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SUMMARY
We consider development of the nonlinear monotone FV scheme and its application to two- and three-
phase flow models. The scheme is applicable for full anisotropic discontinuous permeability tensors and
arbitrary conformal polyhedral cells.

The nonlinear scheme is compared with conventional linear approaches: two-point and O-scheme
multipoint flux approximations. The new nonlinear scheme has a number of important advantages over the
traditional linear discretizations.

Compared to the linear TPFA, the nonlinear scheme demonstrates low sensitivity to grid distortions and
provides appropriate approximation in case of full anisotropic permeability tensor. For non-orthogonal
grids or full anisotropic permeability tensors the conventional linear TPFA provides no approximation,
while the nonlinear flux is still first-order accurate. The computational work for the new method is higher
than the one for the conventional TPFA, yet it is rather competitive.

Compared to MPFA, the new scheme provides sparser algebraic systems and thus is less computational
expensive. Moreover, it is monotone which means that the discrete solution preserves the non-negativity of
the differential solution.

We consider using of the dynamic octree-based grids for better recovery of pressure gradient and
saturation fronts propagation.
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 Introduction

The solution of problems arising in reservoir simulation requires two types of discretization. First, we

discretize the computational domain which describes the reservoir. Second, we discretize the system

of differential equations which describe the behaviour of fluids. Underground reservoirs have complex

structures and unstructured meshes are in demand by the reservoir engineering community. The demand

of an accurate conservative method applicable to general conformal meshes and anisotropic tensor dif-

fusion (permeability) coefficients is very distinct as well.

There is a number of well-known conservative linear methods on unstructured meshes, including the

multi-point flux approximation (MPFA), the mixed finite element (MFE) and the mimetic finite differ-

ence (MFD) methods. They are second-order accurate and are not monotone (do not preserve discrete

solution non-negativity) even when the diffusion coefficient is moderately (1:100) anisotropic. The cell-

centered finite volume (FV) method with a linear two-point flux approximation is monotone but not

even first-order accurate for anisotropic problems or unstructured meshes. Nevertheless, this method is

conventional in modeling flows in porous media due to technological simplicity and monotonicity.

A new research direction pioneered by Le Potier in LePotier (2005) uses a two-point flux stencil with

two coefficients that depend on the concentrations in neighboring cells. Nonlinear FV schemes with

the two-point flux approximation (TPFA) proposed in Danilov and Vassilevski (2009); Kapyrin (2007);

LePotier (2005); Lipnikov et al. (2009, 2010); Nikitin and Vassilevski (2010); Yuan and Sheng (2008)

guarantee solution non-negativity for general tensor coefficients on general meshes.

The method was later extended to satisfy the discrete maximum principle (DMP). For general meshes

and coefficients the DMP requires a nonlinear multi-point flux approximation. For diffusion problems,

such schemes were proposed in LePotier (2008); Yuan and Sheng (2011) using auxiliary unknowns

at mesh vertices. Later an interpolation-free multi-point nonlinear approximation of diffusive fluxes

was proposed for two-dimensional Lipnikov et al. (2012) and three-dimensional cases Chernyshenko

(2013a); Gao and Wu (2013). The resulting scheme has the minimal stencil and reduces to the clas-

sical two-point FV scheme for scalar (and, in a few cases, diagonal tensor) coefficients on Voronoi or

rectangular meshes.

We consider the application of the original monotone scheme Danilov and Vassilevski (2009) for multi-

phase flow models Nikitin et al. (2013) and dynamic grids Terekhov and Vassilevski (2013).

The nonlinear monotone two-point flux discretization has a number of important advantages over tradi-

tional linear two-point flux discretization. First, it demonstrates very low sensitivity to grid distortions.

Second, it provides appropriate approximations in the case of full anisotropic permeability (diffusion)

tensor. Third, being combined with the cell-centered FV method, it preserves solution non-negativity

and thus provides a monotone discretization.

The two-point flux discretization methods are technologically appealing due to the compact stencil even

on polygonal or polyhedral meshes. For cubic meshes and a diagonal diffusion tensor this stencil reduces

to the conventional 7-point stencil. We note that for non-orthogonal grids the minimal compact stencil

can be guaranteed only for model diffusion or convection-diffusion grid operators but not for discrete

Jacobians in multiphase black-oil model.

Since the method is applicable to arbitrary polyhedral grids and multiphase flows with front propagation,

the dynamically adapted grids, like octree-based, may be an efficient solution. However, the use of

dynamically adapted octree grids rises several issues: time step restrictions, criterion for refinement,

data interpolation, grid non-conformity.

The paper outline is as follows. In the second section we recall the black oil model formulation and the
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 basic ideas of the Newton method and Jacobian matrix assembling. In the third section we remind briefly

the nonlinear finite volume scheme and the way of using it for the Jacobian matrix. In the fourth section

we summarize the properties of the nonlinear scheme and present a few numerical examples for the two-

and three-phase flows. In the fifth section we present the key ideas of implementing octree-based grids

for multiphase flows and also present numerical experiments.

Black-oil model

We consider the black oil model in a porous medium Chen et al. (2006). Subscripts denote to the three

phases – water, oil (the liquid phase) and gas (the gaseous phase) – and the three components respectively

– water, oil and gas.

The basic equations for the black oil model are the following:

1. Mass conservation equations:

∂

∂ t

(
φρwSw

)
=−div

(
ρwuw

)
+ρwqWs

(1)

for the water component,

∂

∂ t

(
φρOo

So

)
=−div

(
ρOo

uo

)
+ρOo

qOs
(2)

for the oil component, and

∂

∂ t

[
φ
(

ρgSg +ρGo
So

)]
=−div

(
ρgug +ρGo

uo

)
+ρgqGs

+ρGo
qOs

(3)

for the gas component.

2. Darcy’s law for each phase:

uα =−
krα

μα
K
(

∇pα −ραg∇z
)
, α = w,o,g. (4)

3. The saturation constraint:

Sw +So +Sg = 1. (5)

4. Pressure difference between phases is given by capillary pressure:

po − pw = pcow, pg − po = pcgo, (6)

where K is an absolute permeability tensor, φ is a porosity, pα , Sα , uα are unknown pressure, saturation

and volumetric velocity, μα and krα are the viscosity and relative phase permeability for the phase

α = w,o,g. Also ρw, ρOo
, ρGo

and ρg are the densities at current conditions, z is the depth, g is a gravity

term, qβs
is a source/sink well term of the component β =W,O,G at standard conditions.

We choose oil pressure po, water saturation Sw and gas saturation Sg as primary unknowns and take

into account the following dependencies. Capillary pressures and relative permeabilities depend on the

saturations, pcow = pcow(Sw), pcgo = pcgo(Sg), krα = krα(Sα), while porosity, viscosities and densities

depend on the pressure, φ = φ0(1 + cR(po − p0
o)), μα = μα(po), ρw(p) = ρWs

/Bw(po), ρg(p) =
ρGs

/Bg(po) and ρo = ρOo
(po)+ρGo

(po), where ρOo
(p) = ρOs

/Bo(po), ρGo
(p) = Rso(p)ρGs

/Bo(po),
ρβs

is the component β density at standard conditions and cR is the rock matrix compressibility constant.
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 We consider no-flow (homogeneous Neumann) condition on the reservoir boundary. The Peaceman

formula suggested in Peaceman (1978) is used for wells with a given bottom hole pressure or flux. For

a cell T with center xT connected to the well we have:

qβs
=

krα

μα
WI

(
pbh − pα −ραg(zbh − z)

)
δ (x−xT ), (7)

WI is the well index which does not depend on the properties of fluids, but depends on properties of the

media, δ (x−xT ) is the Dirac function.

The mass conservation equations (1)–(3) are discretized fully implicitly in time:

(φρwSw)
n+1 − (φρwSw)

n

Δtn+1
=−div(ρwuw)

n+1 +(ρwqWs
)n+1 , (8)

(φρoSo)
n+1 − (φρoSo)

n

Δtn+1
=−div(ρouo)

n+1 +(ρOo
qOs

)n+1 , (9)

(φρgSg +φρGo
So)

n+1 − (φρgSg +φρGo
So)

n

Δtn+1
=−div(ρgug +ρGo

uo)
n+1 +(ρgqGs

+ρGo
qOs

)n+1 . (10)

Now we can define the nonlinear residual for the lth approximation to a quantity evaluated at time step

n+1 inside grid cell Ti:

Rl
w,i =

∫
Ti

[
1

Δtn+1

(
(φρwSw)

l − (φρwSw)
n
)
+div(ρwuw)

l − (ρwqWs
)l

]
dx, (11)

Rl
o,i =

∫
Ti

[
1

Δtn+1

(
(φρOo

So)
l − (φρOo

So)
n
)
+div(ρOo

uo)
l − (ρOo

qOs
)l

]
dx, (12)

Rl
g,i =

∫
Ti

[
1

Δtn+1

(
(φρgSg +φρGo

So)
l − (φρgSg +φρGo

So)
n
)
+

+ div(ρgug +ρGo
uo)

l − (ρgqGs
+ρGo

qOs
)l
]

dx. (13)

The discrete counterpart of (8)-(10) for all grid cells can be written as:

Rα ,i = 0, α = w,o,g. (14)

The combination of (4), (14) and (11)-(13) generates a nonlinear system which is usually solved by

Newton method:

J(xl)δxl =−R(xl), xl+1 = xl +δxl,

where l is the lth Newton step, x = (po Sw Sg)
T is a vector of primary unknowns in all grid cells,

R(x) =
(
Rw(x) Ro(x) Rg(x)

)T
is a vector of nonlinear residuals in all grid cells, and J is the Jacobian

matrix:

J(x) =

⎛⎜⎜⎝
∂Rw

∂ po
(x) ∂Rw

∂Sw
(x) ∂Rw

∂Sg
(x)

∂Ro

∂ po
(x) ∂Ro

∂Sw
(x) ∂Ro

∂Sg
(x)

∂Rg

∂ po
(x)

∂Rg

∂Sw
(x)

∂Rg

∂Sg
(x)

⎞⎟⎟⎠ .

We terminate Newton method when the norm of the residual vector drops below εnwt .

For the sake of simplicity we only consider water phase terms of the Jacobian since the other are derived

similarly. We divide the residual into three parts: accumulation, well and transport terms, Rw,i = Racc
w,i +

Rwell
w,i +Rtrans

w,i , where:

Racc
w,i =Vi

(
(φρwSw)

l,i − (φρwSw)
n,i
)
, Rwell

w,i =−

∫
Ti

ql,i
w dx, Rtrans

w,i = Δtn+1

∫
Ti

divul
w dx.

While the variation of the accumulation and well terms is straightforward and is defined by (7) and the

dependencies given above, the transport term variation highly depends on the the Darcy’s fluxes spatial

discretization.
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 Nonlinear FV scheme for Jacobian matrix

We use the finite volume method for spatial discretization. First we remind the nonlinear monotone

two-point flux discretization scheme. Let us consider only one conservative unknown c and its flux

q =−K∇c.

The FV scheme requires to define the normal component qh
f ·n f of the average flux density q f for faces

f of the polyhedral grid T . For each cell T ∈ T , we assign one degree of freedom, CT , for unknown

c. Let C be the vector of all discrete unknowns. If two cells T+ and T− have a common face f , our

two-point flux approximation, is as follows:

qh
f ·n f = D+

f CT+ −D−
f CT−, (15)

where D+
f and D−

f are some coefficients and C± (or CT±) be the values of the discrete unknown c in T±.

We also assume that n f is outward for T+. In a linear FV method, these coefficients are equal and fixed.

In the nonlinear FV method, they may be different and depend on unknowns in surrounding cells.

Let FT denote the set of faces f of polyhedron T , xT denote the collocation point at the barycenter of

T , and x f denote the barycenter of face f .

For every cell T we define a set ΣT of nearby collocation points as follows. First, we add to ΣT the

collocation point xT . Then, for every interior face f ∈ FT , we add the collocation point xT ′
f
, where T ′

f is

the cell, other than T , that has face f . Finally, for any boundary face f ∈ FT , we add the point x f . Let

N(ΣT ) denote the cardinality of ΣT .

We assume that for every cell-face pair T → f , T ∈ T , f ∈ FT , there exist three points x f ,1, x f ,2, and

x f ,3 in set ΣT such that the following condition is held (see Fig. 1): The co-normal vector � f = K(x f )n f

started from xT belongs to the trihedral corner formed by vectors

t f ,1 = x f ,1 −xT , t f ,2 = x f ,2 −xT , t f ,3 = x f ,3 −xT , (16)

and
1

|� f |
� f =

α f

|t f ,1|
t f ,1 +

β f

|t f ,2|
t f ,2 +

γ f

|t f ,3|
t f ,3, (17)

where α f ≥ 0, β f ≥ 0, γ f ≥ 0. A simple and efficient algorithm for searching a triplet satisfying (17)

with non-negative coefficients was presented in Danilov and Vassilevski (2009).

The coefficients α f , β f , γ f are computed as follows:

α f =
D f ,1

D f

, β f =
D f ,2

D f

, γ f =
D f ,3

D f

, (18)

where

D f =
|t f ,1 t f ,2 t f ,3|

|t f ,1||t f ,2||t f ,3|
, D f ,1 =

|� f t f ,2 t f ,3|

|� f ||t f ,2||t f ,3|
,

D f ,2 =
|t f ,1 � f t f ,3|

|t f ,1||� f ||t f ,3|
, D f ,3 =

|t f ,1 t f ,2 � f |

|t f ,1||t f ,2||� f |
,

and |a b c|= |(a×b) · c|.

For the sake of brevity, we recall formulas for TPFA at interior face f only and isotropic tensor K only.

For more details see Danilov and Vassilevski (2009).

After a few calculations we get the (15) representation of the flux with the non-negative coefficients:

D±
f = μ±|� f |(α±/|t±,1|+β±/|t±,2|+ γ±/|t±,3|). (19)
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Figure 1 Co-normal vector and vector triplet.

The scheme is called nonlinear since the coefficients μ± and thus D±
f depend on the unknown c:

μ+ =
d−

d−+d+
and μ− =

d+

d−+d+

where

d± = |� f |

(
α±

|t±,1|
C±,1 +

β±

|t±,2|
C±,2 +

γ±
|t±,3|

C±,3

)
. (20)

If d± = 0, we set μ+ = μ− = 1/2.

Further we need a variation of D±
f to calculate Jacobian matrix. First we write variations for d± and μ±:

Δd± = |� f |

(
α±

|t±,1|
ΔC±,1 +

β±

|t±,2|
ΔC±,2 +

γ±
|t±,3|

ΔC±,3

)
, (21)

Δμ± =
Δd∓

d∓+d±
− (Δd∓+Δd±)

d∓

(d∓+d±)2
. (22)

Then for the variation of D± we have the linear combination:

ΔD± = Δμ±

(
α±/|t±,1|+β±/|t±,2|+ γ±/|t±,3|

)
= ∑

Ti∈ΣT∗

L±
i ΔCi, (23)

where ΣT∗ := ΣT+ ∪ ΣT− and L±
i = L±

i (C) are the coefficients of the linear combination obtained by

substituting (21) and (22) into (19).

Now we split Darcy’s fluxes (4) into several parts depending on the primary unknowns po, Sw, Sg and

depth z:

uw =−
krw

μw

K∇po +
krw

μw

K∇pcow(Sw)−
krw

μw

Kρwg∇z. (24)

We apply two-point flux approximation for the flux of each field: po, pcow(Sw), pcgo(Sg), z and denote

the respective flux coefficients by D±
po

, D±
pcow

, D±
pcgo

, D±
z and the collocated field values at xT± by p±o ,

p±cow, p±cgo, z±.

If we use the two-point discretization of the flux, then

ρwuh
w, f ·n f = −

(
ρwkrw

μw

)
f

[(
D+

po
p+o −D−

po
p−o

)
−
(

D+
pcow

p+cow −D−
pcow

p−cow

)
−
(

D+
z ρwg z+−D−

z ρwg z−
)]

,

where term
ρwkrw

μw
for face f is taken upwinded both for pressure and saturation which are denoted by p̃o

and S̃w, respectively.



 

ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery  
Catania, Sicily, Italy, 8-11 September 2014  

 Variation of the transport terms can be presented as follows:

Δ(ρwuh
w, f ·n f ) =−

(
krw

d

d po

(ρw

μw

))
f

Dw, f Δ p̃o −

(
dkrw

dSw

ρw

μw

)
f

Dw, f ΔS̃w −

−

(
ρwkrw

μw

)
f

[
D+

po
Δp+o −D−

po
Δp−o +ΔD+

po
p+o −ΔD−

po
p−o

]
+

+

(
ρwkrw

μw

)
f

[
D+

pcow

(
d pcow

dSw

)
T+

ΔS+w −D−
pcow

(
d pcow

dSw

)
T−

ΔS−w +ΔD+
pcow

p+cow −ΔD−
pcow

p−cow

]
+

+

(
ρwkrw

μw

)
f

[
D+

z

(
dρw

d po

)
T+

g z+Δp+o −D−
z

(
dρw

d po

)
T−

g z−Δp−o

]
,

where Dw, f =
[(

D+
po

p+o −D−
po

p−o

)
−
(

D+
pcow

p+cow −D−
pcow

p−cow

)
−
(

D+
z ρwg z+−D−

z ρwg z−
)]

.

The approximation of the Darcy flux in (4) is obtained by the conventional linear two-point flux dis-

cretization or by the nonlinear discretization. In the case of K-orthogonal mesh the conventional linear

scheme takes the form of the central finite difference and approximates the flux with at least first order

accuracy. In general case, the linear scheme may not provide approximation at all.

For the case of nonlinear flux discretization coefficients D±
∗ must be differentiated as dependent on

pressure and saturation in a few neighbouring cells as it was shown in Terekhov and Vassilevski (2013).

Therefore,

ΔD±
po
= ∑

Ti∈ΣT∗

L±
po,i

Δpi
o,

ΔD±
pcow

= ∑
Ti∈ΣT∗

L±
pcow,i

(d pcow

dSw

)i

ΔSi
w,

ΔD±
pcgo

= ∑
Ti∈ΣT∗

L±
pcgo,i

(d pcgo

dSg

)i

ΔSi
g,

where L±
po,i

, L±
pcow,i

and L±
pcgo,i

are the coefficients calculated in (23) for fields po, pcow(Sw) and pcgo(Sg),
respectively. This results in more dense Jacobian matrix and more expensive Jacobian-vector multipli-

cation and preconditioning in the linear solve.

Properties of the nonlinear scheme

The goal of this section is to summarize the main properties of the nonlinear monotone two-point flux

approximation.

It was proved in Danilov and Vassilevski (2009) for diffusion problem that the numerical solution is

non-negative if the source term and the initial guess are non-negative. The method is applicable to

full anisotropic heterogeneous diffusion tensors and the numerical experiments demonstrate the second-

order convergence for the scalar unknown and the first order convergence for the flux variable (a) on

unstructured polyhedral meshes and meshes with moderate aspect ratios and (b) for problems with highly

anisotropic coefficients.

The application of the new scheme to two-phase flows was studied in Nikitin et al. (2013). For K-

orthogonal grids all discretizations considered there are identical. However, in case of K-non-orthogonal

grids the nonlinear TPFA provides more accurate and physically relevant front propagation and water

breakthrough time than the conventional linear TPFA. The computational complexity of the new method

for fully implicit time stepping scheme is greater than that of the linear TPFA and lesser than that of the

MPFA (O-scheme): Table 1 presents number of non-zero elements in Jacobian matrix, CPU time, total
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 Scheme nz time #nit #lit

lin.TPFA 229 376 205.67s 1.0x 653 15 896

nonl.TPFA 367 868 343.75s 1.67x 664 23 924

MPFA 893 632 833.64s 4.05x 660 26 288

Table 1 Sample problem: total number of non-zero elements (nz) in Jacobian matrix, CPU time (sec),

total number of nonlinear (#nit.) and linear (#lit.) iterations for simulations with linear TPFA, nonlinear

TPFA and MPFA schemes.

number of nonlinear and linear iterations for 200 days simulation of a sample two-phase water flooding

problem for K-non-orthogonal grid using the conventional linear TPFA, the nonlinear monotone scheme

and the O-scheme MPFA.

Injector

Producer

10
1000

10

1000

10

1000

1000
10

Figure 2 Left: discontinuous anisotropic tensor. Right: sample mesh.

The linear TPFA may produce wrong solutions due to the lack of approximation. To compare the

linear and nonlinear TPFA schemes we consider the three-phase generalization of the discontinuous

anisotropic tensor test case (see Fig. 2) presented in Nikitin et al. (2013). Fig. 3 demonstrates the water

and gas saturations at T = 30 days for linear and nonlinear TPFA discretizations. One can see that only

the nonlinear scheme provides the solution satisfying the media anisotropy directions.

Application on dynamic grids

As the nonlinear scheme provides flux approximation for arbitrary polyhedral meshes, we may use grids

based on the octree structure. The key idea here is to treat an octree cell as a polyhedron instead of

a cube. This results in a larger stencil for Jacobian matrix since some cells have more than 6 neigh-

bours. On the other hand the octree structure allows us to dynamically refine and coarsen the mesh.

To support the process of local refinement and coarsening of the mesh, we use additional structure that

represents an octree and stores connections between parents, children and vertices in an octree. Each

cubic leaf of an octree can be further split into cut-cells for better approximation of the material layers

(see Chernyshenko (2013b)). An example for octree-refined grid with cut-cells is presented on Fig. 4.

The algorithm of dynamic reconstruction consists of a few steps. At first we unite all the cell data from

children to parents. Next we unite cells which should be united. Then we find cells which should be

refined and refine them. If we need to reconstruct a cell we erase its sub-cells. After an octree structure

reconstruction we can cut the updated cells and define data on them.
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Linear Nonlinear

Figure 3 Isolines for water (top) and gas (bottom) saturations at T = 30 days. Discontinuous anisotropic

tensor.

Figure 4 Sample sequence of dynamically reconstructed meshes with cut-cells.

Now we demonstrate the performance of the simulation on static and dynamic meshes. We consider two-

phase flow for quarter of the five-spot problem with 2 wells and full anisotropic permeability tensor:

K(x,y,z) = Rxy(45o) ·diag(1000,100,50) ·Rxy(−45o).
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 We choose an a priori refinement criteria based on physical properties of field variables. For every

material we first calculate the mean
(∫

ΩM
|∇u|dV

)
/VΩM

and the maximum maxΩM
(|∇u|) of the absolute

value of the gradient of field variable u, as ΩM is the part of domain filled with material M. Given a face

with two neighbouring cells T1, T2 within the same material M, we calculate gradient of field variable u

by |u1 −u2|/|x1 −x2|.

Then for an octree leaf cell with a calculated mean absolute value of the gradient ˜|∇un+1|M , we check it

against ˜|∇un+1|M ≥

(∫
ΩM

|∇un+1|dV

VΩM

)
× (1− tol)+maxΩM

|∇un+1|× tol, (25)

where vn+1 = vn × (1+ τ)− vn−1τ , τ =
Δtn

Δtn−1
, tol is a selected parameter. If inequality holds true, then

we refine the grid, otherwise we coarsen it. The physical meaning behind the criterion is the following.

Setting tol to 1 means that we are interested in the sharpest gradient of u only. This will refine the grid

in small area with the largest gradient and leave it coarse everywhere else. This strategy is best suited

for pressure which possesses well singularities. Setting tol to 0 means that we are interested in regions

where u forms smeared fronts. This strategy is best suited for saturation.

set tolP tolS

I 0.015 0.035

II 0.025 0.015

III 0.02 0.01

Table 2 Dynamic grids refinement criteria.

Figure 5 Oil production rates for static and dynamic grids.

We compare the solution for three dynamic grids defined by criteria in Table 2 with the one for the

uniform 48×48×48 mesh and four static octree meshes with coarsest grid of 6×6×6, 12×12×12,

and 24×24×24 and three, two, and one level of refinement to wells, respectively (the mesh step around

the wells is the same).

The amount of oil produced is demonstrated in Figure 5. We can see very close results of the simulations

on static 48×48×48 mesh and dynamic octree meshes before the water breakthrough. After the water

breakthrough we have rather close results as well. From Table 3 we can see the total time of the simula-

tions and the acceleration achieved on the dynamic meshes. The table demonstrates the acceleration up

to 4−5 times on dynamic octree meshes.
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 mesh computation,sec acceleration

6×6×6 146

12×12×12 719

24×24×24 4950

48×48×48 45120 1x

dynamic I 9223 4.9x

dynamic II 11815 3.8x

dynamic III 14098 3.2x

Table 3 Runtime and acceleration for static and dynamic grids.

Time dependence of the number of mesh elements is shown in Figure 6: octree meshes have the total

number of degrees of freedom at most one half of that in the fine uniform mesh.

Figure 6 Number of mesh elements for static and dynamic grids.

The adapted octree meshes and the water saturations are demonstrated in Figure 7.

a) b)

Figure 7 Water saturation for adapted mesh: a) day 30 b) day 70.
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 Conclusions

We considered the application of the nonlinear monotone finite volume scheme to the solution of the

two- and three-phase black-oil model problems and dynamically refined polyhedral grids.

The nonlinear scheme has a number of important advantages as well as some disadvantages compared

to conventional linear schemes:

• For the linear diffusion problem the scheme is monotone and provides the second order con-

vergence for moderately distorted grids and anisotropic tensors. The stencil is compact, but the

nonlinearity of the algebraic system adds complexity to the problem solution.

• For the multiphase flows the scheme provides better accuracy compared to linear TPFA scheme

for anisotropic media and non-orthogonal grids. The scheme can no longer be treated as two-

point, yet it still has much sparser stencil compared to the linear O-scheme MPFA and thus better

computation time.

• The use of dynamically refined grids results in considerable speed-up of simulation with the min-

imal loss in accuracy at least for two-phase flows simulation.
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