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Abstract—We consider biophysical problems appearing in moving domains: blood flow, two-
phase flow of blood with drifting clot, and coagulation process in blood flow. The corresponding
mathematical models are given by the incompressible Navier–Stokes equations, the incompress-
ible Navier–Stokes–Cahn–Hilliard equations, and the Navier–Stokes–Brinkman equations with
coagulation equations for chemical kinetics and advection–diffusion of blood factors, respectively.
We address blood flow problems that may attract interest of clinicians: clot-in-transit and the clot
formation in blood streams. The present paper is the first in the series, where we discuss models,
computational meshes, discretizations and results of simulations obtained with the fully implicit
solution of aforementioned problems and pave the way for the further investigation of the algebraic
solvers efficiency in the second paper of the series.
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1. INTRODUCTION

Medical procedures often require risk assessment. The latter is best performed in silico using
computational fluid dynamics tools due to their non-invasive nature [2, 8, 12, 37, 39, 43]. In this work,
we are concerned with the blood flow and blood vessel embolization due to clot detachment [25, 34] or
clot growth [1, 4, 5, 22, 44]. The resulting systems of differential equations are combinations of either the
Navier–Stokes equations coupled with Cahn–Hilliard equations or the Navier–Stokes equations with
the Brinkman terms coupled with coagulation equations for chemical kinetics and advection–diffusion of
blood factors. Additional difficulties arise from posing the problems in moving domains. A discretization
of the PDEs in moving domains is built in the framework of four-dimensional finite-volume method [32]
that is a generalization of three-dimensional finite-volume collocated methods [28, 29, 31, 38]. Such
applications require implicit discretizations [21] and the arising nonlinear systems of algebraic equations
are difficult to solve [7, 14]. For instance, the Cahn–Hilliard equations are of biharmonic type, whereas
equations for chemical kinetics are extremely stiff.
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The present paper is the first in the series where we discuss underlying mathematical models,
computational domains and meshes, discretization methods and report the results of simulations which
may attract interest of clinicians. In particular, we address scenarios of the clot-in-transit [23] and the
clot formation in the ventricle due to tissue inflammation following acute myocardial infarction [26]. The
scale of the problem requires the use of supercomputing resources whereby we use up to 50 nodes of
the “Lomonosov-2” supercomputer [40]. The second paper in the series [17] will address the iterative
solution of arising algebraic systems, parallel performance of the simulations, as well as contribution of
all modeling stages to the computational time.

The article is organized as follows. In Section 2, we describe mathematical models considered in this
work. Computational domains and computational meshes are discussed in Section 3. Discretization
methods for the coupled systems of partial differential equations forming the models are presented in
Section 4. Section 5 describes problem setups and results of simulations. Finally, the concluding
remarks are given in Section 6.

2. MATHEMATICAL MODELS

2.1. Navier–Stokes Equations For Incompressible Fluid Flow

Flows of incompressible fluid are described by the Navier–Stokes equations

∂tu+ div
(
uuT − νb

(
∇u+∇uT

)
+ pI

)
= 0,

div (u) = 0, (1)

where u = [u, v, w]T is the velocity vector, p is the pressure, and νb = μb/ρb is the kinematic viscosity of
the fluid (blood). System (1) is supplemented with the general type of boundary conditions

αu+ β
(
νb

(
∇u+∇uT

)
− pI

)
n = γ (2)

at ∂Ω, where α = α‖I+
(
α⊥ − α‖

)
nnT and β = β‖I+

(
β⊥ − β‖

)
nnT are second-order tensorial

parameters fixing velocity and traction at the boundary and γ is the right-hand side vector. The
parameters may have different values at different parts of ∂Ω. The initial condition initializes the velocity
field. The units are: for length [mm], for time [s], for velocity [mm · s−1]. The kinematic viscosity of
fluid in all the tests is νb = 4 [mm2 · s−1] (conventional viscosity of blood). The nonlinear rheology of the
blood [3] is ignored in this work.

2.2. Navier–Stokes–Cahn–Hilliard Equations For Two-Phase Incompressible Fluid Flow

Flows of drifting clots in blood streams may be represented by two-phase incompressible fluid flow
that is described by the Navier–Stokes–Cahn–Hilliard equations [6, 13, 20]:

∂tu+ div
(
uuT − ν(ϕ)

(
∇u+∇uT

)
+ pI

)
= 0,

div (u) = 0,

∂tϕ+ div (ϕu− εM(ϕ)∇μ) = 0,

μ = −div (ε∇ϕ) +
ϕ3 − ϕ

ε
, (3)

where ϕ ∈ [−1; 1] is the non-dimensional phase indicator function and μ is the chemical potential
[mm−1]. The blood phase corresponds to ϕ = −1, and the clot phase corresponds to ϕ = 1. In
addition to (2) equations (3) are supplemented by boundary conditions on ∂Ω αϕϕ+ βϕn · ∇ϕ = γϕ
for the phase indicator function and n · ∇μ = 0 for the chemical potential. The kinematic viscosity
function ν(φ) = νb

1−ϕ
2 + νc

1+ϕ
2 is based on the blood kinematic viscosity νb = 4 [mm2 · s−1] and the

clot kinematic viscosity νc = 50
[
mm2 · s−1

]
[24], the nonlinear mobility function is given by M(ϕ) =

M0

√
(1− ϕ)2 + ε2 with M0 = 1

[
mm2 · s−1

]
, where phase interface thickness ε = 0.1 [mm]. The

initial condition initializes the velocity field and the phase indicator function.
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SOLVING COUPLED PROBLEMS OF BLOOD FLOW 245

2.3. Navier–Stokes–Brinkman Equations For Incompressible Reactive Fluid Flow

Clot growth in a blood stream is described by the Navier–Stokes equations with the Brinkman term
and coagulation equations for chemical kinetics and advection–diffusion of blood factors [4, 5, 7]

∂tu+ div
(
uuT − νb

(
∇u+∇uT

)
+ pI

)
+

νb
K

u = 0,

div (u) = 0,

∂tP + div (uP −D∇P ) = −
(
k1φa + k2B + k3T + k4T

2 + k5T
3
)
P,

∂tT + div (uT −D∇T ) =
(
k1φa + k2B + k3T + k4T

2 + k5T
3
)
P − k6AT,

∂tB + div (uB −D∇B) = (k7φa + k8T ) (B
0 −B)− k9AB,

∂tA+ div (uA−D∇A) = −k6AT − k9AB,

∂tG+ div (uG−D∇G) = −k10TG (k11 +G)−1 ,

∂tF + div (uF −D∇F ) = k10TG (k11 +G)−1 − k12F,

∂φf + div (k(φf , φa) (uφf −Dp∇φf )) = −(k13T + k14φa)φf ,

∂φa + div (k(φf , φa) (uφa −Dp∇φa)) = (k13T + k14φa)φf ,

∂tM = k12F, (4)

with concentrations of prothrombin P or factor FII nM, thrombin T or factor FIIa nM, tissue factors B
or sum of factors IX and X nM, antithrombin A or factor ATIII nM, fibrinogen G or factor FI nM, fibrin
F or factor FIa nM, fibrin polymer M nM, platelets φf in the flow [103 mm−3], platelets φa in the clot
[103 mm−3].

Here the clot permeability [45] is calculated by

1

K
=

16

r2
S3/2

(
1 + 56S3

) φf + φa

φf − φa
, (5)

where S = min (4900,M) /7000 is the saturation of the media by fibrin polymer [4], r = 6× 10−4 mm
is the fiber radius [4, 45]. The flow of the platelets is constrained by

k(φf , φa) = tanh

(
π
φmax − φf − φa

φmax

)
, (6)

where φmax = 400
[
103 mm−3

]
, for details refer to [19]. The coefficients of blood coagulation chemical

kinetics are collected in Table 1. The remaining constants are [4]: B0 = 200 nM is the default
concentration of tissue factors, D = 5× 10−5 mm2 s−1 is the diffusion coefficient for the blood factors,
Dp = 2.5 × 10−5 mm2 s−1 is the diffusion coefficient for the platelets.

System (4) is closed with the boundary conditions (2) and αcc+ βcDn · ∇c = γc, where c ∈
{P, T,B,A,G, F, φf , φa}. The parameters may have different values at different parts of ∂Ω. The clot
growth is initiated by the damage of the endothelium, which is described by the nonlinear boundary

condition for the tissue factor n · ∇B = k15(B0−B)
1+k16(B0−B)

, where k15 = 7.7× 104 nM−1 s and k16 = 2.25 ×
10−1 nM−1. The initial conditions for other blood factors are P = 1400 nM, B = 10 nM, A = 3400 nM,
G = 7000 nM, T = F = M = 0 nM, φf = 10 [103 mm−3], and φa = 0 [103 mm−3]. The other initial
condition initializes the velocity field.

The considered clot model was previously validated [4] against experimental data.

3. COMPUTATIONAL DOMAINS AND COMPUTATIONAL MESHES

We consider the mathematical models from Section 2 in three different types of moving domains: a
right ventricle, an artery bifurcation, a simplified capillary network. Each domain is represented by its
computational mesh whose topological structure remains intact during motion of the domain.
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Table 1. Coefficients for the blood coagulation chemical kinetics collected in [4]

Coefficient Source Value Units

k1 [4] 1.5× 10−4 10−3 mm3 s−1

k2 [15] 7.5× 10−6 nM−1 s−1

k3 [4] 1.5× 10−5 nM−1 s−1

k4 [4] 8× 10−6 nM−2 s−1

k5 [4] 10−10 nM−3 s−1

k6 [41] 4.817× 10−6 nM−1 s−1

k7 [4] 10−9 10−3 mm3 s−1

k8 [11] 5.2173× 10−5 nM−1 s−1

k9 [41] 2.223× 10−9 nM−1 s−1

k10 [35] 5× 10−3 s−1

k11 [35] 3160 nM

k12 [4] 10−1 s−1

k13 [18] 2× 10−3 nM−1 s−1

k14 [19] 4× 10−9 10−3 mm3 s−1

The first domain type corresponds to the right ventricle of a patient given by time series of computer
tomography scans. There are a total of 90 tetrahedral meshes over the heart cycle, for details we refer to
[36, 37]. Three of them are demonstrated in Fig. 1. The tetrahedral meshes are made of 70 533 elements.

Boundary faces of the meshes belong to the ventricle’s wall or to planes representing one of two valves
(pulmonary and tricuspid). Blood velocity matches the wall velocity at the ventricle’s wall. In systole and
diastole, the valves are opened and closed instantly and reciprocally.

The second domain type is associated with an artery bifurcation, see Fig. 2. The mesh is constructed
using GMSH software with the OpenCascade kernel. The tool “ThruSections” is used to construct a
single blood vessel from a series of circles, and the entire domain is defined by the union of the artery and
its branch using the “BooleanUnion” tool. The parameters of the circles in the Oxy plane for the artery

Systole

Diastole

Fig. 1. The right ventricle mesh: (left) beginning of systole, (middle) middle of systole, (right) end of systole.
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SOLVING COUPLED PROBLEMS OF BLOOD FLOW 247

Fig. 2. The artery bifurcation: (left) beginning of cycle, (right) middle of cycle. The arrows indicate the deformation
direction.

and its branch are given by central coordinates xi and radii ri, for the artery they are

x1
k =

⎡

⎢
⎢⎢
⎣

D
(
1 + exp

(
5(L−kh)

L

))−1

0

kh− L

⎤

⎥
⎥⎥
⎦
, r1k = D

(
0.375 + 0.125

kh − L

L

)
, (7)

where L = 4 mm, D = 1 mm, k = 0, . . . , 12, and h = L/6; for the branch they are

x2
k =

⎡

⎢⎢
⎢
⎣

S + L−kh
L (2D − S)

0

kh− L

⎤

⎥⎥
⎥
⎦
, r2k =

D

4
, (8)

where S = 0.6 mm and k = 0, . . . , 5.
We generated three initial quasiuniform meshes for the artery bifurcation made of 20 479, 152 326,

and 1 173 233 tetrahedra.
The movement of the domain is defined analytically by translocation of the coordinates of the nodes

of the initial mesh with time x0 = [x0, y0, z0]
T → x(t) = [x(t), y(t), z(t)]T as follows

x(t) =

⎡

⎢
⎢⎢
⎣

x0 + 0.1 sin(t)(x0 − 0.15z0 − 1.0)

y0(0.9 + 0.1 cos(t))

z0

⎤

⎥
⎥⎥
⎦
, t ∈ [0; 50]. (9)

Thus, the bifurcation pulsates 8 times within the considered time period. Figure 2 shows the domain for
two different instants of the cycle.

The third domain type corresponds to a simplified capillary network, see Fig. 3. The mesh in the
union of 13 vessels is constructed using GMSH software with the OpenCascade kernel in the same way
as in the artery bifurcation. Each vessel of the network is described by the center xi

k and the radius rik of
the circles in the Oxy plane

xi
k =

⎡

⎢⎢
⎢
⎣

H
(
1 + exp

(
xli−q
dli

))−1
+H

(
1 + exp

(
xri−q
dri

))−1

0

kh− L

⎤

⎥⎥
⎥
⎦
,
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Table 2. Coefficients for the simplified capillary network mesh construction

i Di di xli xri dli dri Ni

1 0.7 0.3 17 13 4 4 18

2 0.6 0.35 −17 −13 4 4 18

3 0.25 0.1 10 5 6 5 20

4 0.25 0.2 −10 −5 4 7 20

5 0.25 0.15 10 −9 5 1 80

6 0.2 0.15 −10 10 3 5 25

7 0.15 0.1 20 −2 4 6 30

8 0.15 0.1 −17 7 4 2 50

9 0.15 0.1 −17 −5 2 6 30

10 0.15 0.1 2 12 2 8 50

11 0.15 0.1 −2 −12 8 2 35

11 0.15 0.1 0 −9 4 4 30

11 0.15 0.1 6 0 4 4 30

rik = Di +
2(di −Di)

1 + exp (0.01q2)
, q =

kh− L

L
, (10)

where L = 8 mm, H = 4 mm, h = 2L/Ni, k = 0, . . . , Ni is the circle index, and i = 1, . . . , 13 is the
vessel index. The parameters for each blood vessel of the network are collected in Table 2. The
quasiuniform mesh for the capillary network is made of 156 852 tetrahedra.

The translocation of the mesh nodes x(t) = [x0, y0(0.95 + 0.05 cos(t)), z0]
T defines the domain

movement.

4. DISCRETIZATION METHOD

The four-dimensional finite-volume method is used to discretize (1), (3), and (4) with u, p, and
additional scalar variables c ∈ {ϕ, μ, P, T,B,A,G, F, φf , φa} collocated at cell centers. The detailed
description of the four-dimensional discretization of the finite-volume method can be found in [9, 10, 32].

Fig. 3. The mesh for the simplified capillary network.
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Here we just outline the approach. First, we transform (1), (3), and (4) into expressions with the four-
gradient.

The Navier–Stokes system (1) is transformed into
⎛

⎝uuT − νb
(
∇u+∇uT

)
+ pI u

uT 0

⎞

⎠

⎛

⎝∇

∂t

⎞

⎠ =

⎛

⎝0

0

⎞

⎠ . (11)

The boundary condition for (11) contained the right-hand side γ which is modified by γ := γ +αw,
where w is the velocity of ∂Ω.

The Navier–Stokes–Cahn–Hilliard system (3) can also be translated into a four-dimensional
formulation as follows

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

uuT − ν(ϕ)
(
∇u+∇uT

)
+ pI u

uT 0

ϕuT − εM(ϕ)∇μT ϕ

−ε∇ϕT 0

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

⎛

⎝∇

∂t

⎞

⎠ =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

0

0

0

ϕ3−ϕ
ε − μ

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

. (12)

The Navier–Stokes–Brinkman system with coagulation chemical kinetics (4) is transformed into:
⎛

⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

uuT − νb
(
∇u+∇uT

)
+ pI u

uT 0

PuT −D∇P T P

TuT −D∇T T T

BuT −D∇BT B

AuT −D∇AT A

GuT −D∇GT G

FuT −D∇F T F

k(φf , φa)φfu
T − k(φf , φa)Dp∇φT

f φf

k(φf , φa)φau
T − k(φf , φa)Dp∇φT

a φa

0T M

⎞

⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

⎛

⎝∇

∂t

⎞

⎠ =

⎛

⎜
⎜⎜
⎝

−νb
Ku

0

Rc

⎞

⎟
⎟⎟
⎠

, (13)

where R is the chemical kinetics system representing coagulation reactions

Rc =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎝

−
(
k1φa + k2B + k3T + k4T

2 + k5T
3
)
P

(
k1φa + k2B + k3T + k4T

2 + k5T
3
)
P − k6AT

(k7φa + k8T ) (B
0 −B)− k9AB

−k6AT − k9AB

−k10TG (k11 +G)−1

k10TG (k11 +G)−1 − k12F

−(k13T + k14φa)φf

(k13T + k14φa)φa

k12F

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎠

. (14)
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Systems (11), (12), and (13) can be written in a common general form

F

⎛

⎝∇

∂t

⎞

⎠ = R, (15)

where F is the matrix of size m× 4 and R is the right-hand side of size m× 1, m = {4, 6, 13} for (11),
(12), and (13), respectively.

Second, assuming that the topological structure of the computational mesh remains intact during
the movement and therefore there is a single time layer in the fourth dimension for all mesh cells ω,
we define a four-dimensional prism ω(t) = ωn ∪ ωn+1 connecting two representative volumes ωn and
ωn+1 at time steps tn and tn+1, respectively. The four-dimensional surface of ω(t) is denoted by ∂ω(t).
Integrating (15) over ω(t) and applying the Ostrogradsky–Gauss theorem [16, 42], we transform the
volumetric integral of (15) into a space-time surface integral

∫

ω(t)

F

⎛

⎝∇

∂t

⎞

⎠ dV (t) =

∮

∂ω(t)

FdS(t) =
∫

ω(t)

RdV (t). (16)

The approximation with the second-order accuracy of the surface integral in (16) with a single
integration point at the middle of four-dimensional faces is

∮

∂ω(t)

FdS(t) ≈
∑

σ(t)∈∂ω(t)
|σ(t)| F|xσ(t)

⎛

⎝n

nt

⎞

⎠ , (17)

where σ(t) = σn ∪ σn+1 is the four-dimensional face made of faces σn and σn+1 at time moments

tn and tn+1. Its geometric center in four dimensions is given by xσ(t) =
[
xσn+xσn+1

2 , tn+tn+1

2

]T
, its

area is defined by |σ(t)| = (tn+1 − tn)
|σn+1|+|σn|

2 , its three-dimensional outer normal n =
nσn+1+nσn

2
is the average of outer normals to σn and σn+1 and the fourth dimension of the normal is given by

nt = −n·(xσn+1−xσn)
tn+1−tn

= −n ·wσ(t), where wσ(t) is the approximation to the mesh movement velocity
at the face center.

The degrees of freedom are located at the centers of 3D cells (representative elementary volumes)
ωn at time level tn. There are two four-dimensional faces in ∂ω(t) that entirely lay at the temporal
boundaries tn and tn+1. These faces correspond to σ(t) ∈ ∂ω(t) ∩ tn = ωn and σ(t) ∈ ∂ω(t) ∩ tn+1 =

ωn+1 with the normals
[
0T ,−1

]T and
[
0T , 1

]T and areas |ωn| and |ωn+1|, respectively. For the
computation of the fluxes at these faces, the degrees of freedom are taken from representative volumes
at corresponding time levels. If one uses the approximation F|xσ(t)

by averaging degrees of freedom

from time levels tn and tn+1, he arrives at the four-dimensional counterpart of the second-order Crank–
Nicolson method. In this work, for the sake of stability, we use the approximation F|xσn+1

from time

level tn+1, resulting in the four-dimensional counterpart of the first-order backward Euler method.
Third, let C represent the vector of m degrees of freedom collocated at the center of ωn+1, and

C ⊗

⎡

⎣∇

∂t

⎤

⎦ represent its 4m gradient vector. We note that for problem (11) the degrees of freedom

are C = [u, v, w, p]T , for problem (12) they are C = [u, v, w, p, ϕ, μ], and for problem (13) they are
C = [u, v, w, p, P, T,B,A,G, F, φf , φa,M ]T . Let us decompose the flux F into a hyperbolic part and
an elliptic part: F = FH + FE . The elliptic part of the flux takes the form

FE

⎡

⎣n

nt

⎤

⎦ = −I⊗

⎡

⎣n

nt

⎤

⎦

T

E

⎛

⎝C ⊗

⎡

⎣c∇

∂t

⎤

⎦

⎞

⎠ , (18)
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where E is an m× 4m matrix. For the Navier–Stokes equations (11) matrix E is given by

E =

⎡

⎣νbI

0

⎤

⎦⊗
[
nT 0

]
+

[
nT 0

]
⊗

⎡

⎣νbI

0

⎤

⎦ , (19)

and for the Navier–Stokes–Cahn–Hilliard equations (12) it is given by

E =

⎡

⎢
⎢
⎢⎢
⎢⎢
⎣

ν(ϕ)I

0

εM(ϕ)

ε

⎤

⎥
⎥
⎥⎥
⎥⎥
⎦

⊗
[
nT 0

]
+

[
nT 0

]
⊗

⎡

⎢
⎢
⎢⎢
⎢⎢
⎣

ν(ϕ)I

0

0

0

⎤

⎥
⎥
⎥⎥
⎥⎥
⎦

. (20)

The expression for matrix E in the case of the Navier–Stokes–Brinkman equations coupled with
coagulation equations (13) is given in [32], and we omit it for the sake of brevity.

We assume that matrix E can be approximated by a constant matrix at each cell of the mesh, and the
degrees of freedom are linear continuous functions over each face σ of the mesh, whereby their gradient is
constant. Let degrees of freedom C1 be collocated in four-dimensional barycenter x1 of a representative
volume ω1 at time level tn+1, and unknowns Cσ be collocated in four-dimensional barycenter xσ of the

face σ ∈ ∂ω1 at time level tn+1 with four-dimensional outer normal
[
nT , nt

]T . We can decompose the
gradient in ω1 in a proximity of the face σ by the sum of its normal and transversal components

C1 ⊗

⎡

⎣∇

∂t

⎤

⎦ =
Cσ − C1

r1
⊗

⎡

⎣cn

nt

⎤

⎦

+

⎛

⎝I⊗ I− 1

r1
I⊗

⎡

⎣n

nt

⎤

⎦ (xσ − x1)
T

⎞

⎠C1 ⊗

⎡

⎣∇

∂t

⎤

⎦ , (21)

where r1 =
[
nT , nt

]
(xσ − x1) is the distance from the cell center x1 to the face σ. Substituting (21) in

(18) results in the following approximation of the elliptic part of the flux

FE|xσ

⎡

⎣n

nt

⎤

⎦ ≈ Λ1(C1 − Cf )− ΓT
1

⎛

⎝C1 ⊗

⎡

⎣∇

∂t

⎤

⎦

⎞

⎠ , (22)

where Λ1 is m×m matrix and Γ1 is m× 4m matrix

Λ1 =
1

r1
I⊗

⎡

⎣cn

nt

⎤

⎦

T

E1I⊗

⎡

⎣n

nt

⎤

⎦ ,

ΓT
1 = I⊗

⎡

⎣n

nt

⎤

⎦

T

E1 − Λ1 ⊗ (xσ − x1)
T . (23)

Note that matrix ΓT
1 requires only transversal part of the gradient.

For the hyperbolic part of flux FH , we use the second-order Taylor series around x1 for the inertia
term:

uuTn
∣
∣
xσ

≈ uuTn
∣
∣
x1

+
∂uuTn

∂uT

∣∣
∣∣
x1

⊗ (xσ − x1)
T

⎛

⎝u⊗

⎡

⎣∇

∂t

⎤

⎦

⎞

⎠

∣
∣∣
∣∣
∣
x1

=
1

2

(
uT
1 nI+ u1n

T
)
(2uσ − u1) = Q1 (2uσ − u1) , (24)
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where Q1 is approximated at time level tn via Oseen linearization, i.e. using u1 from the time level tn.
For the Navier–Stokes system (11) with the account of (24), the approximation of the hyperbolic part of
the flux takes the form

FH |xσ
≈

⎡

⎣2Q1 + Int n

nT

⎤

⎦

⎡

⎣uσ

pσ

⎤

⎦−

⎡

⎣Q1 0

0T

⎤

⎦

⎡

⎣u1

p1

⎤

⎦ , (25)

whereas for the Navier–Stokes–Cahn–Hilliard system (12) it becomes

FH |xσ
≈

⎡

⎢⎢
⎢
⎢⎢
⎢
⎣

2Q1 + Int n 0 0

nT

0T nTuσ + nt

0T

⎤

⎥⎥
⎥
⎥⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢⎢
⎢
⎣

uσ

pσ

ϕσ

μσ

⎤

⎥⎥
⎥
⎥⎥
⎥
⎦

−

⎡

⎢⎢
⎢
⎢⎢
⎢
⎣

Q1 0 0 0

0T

0T

0T

⎤

⎥⎥
⎥
⎥⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢⎢
⎢
⎣

u1

p1

ϕ1

μ1

⎤

⎥⎥
⎥
⎥⎥
⎥
⎦

. (26)

For briefness, we omit the expressions for the Navier–Stokes–Brinkman system with chemical kinetics
(13) and refer the interested reader to [32]. In general, the hyperbolic part of flux is written in the form

FH |xσ
≈ Ψσ

1Cσ −Ψω
1C1 (27)

with appropriate matrices Ψσ
1 , Ψω

1 . Note that in (25) and (26) Ψσ
1 depends on unknown uσ, a component

of unknown Cσ. At the boundary mesh face, one can derive Cσ from the system of boundary conditions.
For interior mesh face, although it is possible to decouple the dependence using second-order Taylor
series, by analogy with (24), here we use the fact that Cσ can be obtained independently, see below.
Combination of (22) and (27) gives

F|xσ
≈ (Λ1 −Ψω

1 )C1 − (Λ1 −Ψσ
1 )Cσ − ΓT

1

⎛

⎝C1 ⊗

⎡

⎣∇

∂t

⎤

⎦

⎞

⎠ . (28)

In (28), the instability of the method manifests itself when matrices Λ1 −Ψω
1 orΛ1 −Ψσ

1 have negative
eigenvalues. In order to dump both the convective instability and the saddle-point instability, we subtract
from (28) the following expression

0 = Σ1 (Cσ − C1)−Σ1 ⊗ (xσ − x1)
T C1 ⊗

⎡

⎣∇

∂t

⎤

⎦ , (29)

where Σ1 is an m×m stabilization matrix. Analytical expressions of such matrices are derived from the
eigenvalue decomposition and can be found in [27, 28, 30–33].

Combination of (28) with (29) gives

F|xσ
≈ Λω

1C1 − Λσ
1Cσ −

(
ΓT
1 − Σ1 ⊗ (xσ − x1)

T
)
C1 ⊗

⎡

⎣∇

∂t

⎤

⎦ , (30)

where Λω
1 = Λ1 +Σ1 −Ψω

1 , Λσ
1 = Λ1 +Σ1 −Ψσ

1 . For the internal face σ = ω1 ∩ ω2, we repeat the above
steps and construct another approximation for the flux at σ in cell ω2:

F|xσ
≈ Λσ

2Cσ − Λω
2C2 −

(
ΓT
2 − Σ2 ⊗ (x2 − xσ)

T
)
C2 ⊗

⎡

⎣∇

∂t

⎤

⎦ . (31)

Continuity of fluxes (30) and (31) at σ yields an expression for the unknown Cσ:

Cσ = (Λσ
1 + Λσ

2 )
−1 (Λω

1C1 + Λω
2C2)

− (Λσ
1 + Λσ

2 )
−1

(
ΓT
1 − Σ1 ⊗ (xσ − x1)

T
)
C1 ⊗

⎡

⎣∇

∂t

⎤

⎦
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+ (Λσ
1 + Λσ

2 )
−1

(
ΓT
2 − Σ2 ⊗ (x2 − xσ)

T
)
C2 ⊗

⎡

⎣∇

∂t

⎤

⎦ . (32)

Following this approach, we derive uσ from the continuity of the Navier–Stokes part of the flux.
Vector uσ is used to define the advective velocity nTuσ in Ψσ

1 for the Navier–Stokes–Cahn–Hilliard
system (26) and in Navier–Stokes–Brinkman system with chemical kinetics. Finally, we substitute Cσ

into either (30) or (31) to obtain the flux.

For the internal face σ = ω1 ∩ ω2, the flux reads as

F|xσ
≈ Λσ

1 (Λ
σ
1 + Λσ

2 )
−1Λσ

2 (C1 − C2)

− Λσ
1 (Λ

σ
1 + Λσ

2 )
−1

(
ΓT
1 − Σ1 ⊗ (xσ − x1)

T
)
C1 ⊗

⎡

⎣∇

∂t

⎤

⎦

− Λσ
2 (Λ

σ
1 + Λσ

2 )
−1

(
ΓT
2 − Σ2 ⊗ (x2 − xσ)

T
)
C2 ⊗

⎡

⎣∇

∂t

⎤

⎦ . (33)

The gradient C1 ⊗

⎡

⎣∇

∂t

⎤

⎦ at cell ω1 is calculated using the least-squares method with all degrees of

freedom from cells sharing at least a node with ω1 and from adjacent boundary faces σ ∈ ∂ω1 ∩ ∂Ω.

The right-hand side in (16) is approximated with the simplest quadrature
∫

ω(t)

RdV (t) ≈ |ω(t)| R|xω(t)
, (34)

where the four-dimensional volume is given by |ω(t)| = (tn+1 − tn)
|ωn+1|+|ωn|

2 and the cell center is

xω(t) =
[
xωn+1+xωn

2 , tn+1+tn
2

]
.

For stability purposes, the double-well potential term of the Navier–Stokes–Cahn–Hilliard equa-
tions (12) is discretized using the convex approximation [20]:

ϕ3 − ϕ

ε

∣∣
∣∣
xω(t)

≈ (ϕn+1)3 − ϕn

ε
, (35)

whereas the coagulation reaction system is discretized using a matrix-weighted combination of back-
ward and forward Euler methods [7]:

Rc|xω(t)
≈ WRc(tn+1) + (I−W )Rc(tn), (36)

where matrix W = θ(J) is obtained through spectral decomposition of the Jacobian J = ∂Rc/∂C
T .

Using θ(z) = 1
z −

1
exp(z)−1 , the method reproduces the first-order exponential integrator. Further details

can be found in [7, 32]. The Darcy term νb
Ku is approximated at the next time level tn+1.

To summarize, the temporal discretization is equivalent to the first-order backward Euler scheme in
time, where the Oseen linearization is used for the advective term, the spatial discretizations with cell-
centered collocation of unknowns result in block-structured linear systems with block sizes 4, 6, and 13
for equations (1), (3), and (4), respectively.
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(a) (b) (c)

0 10 20 30 40 50 60 70 80 90 100

Fig. 4. Velocity magnitude mm s−1 at the (a) beginning of systole, (b) beginning of diastole, (c) end of diastole.

(a) (b) (c)

Fig. 5. Pressure at the (a) beginning of systole, (b) beginning of diastole, (c) end of diastole.

5. SIMULATIONS

5.1. Simulations in the Right Ventricle

The first problem is concerned with the blood flow in the moving right ventricle governed by equations
(1) over the time period t ∈ [0, 4.5] s with time step Δt = 0.01 s. The interval between moving mesh
frames δt = 0.01 s coincides with the time step, a single cycle takes 0.9 s and the simulation is performed
for 5 cycles. At the initial state the velocity and pressure are zero. The velocity magnitude evolution
and the pressure evolution over the last cycle are demonstrated in the colored slice of the mesh in
Figs. 4 and 5, respectively. The evolution of minimal and maximal pressure and velocity magnitude
over all five cycles is given in Fig. 6. The boundary conditions in this problem are similar to those
in [32]: on the walls and closed valve of the ventricle the no-slip condition α⊥ = α‖ = 1, β⊥ = β‖ =
0, γ = 0 is imposed, whereas on the open valve the directional do-nothing condition α⊥ = α‖ =
1
2

(∣∣nTu+ nt

∣∣−
(
nTu+ nt

))
, β⊥ = β‖ = 1, γ = 0 is imposed. The initial mesh belongs to the box

[14, 45.7] × [−248.5,−217.6] × [1314.3, 1348].
The linear systems generated for this problem are named in the followup paper [17] by Hout.
Problem (3) in the ventricle domain corresponds to the scenario of the clot-in-transit [23]. We

set the initial conditions by ϕ = sgn
(
10−

√
(x− 30)2 + (y − 235)2 + (z − 1330)2

)
and zero chemical

potential μ. The simulation is performed over 3 cardiac cycles, t ∈ [0, 2.7], with time step Δt = 0.005.
The movement of the clot over one cycle is demonstrated in Figs. 7 and 8. The clot is slowly washed out
the domain until the entire clot disappears through the pulmonary valve. Impact of the clot presence is
shown in Fig. 9: due to the clot pressure spikes become stronger.

The linear systems generated for this problem are named in the followup paper [17] by Hoch.
The third scenario corresponds to the clot formation in the ventricle due to tissue inflammation

following acute myocardial infarction [26]. For the problem (4) posed in the ventricle, we set the
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Fig. 6. Evolution of minimal and maximal pressure (a) and velocity magnitude (b).
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Fig. 7. Front view of clot surface ϕ = 0 at: (a) beginning of systole, (b) beginning of diastole, (c) end of diastole.

(a) (b) (c)

Fig. 8. Side view of clot surface ϕ = 0 at: (a) beginning of systole, (b) beginning of diastole, (c) end of diastole.

boundary condition at the damaged endothelium according to the model description in Section 2.2.3,
where the damaged endothelium is defined (for the mesh close to the systole) at 13 boundary mesh faces
satisfying 10−

√
(x− 30)2 + (y − 235)2 + (z − 1330)2 > 0, see Fig. 10a. The simulation is performed

over 45 cardiac cycles, t ∈ [0, 40.5], with the time step Δt = 0.005. The clot grows very slowly, see
Fig. 10b, with the clotting factors being constantly washed out. The clotting factors φa that appear in
the calculation of the permeability (5) are demonstrated in Fig. 11. The isosurface corresponding to a
significant amount of tissue factor B and to the clotted zone at the final time of the simulation are shown
in Fig. 12. The clot tends to occupy the ventricle more severely every cardiac cycle, but it is washed out
at a high rate.

The linear systems generated for this problem are named in the followup paper [17] by Hinj.
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Fig. 9. Evolution of minimal and maximal pressure for a single cycle without clot (a) and with clot (b).
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Fig. 11. Mean concentration of activated platelets φa [103 mm−3] (left axis) against mean concentration of fibrin
polymer M [nM] (bottom axis).
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(a) (b) (c) (d)

Fig. 12. Isosurface corresponding to tissue factors B = 0.1 nM (a, b) and permeability coefficient νb/K = 0.4 s−1

(c, d). Pink and brown colors correspond to inner and outer (with respect to the clot) sides of the isosurface. Part of clot
boundary touching ventricle boundary is not shown.

(a)

(b)

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 13. Clot isosurfaceϕ = 0 (left) and velocity magnitude [mm s−1] (right) at the (a) beginning of time period t = 0 s,
(b) middle of time period t = 25 s, (c) end of time period t = 50 s. Pink and brown colors correspond to inner and outer
(with respect to the clot) sides of the isosurface. Part of clot boundary touching vessel boundary is not shown.

5.2. Simulations in the Artery Bifurcation

We solve numerically the Navier–Stokes–Cahn–Hilliard equations (3) in the artery bifurcation for
the time period t ∈ [0, 50] s with time steps Δt = {0.125, 0.0625, 0.03125} for the coarse, finer, and
finest tetrahedral meshes with {20 479, 152 326, 1 173 233} elements, respectively. The inflow pressure
p = 2000 mm2 s−2 is set at the boundary part ∂Ω|z=−4, and zero outflow pressure is set at the boundary
part ∂Ω|z=4, no-slip condition is set at the remaining part of the boundary. The clot is set by the initial

value of ϕ = sgn
(
0.5−

√
(x− 1.35)2 + y2 + (z − 2.5)2

)
. The evolution of the clot surface and the

maximal velocity on the finest mesh is displayed in Fig. 13. Initially the clot occludes the vessel. Over
time it is washed out but narrows the blood vessel lumen. The maximal velocity and kinetic energy
evolution throughout the simulation on the coarse, finer and finest meshes of the domain is demonstrated
in Fig. 14. Although the finest mesh resolution provides higher kinetic energy, the oscillatory dynamics
due to vessel wall pulsations is captured even on the coarse mesh.

The linear systems generated for this problem are named in the followup paper [17] by Bmc1, Bmc2,
and Bmc3 for the coarse, finer, and finest meshes, respectively.
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Fig. 14. Maximal velocity
[
mm s−1

]
(a) and density normalized kinetic energy 1

2

∫
Ω
|u|2dx

[
mm5 s−2

]
(b) evolution

for the three meshes.

(a)

(b)

(c)

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

Fig. 15. Permeability isosurface νb/K = 40 s−1 (left) and velocity magnitude [mm s−1] (right) (a) before complete
occlusion t = 35 s, (b) right before complete occlusion t = 50 s, (c) after complete occlusion t = 65 s. Pink and brown
colors correspond to inner and outer (with respect to the clot) sides of the isosurface. Part of clot boundary touching
vessel boundary is not shown.

For the Navier–Stokes–Brinkman problem with coagulation chemical kinetics (4) in the artery bi-
furcation, we consider the time period t ∈ [0, 150] s with the same time steps Δt =
{0.125, 0.0625, 0.03125} for the same coarse and finer tetrahedral meshes. The domain does not move
in this case. The case with the finest mesh ended earlier at t = 94 s due to time limit. The damaged
endothelium is defined at the part of the boundary ∂Ω satisfying

√
(x− 1.35)2 + y2 + (z − 2)2 < 0.5.

The evolution of the clot surface and the maximal velocity on the finer mesh is displayed in Fig. 15.
Over time the clot occludes the entire blood vessel. The maximal velocity, kinetic energy, and volumetric
occlusion evolution throughout the simulation on the coarse and finer meshes are demonstrated in
Fig. 16. The results suggest that the solution on the coarse mesh is inadequate and the problem requires
finer meshes.
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Fig. 16. Maximal velocity
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Fig. 17. Clot isosurfaceϕ = 0 (left) and velocity magnitude (right) at the (a) beginning of time period t = 0 s, (b) middle
of time period t = 50 s, (c) end of time period t = 100 s. Pink and brown colors correspond to outer and inner (with
respect to the clot) sides of the isosurface. Part of clot boundary touching vessels boundary is not shown.

The linear systems generated for this problem are named in the followup paper [17] by Bfs1, Bfs2,
and Bfs3 for the coarse, finer, and finest meshes, respectively.

5.3. Simulations in the Simplified Capillary Network

We solve numerically the Navier–Stokes–Cahn–Hilliard equations (3) in the simplified capil-
lary network for the time period t ∈ [0, 100] s with time step Δt = 0.025. The inflow pressure p =
2000 mm2 s−2 is set at the boundary part ∂Ω|z=−8, and zero outflow pressure is set at ∂Ω|z=8, the
no-slip condition is set at the rest of the domain boundary. The clot is set by the initial value of

ϕ = sgn
(
0.5−

√
(x− 4)2 + y2 + (z − 7)2

)
. The isosurface ϕ = 0 for the clot and the magnitude of
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(a)
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(c)
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Fig. 18. Permeability isosurface νb/K = 40 s−1 (left) and velocity magnitude [mm s−1] (right) at the (a) beginning
of time period t = 0 s, (b) middle of time period t = 22.5 s, (c) end of time period t = 45 s. Pink and brown colors
correspond to outer and inner (with respect to the clot) sides of the isosurface. Part of clot boundary touching vessels
boundary is not shown.

3.0

2.5

2.0

1.5

1.0

0.5

0

80
70
60
50
40
30
20
10
0

5 15 25 35 45(a) (b) 0.
01

25
2.

12
5

4.
23

75
6.

35
8.

46
25

10
.5

75
12

.6
87

5
14

.8
16

.9
12

5
19

.0
25

21
.1

37
5

23
.2

5
25

.3
62

5
27

.4
75

29
.5

87
5

31
.7

33
.8

12
5

35
.9

25
38

.0
37

5
40

.1
5

42
.1

87
5

Fig. 19. Velocity magnitude (a) and volumetric occlusion in % (b).

the blood flow velocity throughout the simulation are demonstrated in Fig. 17. The clot is smeared along
the walls of some vessels and eventually occludes the bottom vessel, resulting in rearrangement of the
blood flow.

The linear systems generated for this problem are named in the followup paper [17] by Bcnm.
We solve the Navier–Stokes–Brinkman problem with coagulation chemical kinetics (4) in the

simplified capillary network domain for the time period t ∈ [0, 45] s with time step Δt = 0.0125. The
domain does not move in this case. The damaged endothelium is defined at the part of the boundary ∂Ω
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satisfying
√

(x− 4)2 + (y − 0.6)2 + (z − 7)2 < 0.5. The evolution of the clot growth is demonstrated
in Fig. 18. The reduction of maximal velocity and the growth of the occlusion rate in Fig. 19 indicate
that the complete embolization occurs at t = 25 s.

The linear systems generated for this problem are named in the followup paper [17] by Bcns.

6. CONCLUSIONS

The present paper is the first paper in the series devoted to supercomputing of multiphysical problems
of blood flow and coagulation. We have considered three mathematical models in moving and static
domains, discretization of the coupled transient partial differential equations and simulation results
in three domains from clinical applications: the right ventricle, the artery bifurcation, the simplified
capillary network. The model address blood flows, drifting clots in blood streams, growing clots in blood
streams. The models are appealing for clinicians as they may be used for risk assessment of medical
procedures. For the discretization of the differential problems, we have applied the first-order accurate
in-time moving-mesh collocated finite-volume method. The results of simulations indicate that the
considered multiphysics problems may be solved with acceptable accuracy on parallel clusters. All the
problems are solved using 50 nodes or 700 cores of the “Lomonosov-2” supercomputer [40].

The second paper [17] of the series will address the parallel solution issues of the presented
simulations: convergence of iterative solvers for systems of linear algebraic equations that appear after
discretizations of the above multiphysical equations, computational work for each step of the simulation,
parallel efficiency of the simulations.

The future work will be directed towards improving the time accuracy of the discretization method,
as well as increasing the physics complexity: the nonlinear blood rheology and interaction with the
poroelastic boundaries of the blood vessels.
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