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Abstract— 1D model of global blood circulation describes
hemodynamics of healthy vascular system very well. Real appli-
cations demand considerations of vascular pathologies, implants
and influence of external effects. In this paper we discuss how to
do it on the basis of the model. The first approach is to update
the state equation of the model. This equation describes elastic
properties of the vessel wall. The second approach is to use a 3D
model of the blood flow in the region of interest. The 3D model
should be coupled with the 1D model of global blood circulation.
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I. INTRODUCTION

In many medical applications one needs to know the in-
fluence of medical treatment, pathologies or external effects
on the blood flow. The 1D model of global blood circula-
tion is an effective tool for it. This model allows us to calcu-
late hemodynamics in the whole cardiovascular system. The
model base is quite simple and verified and it can be easily
elaborated. In this paper we summarize our experience in car-
diovascular modeling and discuss developed approaches for
considering pathologies, implants or effects on the flow by
the model of global blood circulation. Two groups of tech-
niques enable us to do it. The first group is based on ma-
nipulations with the state equation. Another group deals with
multiscale modelling.

II. MATERIALS AND METHODS

A. 1D Model of Global Blood Circulation

The model of global blood circulation is based on the set
of differential equations [1, 2, 3]. It consists of mass and mo-
mentum conservation laws and the state equation:

∂S
∂ t

+
∂ (Sū)

∂x
= 0, (1)

∂ ū
∂ t

+
∂ (ū2/2+ p̄/ρ)

∂x
= ψ(t,x,S, ū), (2)

p̄− pext = ρc2
0 f (S), (3)

where ū, p̄, S are unknown velocity, averaged in vessel cross
section, pressure and the area of vessel cross section; ρ is
density of blood; c0 is the rate of small disturbance propaga-
tion in the vessel wall; pext is an external pressure of the ves-
sel. The function ψ represents influence of external forces,
for example, frictional force.

System of equations (1)– (3) is set in every vessel of the
vascular network. Another system of equations is demanded
in every node of the network to coordinate solutions from
connecting vessels together. It consists of mass conservation
law and Poiseuilleś pressure drop condition, combined with
the appropriate compatibility condition for (1)– (2) [3, 4, 5].

Such 1D model of global blood circulation describes
hemodynamics in the healthy vessel network very well. Most
problems that are interesting for physicians deal with exter-
nal effects, vascular pathologies or implants. Below we dis-
cuss how to take into account influences of these factors by
the model of global blood circulation.

B. The State Equation

The state equation (3) describes elastic properties of the
vessel wall. The empirical function f (S) in (3) is known for
healthy vessels [6]:

f (S) =

{
exp(SŜ−1 − 1)− 1, for S > Ŝ
ln(SŜ−1), for S ≤ Ŝ

, (4)

where Ŝ is the cross section area of a vessel at rest. It is pos-
sible to take into account some effects on the cardiovascular
system by the model of global blood circulation changing the
state equation or its parameters.

We can change pext in (3) to include sceletal-muscle pump
in the 1D model of global blood circulation [4]. In this case
pext is considered to be a periodic function. The vein valves
preventing the backward blood flow are important in this
problem. Modified friction force can represent their function.

The effects of the enhanced external counterpulsation
methods could be considered in the same way. Three pres-
sure cuffs sequentially apply pressure to calves, things and
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lower abdomen. Cuff pressure could be simulated by pext in
the state equation (3).

Depending on the problem the state equation can be re-
covered. A more common technique demanding the model of
the elastic vessel wall can be applied. This technique will be
demonstrated in case of vascular pathology or implant.

Elastic properties of the vessel wall change if there is any
pathology or implant in the vessel. Often the shape of the
vessel changes too. In this case we need to calculate a new
state equation. We suggest using the fiber model of elastic
vessel wall for this purposes. The materials of the wall could
be assumed both linear and nonlinear. The wall is represented
by the set of fibers. This model allows us to calculate forces
in the wall or any reaction of the wall on deformation. The
local force density is given by the expression [5]

�f =
∂
∂ s

(T�τ),�τ =
∂�X
∂ s

∣∣∣∣∣
∂�X
∂ s

∣∣∣∣∣
−1

. (5)

�X(s, t) represents the position of the fiber points in space,
where Lagrange coordinate s is the arc length of the fiber in
the unstressed state; �τ is the unit tangent vector; T (s, t) is a
fiber tension. Expression for tension T could vary depending
on the fiber properties and shape. In the case of Hookean wall
material we use fiber tension in the form

T = E∗
(∣∣∣∣∂X

∂ s

∣∣∣∣− 1

)
, (6)

where E∗ is the elastic modulus of the fiber. Balancing forces
on the wall we solve the following equation of static equilib-
rium:

p = (�f ,�n)h, (7)

�n, h are surface normal and wall thickness; p is transmural
pressure. If the pressure p is constant everywhere in the ves-
sel we calculate the state equation for the healthy vessel solv-
ing the equation (7). In the vein with cava filter the additional
pressure of implant appears in filter fixation points. This addi-
tional pressure should be taken into account by the left-hand
side of the expression (7).

We elaborated the fiber model of the elastic vessel wall
to calculate the state equation for the atherosclerotic arterial
wall [5]. We consider the atherosclerotic vessel as a three-
layer circular cylindrical shell inflated by internal pressure.
The wall materials are considered to be linear-elastic,
isotropic. The three layers are the fibrous cap, the lipid pool
and the wall. The fibrous cap and the arterial wall are mod-
elled as a set of fibers as it was described earlier. The lipid
pool is represented by the set of radial springs. In order to
estimate spring displacement, we use the solution of the de-
formation problem for the incompressible isotropic cylinder

(a ≤ r ≤ b) under internal pressure pa and external pressure
pb. In this case the relation between the radial displacement
u(r) of cylinder points and given pressures is expressed as

pa − pb =
2(b2 − a2)Ecr

3a2b2 u(r), (8)

where Ec is Young modulus of the cylinder. We balance
forces of the atherosclerotic wall solving the system of equa-
tions (7) for fibrous cap and arterial wall and (8) for lipid
pool. Such technic allows us to calculate the state equation
for the vessels with different geometries of atherosclerotic
plaques.

We presented several ways how to modify the state equa-
tion depending on the special problem. The new state equa-
tion is prescribed for targeted vessel/vessels in the model of
global blood circulation.

C. 3D-1D Model of Blood Flow

Multiscale modeling also helps us to take into account ad-
ditional physical effects by the model of global blood circula-
tion. 3D-1D models are rather widespread nowadays. 1D part
of our 3D-1D model of blood flow is described in subsec-
tion A.. The 3D part is based on the Navier-Stokes equations.
Vessel walls in 3D domain could be assumed rigid or elastic.
The problem of fluid structure interaction (FSI) appears in the
second case.

3D domain can be different in applications. 3D-1D models
can account whirls that appear for example in bifurcations, or
atherosclerotic plaques or aneurisms if they are represented
in 3D domains.

The 1D part in such 3D-1D models can be used for the
following purposes. The first reason is monitoring of blood
flow at some distance from 3D domain. The second reason is
to pose correct boundary conditions for problems where the
data on the 3D boundary is unknown.

One of the most important features of 3D-1D models is
coupling boundary conditions between domains of different
dimensions. Fluid flux and normal stress continuation be-
tween 3D and 1D parts of the model is rather common choice.
This choice does not guarantee correct energy balance for
the coupled model. This point could be crucial for problems
where the energy analysis takes place. For example energy
losses are often investigated when optimization of graft an-
gles or geometry takes place.

In case of rigid vessel wall in 3D domain we suggest using
the following boundary coupling condition. This condition
demands the continuity of the linear combination of the fluid
flux and the energy flux between 3D boundary Γout and 1D
boundary x = d [7]:
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p̄
∫

Γout

u ·nds+
ρ
2

∫
Γout

|u|2(u ·n)ds = (p̄Sū+
ρ
2

Sū3)|x=d , (9)

where u is the velocity of blood in 3D; n - outward normal
vector. The condition (9) should be combined with the con-
tinuity of normal stress. The correct energy balance is valid
for the coupled model with such boundary conditions. The
unsteady problem can be easily decoupled with splitting
methods into the separate 1D and 3D problems with usual
inflow-outflow boundary conditions on every time step. The
inequalities u ·n < 0 or u ·n > 0 are not necessarily pointwise
satisfied on Γin or Γout, respectively (n is the outward normal
vector). This is very important for modeling of blood flow
in veins, where the values of x-component of velocity can be
negative.

D. Patient-Specific Simulations

Besides external effects, pathologies or implants, patient-
specific simulations are demanded in the model of global
blood circulation. One can extract 3D or 1D geometry from
MRI or CT data. We used the following stages to reconstruct
the 1D vascular graph:

1. 3D volume segmentation of vascular structure;
2. Meshing;
3. Centerlines extraction;
4. Centerlines merging for graph reconstruction.

Numerical simulations for real patient allow us to predict re-
sults of surgical operations [8].

III. RESULTS

Blood flow through the network of arteries and veins dur-
ing skeletal-muscle pump work was simulated. The network
of the vessels was fitted to represent systemic circulation of
long-distance runner with 175 cm body’s height [9]. Aver-
age blood flow through a specific leg artery was studied. The
artery was chosen arbitrarily since the difference in results
for two leg arteries is only quantitative. Results show that
specific stride frequency exists that maximizes blood flow
through the lower extremities (fig. 1). This stride frequency
is compared to the running regime of a world class athlete
(London Olympics, 5000m winner).

Blood flow in the vessel network with atherosclerotic
plaque was modeled [5]. We assumed several types of plaque
geometries (fig. 2). The state equation for every atheroscle-
rotic artery was calculated. An example of the state equation
for a plaque of Type 2 is presented in the figure 3. The lu-
men of the vessel is narrowing in the middle of the vessel and

Fig. 1 Blood flow through the leg artery for a few stride frequencies.
Vertical line is a stride frequency of an actual athlete during last third of a

5000m distance.

Fig. 2 Three types of plaque geometry with different inner surfaces:
uniformly distributed over the vessel wall (Type 1), axial symmetric (Type

2) and asymmetric (Type 3) narrowing at the center of the vessel.

the curve of the state equation is unique in every point of the
1D vessel (the state equation depends on the x-coordinate).
Modified state equations were used in the model of global

Fig. 3 The state equation for the artery with atherosclerotic plaque of Type
2. The index of each curve corresponds to the distance (in cm) to the

minimal cross section. The minimal lumen is 30%.

blood circulation. This experiment allowed us to compare
the blood flow in the vascular network with one or several
atherosclerotic plaques with different geometries.

Blood flow in the vena cava with implanted cava filter was
simulated by the 3D-1D model. The 3D domain represented
the part of vena with the implant (fig. 4). The rest of the ves-
sel was assumed 1D. This experiment allowed us to calculate
such important statistics as the drag force acting on inclusions
and the pressure drop.

The results of these numerical experiments conform med-
ical data.

IV. DISCUSSION

We address blood flow modeling in a vascular
network with accounted pathologies, implants or exter-
nal effects on the cardiovascular system. New techniques
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Fig. 4 The surface mesh for part of the vena cava with implanted cava filter.

make patient-specific simulations more realistic. However, it
is still a big problem to do real time calculations. Elaboration
of the model of global blood circulation leads to increase of
the computing time. Small steps for space discretization are
demanded in the vessels with x-coordinate dependent mod-
ified state equations. The solution of the 3D Navier-Stokes
equations in 3D-1D models is also time-consuming.

Splitting algorithms are desirable for 3D-1D models.
These algorithms need suitable boundary coupling condi-
tions. In this work combining downstream coupling condi-
tion (9) with continuity of normal stress allows us to separate
the 3D-1D problem for 3D and 1D problems.

Another issue is data mining for the models: it is impos-
sible to obtain some parameters of the vascular network in
vivo, e.g. some properties of the vessel wall.

V. CONCLUSIONS

In this paper we discussed how to take into account vascu-
lar pathologies or implants or other effects on hemodynamics
by the model of global blood circulation. The first approach is
based on update of the state equation. We can modify it by the
fiber or fiber-spring model of the elastic vessel wall. Second
approach uses 3D-1D models of blood flow. The domain of
interest is considered to be 3D and is coupled with 1D model
of global blood circulation in order to study both local flow
and global hemodynamics. All these methods were verified:
the results of numerical experiments correspond to real data.
All described models can be adapted for the real patients.
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