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Abstract We present applications of the nonlinear monotone finite volume method
to radionuclide transport and multiphase flow in geological media models. The
scheme is applicable for full anisotropic discontinuous permeability or diffusion
tensors and arbitrary conformal polyhedral cells. We consider two versions of the
nonlinear scheme: two-point flux approximation preserving positivity of the solu-
tion and compact multi-point flux approximation that provides discrete maximum
principle. We compare the new nonlinear schemes with the conventional linear two-
point and multi-point (O-scheme) flux approximations. Both new nonlinear schemes
have compact stencils and a number of important advantages over the traditional lin-
ear discretizations. Two industrial applications are discussed briefly: radionuclides
transport modeling within the radioactive waste safety assessment and multiphase
flow modeling of oil recovery process.

1 Introduction
A simple and accurate conservative method applicable to general conformal meshes

and full anisotropic tensor permeability coefficients, is much-in-demand among
engineers. The maximum principle is one of the important properties of solutions of
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partial differential equations (PDEs) such as the diffusion or heat equation. Its discrete
counterpart is a very desirable property to have in a numerical scheme. Unfortunately,
the schemes satisfying the discrete maximum principle (DMP) impose severe limi-
tations on mesh regularity [6] and problem coefficients. Violation of the DMP leads
to various numerical artifacts, such as heat flow from a cold material to a hot one,
that can be amplified by physics non-linearity.

The classical two-point finite volume (FV) scheme for diffusion problems defines
a two-point flux approximation (TPFA) across a mesh face as a difference of two
concentrations at neighboring cells times a transmissibility coefficient. It results in
a system of algebraic equation with an M-matrix with diagonal dominance in rows,
which implies immediately the DMP [15]. However, accuracy of this scheme depends
on mesh geometry and mutual orientation of mesh faces and principle directions of the
diffusion tensor. More precisely, the co-normal vector for a face must be collinear to
the vector connecting neighboring collocation points, which is clearly the impossible
requirement for arbitrary tensors and/or arbitrary polyhedral cells. The multi-point
flux approximation (MPFA) scheme solves accuracy problem by using more than
two points in the flux stencil [1] and a matrix of transmissibility coefficients. The
MPFA scheme provides a second-order accurate approximation of concentrations
but is only conditionally stable and conditionally monotone [14].

A new research direction pioneered by Le Potier [7] uses a two-point flux sten-
cil with two coefficients that depend on the concentrations in neighboring cells.
Nonlinear FV schemes with TPFA proposed in [3, 5, 7, 9, 10, 13, 18] guarantee
solution positivity on general meshes and for general tensor coefficients.

For general meshes and coefficients the DMP requires a nonlinear multi-point
flux approximation. For diffusion problems, such schemes were proposed in [8, 19]
using auxiliary unknowns at mesh vertices. Later an interpolation-free multi-point
nonlinear approximation of diffusive fluxes was proposed for two-dimensional [11]
and three-dimensional cases [2, 4]. The resulting scheme has the minimal stencil and
reduces to the classical two-point FV scheme on Voronoi or rectangular meshes and
for scalar (and, in a few cases, diagonal tensor) coefficients.

In this article, we present two our FV schemes for the steady-state diffusion
equation with anisotropic coefficients: both schemes work on general polyhedral
meshes and have a compact stencil, the first preserves non-negativity of the discrete
solution and the second satisfies the DMP. We also briefly consider two applications of
the nonlinear schemes to subsurface flows: simulation of radionuclides geomigration
from a nuclear waste disposal and multiphase flow modeling of oil recovery process.

The paper outline is as follows. In Sect. 2 we introduce our nonlinear FV schemes
for the steady-state diffusion equation. In Sect. 3 we present a new parallel toolkit
and two industrial applications of the presented FV schemes.
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2 Nonlinear Finite Volume Methods

Let £2 be a three-dimensional polyhedral domain with boundary I". The mixed form
of the diffusion equation for unknown concentration ¢ with the Dirichlet boundary
condition is as follows:

q=—-KV¢, divgq=f in Q, 1)
c=g onl.
Here K(x) is a symmetric positive definite discontinuous (possibly anisotropic)
diffusion tensor, f(x) is a source term, and g(x) is a boundary data.

A discretization scheme can have two additional properties: discrete maximum
(or minimum) principle and non-negativity of the discrete solution. The minimum
principle states that for f > 0 the concentration c(x) satisfies:

min c(x) > min{0, min g(x)}.
xeQ xel’

The maximum principle is formulated similarly. In the following we shall refer to
both principles as the maximum principle. Non-negativity is a weaker property which
stems from the minimum principle: for non-negative f and g one has non-negative
c(x). A numerical scheme can provide non-negativity of ¢ but violate the discrete
maximum principle (DMP) and thus can produce oscillations.

The cell-centered FV scheme uses one degree of freedom, Cr, per cell T collo-
cated at cell barycenter x7. Integrating the mass balance Eq.(1) over T and using
the divergence theorem, we obtain:

1
Z UT,qu-nfz/dex, qum/fqu, 2)

feaT

where q - ny is the total flux across face f, and o7 s is either 1 or —1 depending
on the mutual orientation of normal vector to face ny and the outer normal to cell
boundary nr.

Both nonlinear flux approximation schemes exploit the same idea of vector expan-
sion. First we need to find a triplet of three vectors t;, connecting X7, with other
collocation points such that the co-normal vector £y = K - ny can be expanded

Lr =o1q tig + Bty + Vietic, @1 >0, B1p =0, y1c >0, 3)

where a, b, ¢ are indexes of neighboring cells.

Since the flux normal component is the directional derivative along the co-normal
vector £ 7, it can be represented as the sum of three directional derivatives along ty
which are approximated by central differences:

@ ) = e (Co—C)+ By (Co—C +71c (Cc—C). (B
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Fig.1 Two representations of
co-normal vector £] = —{, =
K- n, (2D example)

For the opposite co-normal vector —¢, we have similar representation with another
triplet and central differences, see Fig. 1 for the 2D example:

(—qs -0/ = an (Cx — C2) + Bo (C1 — C2) + yam (Cu — C2). (5)

Our flux discretization is a linear combination of approximations (4) and (5) with
coefficients 4 and p—. For the sake of approximation the linear combination should
be convex:

MUt +pu— =1
The second equation for w4 is dictated by the goal of the method:
e To obtain the two-point discretization, we get rid of unwanted concentrations in

the flux stencil:

mi(arg Ca + B Cp + yie Co) — —(a2k Cr + B2 Cr + vom Cw) = 0.

e To provide the DMP, we balance the contributions of one-sided fluxes:

1 2
,U«+((If'nf);l) =u—(—qr 'nf);l),

so that either (4) or (5) can be used in assembling the discrete fluxes in (2). This
helps us to preserve compactness of the stencil for both cells 77 and 7> even with
the multi-point fluxes (4), (5).

FV method with the nonlinear TPFA provides non-negativity of the discrete solu-
tion [3, 9], whereas FV method with the nonlinear MPFA provides the DMP [2, 11].
In the case of K-orthogonal mesh vectors Kny and t;; are collinear, both nonlinear
flux approximations reduce by construction to the conventional linear TPFA which
provides at least first order accuracy. In general case, the linear TPFA may not pro-
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Fig. 2 Statement of the test G,
case: two Dirichlet boundary
conditions and full anisotropic
diffusion tensor

300

15

vide approximation at all, whereas the linear MPFA may not provide the DMP or
positivity. This statement is illustrated by an extended test case from [12], we consider
all four schemes and two cases of Dirichlet boundary conditions: Go = 0, G| = 2
and Go = 10, G; = 12. Figure 2 presents the set up of the problem and Table 1
shows monotonicity and DMP violation by the schemes.

3 Applications

Means for the development of parallel numerical models of complex phenomena on
general polyhedral meshes are provided by data structures and algorithms from the
open source package Integrated Numerical Modelling Object-oriented Supercom-
puting Technologies (INMOST) [17]. FV discretization assumes that the processor
possessing a mesh cell has access to data in neighboring cells. If a cell adjoins to the
boundary of the local submesh associated with a processor, some of its neighbors
belong to other processors. For each local submesh we generate additional layers of
ghost cells composed of these neighbors. The ghost cells contain exact copy of data
of the associated normal cells. The main difference between the ghost cell and the
normal cell is that the ghost cell data should be actualized after any update of the
normal cell data. Actualization involves inter-processor communications that move
the data from normal cells to their ghost copies. Mesh data structure implemented in
INMOST allows simple design of a numerical scheme on each mesh cell and is very
convenient even for single processor implementations. Both applications presented
in this paper are built using INMOST toolkit.

First we consider application of the nonlinear FV schemes for the black-oil model
[12, 16]. The black oil model describes the three-phase flow of water, oil and gas com-
ponents in the underground reservoir. If the reservoir pressure drops below certain
threshold, then oil is split into a liquid phase and gaseous phase at thermodynamic
equilibrium. In this case the water phase does not exchange mass with the other
phases, while the liquid and the gaseous phases exchange mass. The model consists
of mass conservation equations for each of the components and Darcy’s velocity
equations for each phase:
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Table1 Minimum and maximum concentration values for the problem with the Dirichlet boundary
conditions. Orthogonal grid with & = 1/40

Scheme Go=0, G =2 Go=10, G| =12
Cm in Cmax Cm in Cmax
lin. TPFA 1.3 x 1073 1.889 10.00 11.889
nonl. TPFA 1.6 x 10710 1.948 9.972 11.940
MPFA —5.5x 1072 2.087 9.945 12.087
nonl. MPFA 1.2 x107? 1.993 10.00 11.993
kra
Uy = =K (Vpa = pu(p)gV2), @ =w.0., ©)

o

where K is the absolute permeability tensor, z is the depth, g is the gravity term, py,
S, are unknown pressure and saturation, i, and k., are the formation viscosity and
relative phase permeability, p, are the densities at current conditions for the phase
a=w,o0,g.

We use the fully implicit scheme in time and Newton method to solve the nonlinear
system at each time step. Construction of the Jacobian matrix is based on partial
derivatives with respect to primary variables (oil pressure p, water and gas saturations
Sy, Sg) of discrete Darcy fluxes. The latter are obtained either by the conventional
linear TPFA or MPFA or by the nonlinear TPFA or MPFA presented above (the
diffusion tensor should be replaced with absolute permeability tensor).

Dependence of the method coefficients on primary variables leads to the extension
of the Jacobian stencil [12, 16]. For instance, in case of the nonlinear TPFA one has

— (KVp)} -nys = D} (p)p+ — D5 (p)p- (7)

Coefficients D? must be differentiated as dependent on primary variables in neigh-

boring cells: AD‘,j,E = . Zx Lii Apr;, where X+« = X, U X1, X7, is the set of
i€ 2Ty

cells forming the stencil for cell Ty, Lt ; are the coefficients of differentiation. Wider

stencil X7+ for Jacobian results in more dense Jacobian matrix and more expensive

Jacobian-vector multiplication and Jacobian preconditioning compared to the con-

ventional linear TPFA. On the other hand, the linear TPFA is often inconsistent.

An example for three-phase water-flooding with several wells in heterogeneous
media using nonlinear TPFA scheme is shown in Fig. 3.

The second application of the nonlinear FV schemes is related to validation of
safe subsurface disposal of radioactive wastes (RW). In this application two main
tasks must be solved, the groundwater (GW) flow problem and the transport in porous
media problem, which may be strongly coupled in some cases. The novel FV schemes
are implemented within the code Geomigration of Radionuclides (GeRa). This code
is developed to model the major significant processes for radwaste disposal safety:
saturated and unsaturated flow, density-driven flow, reactive transport with decay,
heat transport. The basis for all these numerical models are the discretizations of the
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Fig. 3 Example of three-
phase flow in heterogeneous
media using nonlinear TPFA
scheme. Left computational
grid and geological layers.
Right water saturation field

Fig. 4 Example problem:
groundwater flow in a realistic
heterogeneous media. Left
computational grid and geo-
logical layers. Right pressure
head and flow streamlines

diffusion and advection operators. The computational meshes are assumed arbitrary
polyhedral. The code involves the triangular prismatic and the octree-hexahedral
mesh generators. In the first generator the resulting meshes may contain triangular
prisms, tetrahedra and pyramids. The octree hexahedral generator cuts and adapts
the cells to the domain boundary and interfaces between geological layers leading
to complicated polyhedral cells.

The GW flow problem may be solved by FV scheme with either the linear TPFA
(may be inconsistent) and MPFA (may be non-monotone) or the nonlinear TPFA and
MPFA (both consistent and monotone). For the temporal discretization the operator-
splitting scheme or the implicit scheme may be used. The first one treats the advection
operator explicitly and the diffusion operator implicitly. Advection may be modeled
using the conventional first-order accurate FV scheme with piecewise-constant solu-
tion or the second-order accurate TVD-scheme with linear reconstruction of discrete
solution on the cells. For the diffusion operator any of the four flux approximation
schemes (linear/nonlinear TPFA/MPFA) may be applied. The implicit scheme solves
the coupled advection-diffusion problem using the nonlinear FV method for diffusion
and local linear solution reconstruction for advection.

Numerical experiments with GeRa show robustness of the nonlinear schemes:
the resulting matrices are reasonably well conditioned and the solutions remain non-
negative or satisfy the DMP. In case of large complicated grids and heterogeneous
tensor coefficients the schemes provide the best solution, as they allow to solve
efficiently the generated grid equations and they are consistent.

Figure 4 (left) presents a filtration model with three geological layers, single well
and outflow boundary with a prescribed water head. Water head solution and flow
streamlines obtained using the FV scheme with the nonlinear TPFA is shown on
Fig. 4 (right).
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