe an approach to calculating the deformation of hyperelastic
materials with the use of a strain measure based on the QR-decomposition of the deformation
gradient. A distinguishing characteristic of this method is that the equations are analytical and
concise, which permits a rather simple implementation of any constitutive equation for a hyperelas-
tic material based on the upper triangle decomposition of the deformation gradient. A restriction
of this approach is the use of linear finite elements in it.

Note that, in contrast to [9], where this approach was used only for isotropic materials, there
no such restrictions in the present paper, and the formulas obtained here are general and can
be used for both isotropic and anisotropic materials. The corresponding material anisotropy is
characterized by the form of the corresponding derivatives ∂ψQR/∂ξi of the elastic potential.

Note that the derivatives ∂ψQR/∂ξi determine the mechanical behavior of a hyperelastic material
and can be prescribed explicitly or obtained from experimental data due to the orthogonality
property (2.4). In this case, the general form of formulas (4.4)–(4.8) permits developing efficient
and easy-to-implement techniques for modeling the stress–strain state of any hyperelastic material.

In the present paper, we considered only static problems in the two-dimensional setting, but the
approach can be used to solve dynamic or three-dimensional problems, which will be the topic of
our further research.
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