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The paper develops a hybrid method for solving a system of advection–diffusion equations 
in a bulk domain coupled to advection–diffusion equations on an embedded surface. 
A monotone nonlinear finite volume method for equations posed in the bulk is combined 
with a trace finite element method for equations posed on the surface. In our approach, 
the surface is not fitted by the mesh and is allowed to cut through the background mesh 
in an arbitrary way. Moreover, a triangulation of the surface into regular shaped elements 
is not required. The background mesh is an octree grid with cubic cells. As an example 
of an application, we consider the modeling of contaminant transport in fractured porous 
media. One standard model leads to a coupled system of advection–diffusion equations in 
a bulk (matrix) and along a surface (fracture). A series of numerical experiments with both 
steady and unsteady problems and different embedded geometries illustrate the numerical 
properties of the hybrid approach. The method demonstrates great flexibility in handling 
curvilinear or branching lower dimensional embedded structures.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Systems of coupled bulk–surface partial differential equations arise in many engineering and natural science applications. 
Examples include multiphase fluid dynamics with soluble or insoluble surfactants [25], dynamics of biomembranes [7], 
crystal growth [29], signaling in biological networks [46], and transport of solute in fractured porous media [1]. In these 
and other applications, partial differential equations defined in a volume domain are coupled to another PDEs posed on a 
surface. The surface may be embedded in the bulk or belong to a boundary of the volume domain.

Recently, there has been a growing interest in developing methods for the numerical treatment of bulk–surface coupled 
PDEs. Different approaches can be distinguished depending on how the surface is recovered and equations are treated. If a 
tessellation of the volume into tetrahedra is available that fits the surface, then it is natural to introduce finite element 
spaces in the volume and on the induced triangulation of the surface. The resulting fitted bulk–surface finite element 
method was studied for the stationary bulk–surface advection–diffusion equations [18], for non-linear reaction–diffusion 
systems modeling biological pattern formation [36,37], for the equations of the two-phase flow with surfactants [5,4], Darcy 
and transport–diffusion equations in fractured porous media [1].
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Unfitted finite element methods allow the surface to cut through the background tetrahedral mesh. In the class of finite 
element methods also known as cutFEM, Nitsche-XFEM or TraceFEM, standard background finite element spaces are em-
ployed, while the integration is performed over cut domains and over the embedded surface [8,44]. Additional stabilization 
terms are often added to ensure the robustness of the method with respect to small cut elements. The advantages of the un-
fitted approach are the efficiency in handling implicitly defined surfaces, complex geometries, and the flexibility in dealing 
with evolving domains. In the context of bulk–surface coupled problems, cut finite element methods were recently applied 
to treat stationary bulk–surface advection–diffusion equations [24], coupled bulk–surface problems on time-dependent do-
mains [26], coupled elasticity problems [9]. The hybrid method developed in this paper belongs to the general class of 
unfitted methods and resembles the TraceFEM in how the surface PDE is treated.

The methods discussed above treat surfaces and interfaces sharply, i.e. as lower-dimensional manifolds. In the present 
paper we also consider sharp interfaces. For the application of phase-field or other diffuse-interface approaches for coupled 
bulk–surface PDEs see, for example, [10,33,51].

If the finite element method is a discretization of choice for the bulk problem, then it is natural to consider a finite 
element method for surface PDE as well. However, depending on application, desired conservation properties, available soft-
ware or personal experience, other discretizations such as finite volume or finite difference methods can be preferred for 
the PDE posed in the volume. One possibility to reuse the same mesh for the surface PDE is to consider a diffuse-interface 
approach. Alternatively, instead of smearing the interface, one may extend the PDE off the surface to a narrow band con-
taining the surface in such a way that the restriction of the extended PDE solution back to the (sharp) surface solves the 
original equation on this surface. Further a conventional discretization is built for the resulting volume PDE in the narrow 
band [6,43]. The methods based on such extensions, however, increase the number of the active degrees of freedom for the 
discrete surface problem, may lead to degenerated PDE, need numerical boundary conditions and require smooth surfaces 
with no geometrical singularities.

The present paper develops a numerical method based on the sharp-interface representation, which uses a finite volume 
method to discretize the bulk PDE. Our goal is (i) to allow the surface to overlap with the background mesh in an arbitrary 
way, (ii) to avoid building regular surface triangulation, (iii) to avoid any extension of the surface PDE to the bulk domain. 
To accomplish these goals, we combine the monotone (i.e. satisfying the discrete maximum principle) finite volume method 
on general meshes [35,11] with the trace finite element method on octree meshes from [12]. In the octree TraceFEM one 
considers the bulk finite element space of piecewise trilinear globally continuous functions and further uses the restric-
tions (traces) of these functions to the surface. These traces are further used in a variational formulation of the surface 
PDE. Effectively, this results in the integration of the standard polynomial functions over the (reconstructed) surface. Only 
degrees of freedom from the cubic cells cut by the surface are active for the surface problem. Surface parametrization is not 
required, no surface mesh is built, no PDE extension off the surface is needed. We shall see that the resulting hybrid FV–FE 
method is very robust with respect to the position of surfaces against the background mesh and is well suited for handling 
non-smooth surfaces and surfaces given implicitly.

One application of interest is the numerical simulation of the contaminant transport and diffusion in fractured porous 
media. In this application, transport and diffusion along fractures are often modeled by PDEs posed on a set of piecewise-
smooth surfaces, see, e.g., [1,22,39,52]; see also [1,2,38,20] for a similar dimension reduction approach in simulation of flow 
in fractured porous media. Monotone (satisfying the DMP) finite volume methods on general meshes is the appealing tool 
for the solution of equations for solute concentration in the porous matrix, see, e.g., [11,17,23,28,30,35,49] (further refer-
ences can be found in [16,21]). However, a straightforward application of this technique to model transport and diffusion 
along a fracture would require fitting the mesh or triangulating the surface. For a large and complex net of fractures cutting 
through the porous matrix this is a difficult task [14], and an efficient method avoids mesh fitting and surface triangulations. 
Recently, extended finite element method approximations have been extensively studied in transport and flow problems in 
fractured porous media, see the review [19] and references therein. In XFEM, one also avoids fitting of the background mesh 
to a fracture, but a separate mesh is still required to represent the fracture. Besides the use of FV for the matrix problem, 
the approach in the present paper differs from those found in existing XFEM literature in the way the surface problem is 
discretized.

While the present technique can be applied for tetrahedral or more general polyhedral tessellations of the bulk domain, 
we consider octree grid with cubic cells here. This choice is not ad hoc. Indeed, the Cartesian structure and built-in hierarchy 
of octree grids makes mesh adaptation, reconstruction and data access fast and easy. For these reasons, octree meshes 
became a common tool in computational mechanics and several octree-based solvers are available in the open source 
scientific computing software, [3,45]. However, an octree grid provides at most the first order (staircase) approximation 
of a general geometry. Allowing the surface to cut through the octree grid in an arbitrary way overcomes this issue, but 
challenges us with the problem of building efficient bulk–surface discretizations. This paper demonstrates that the hybrid 
TraceFEM – non-linear FV method complements the advantages of using octree grids by delivering more accurate treatment 
of the surface PDE problem.

The remainder of the paper is organized as follows. In section 2 we recall the system of differential equations, boundary 
and interface conditions, which models the coupled bulk–interface (or “matrix–fracture” in the context of flows in porous 
media) advection–diffusion problem. Section 3 gives the details of the hybrid discretization. After laying out the main ideas 
behind the method, we discuss the non-linear monotone FV method for the bulk and the TraceFEM for the surface equations, 
and further we introduce the required coupling. Section 4 presents the results of several numerical experiments with steady 
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Fig. 1. 2D illustration of our notation for a domain with triple fraction.

analytical solutions on smooth and piecewise smooth branching surface. We also show the results of numerical simulation 
of the propagating front of solute concentration through fractured porous media.

2. Mathematical model

In this section we recall the mathematical model of the contaminant diffusion and transport in fractured porous media. 
Assume the given bulk domain � ⊂ R

3 and a piecewise smooth surface � ⊂ �. The surface � may have several connected 
components. If � has a boundary, we assume that ∂� ⊂ ∂�. Thus, we have the subdivision � = ∪i=1,...,N�i into simply 
connected subdomains �i such that �i ∩ � j ⊂ �, i �= j.

In each �i , we assume a given Darcy velocity field of the fluid wi(x), x ∈ �i . By w�(x), x ∈ �, we denote the velocity 
field tangential to � having the physical meaning of the flow rate through the cross-section of the fracture. Consider an 
agent that is soluble in the fluid and transported by the flow in the bulk and along the fractures. The fractures are modeled 
by the surface �. The solute volume concentration (i.e., the one in the bulk domain �) is denoted by u, ui = u|�i . The solute 
surface concentration along � is denoted by v . Change of the concentration happens due to convection by the velocity fields 
wi and w� , diffusive fluxes in �i , diffusive flux on �, as well as the fluid exchange and diffusion flux between the fractures 
and the porous matrix. These coupled processes can be modeled by the following system of equations [1], in subdomains,⎧⎨⎩φi

∂ui

∂t
+ div(wiui − Di∇ui) = f i in �i,

ui = v on ∂�i ∩ �,

(1)

and on the surface,

φ�

∂v

∂t
+ div�(w�v − dD�∇�v) = F�(u) + f� on �, (2)

where we employ the following notations: ∇� , div� denote the surface tangential gradient and divergence operators; F�(u)

stands for the net flux of the solute per surface area due to fluid leakage and hydrodynamic dispersion; f i and f� are 
given source terms in the subdomains and in the fracture; Di denotes the diffusion tensor in the porous matrix; the surface 
diffusion tensor is D� . Both Di , i = 1, . . . , N , and D� are symmetric and positive definite; d > 0 is the fracture width 
coefficient; φi > 0 and φ� > 0 are the constant porosity coefficients for the bulk and the fracture.

The total surface flux F�(u) represents the contribution of the bulk to the solute transport in the fracture. The mass 
balance at � leads to the equation

F�(u) = [−Dn · ∇u + (n ·w)u]�, (3)

where n is a unit normal vector at �, [w(x)]� = lim
ε→0

w(x − εn) − lim
ε→0

w(x + εn), x ∈ �, denotes the jump of w across � in 

the direction of n.
If � is piecewise smooth, then we need further conditions on the edges. Assume an edge E is shared by M smooth 

components �i ⊂ �. Let v j = v on � j , while w�, j = w� , d j = d, D�, j = D� on � j , and n∂�, j is the outward normal vector 
to ∂� j in the plane tangential to � j , cf. Fig. 1. The conservation of fluid mass yields

M∑
j=1

w�, j · n∂�, j = 0 on E . (4)

We assume the continuity of concentration over E ,

v1 = · · · = vM on E . (5)

We also assume the conservation of solute flux over the edge. Thanks to (4) and (5), this yields the condition:
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M∑
j=1

d j(D�, jn∂�, j) · ∇�v j = 0 on E . (6)

Finally, we prescribe Dirichlet’s boundary conditions for the concentration u and v on ∂�D and ∂�D and homogeneous 
Neumann’s boundary conditions on ∂�N and ∂�N , respectively, with ∂� = ∂�D ∪ ∂�N and ∂� = ∂�D ∪ ∂�N . Initial condi-
tions are given by the known concentration u0 and v0 at t = 0. We have⎧⎪⎨⎪⎩

Din∂� · ∇u = 0 on ∂�N ,

u = uD on ∂�D ,

u|t=0 = u0 in �,

⎧⎪⎨⎪⎩
D�n∂� · ∇�v = 0 on ∂�N ,

v = vD on ∂�D ,

v|t=0 = v0 on �.

(7)

Remark 2.1. Bulk–surface coupled systems of advection–diffusion PDEs appear in different applications, e.g. in multiphase 
fluid dynamics [25] and biological applications [7]. In these and other models, the continuity of the concentration over 
the embedded surface (second equation in (1)) may be replaced by another suitable constitutive equation for modeling of 
the surface adsorption/desorption. For fluid–fluid interfaces or biological membranes, one often assumes that the surface 
passively evolves with the flow, and hence there is no contribution of the advective flux to the total flux F�(u) on �. 
A standard model for the diffusive flux between the surface and the bulk, cf. [47], is as follows:

−Din · ∇ui = ki,a gi(v)ui − ki,d fi(v), on �, (8)

with ki,a , ki,d positive adsorption and desorption coefficients that describe the kinetics. Basic choices for g , f are the 
following:

g(v) = 1, f (v) = v (Henry) or g(v) = 1− v

v∞
, f (v) = v (Langmuir),

where v∞ is a constant that quantifies the maximal concentration on �. Further options are given in [47]. Often in literature 
on the two-phase flows the Robin condition in (8) is replaced by the “instantaneous” adsorption and desorption condition

ki,a gi(v)ui = ki,d fi(v), on �. (9)

These interface conditions can be also handled through obvious modifications of our numerical method. We include one 
numerical example with (9) and Henry law in Section 4. At the same time, treating evolving interfaces needs more devel-
opments and is not considered here.

3. Hybrid finite volume – finite element method

3.1. Summary of the method

Assume a Cartesian background mesh with cubic cells. We allow local refinement of the mesh by sequential division of 
any cubic cell into 8 cubic subcells. This leads to a grid with an octree hierarchical structure. This mesh gives the tessellation 
Th of the computational domain �, � = ∪T∈Th T . The surface � ⊂ � cuts through the mesh in an arbitrary way. For the 
purpose of numerical integration, instead of � we consider �h , a given polygonal approximation of �. If � has a curvature, 
then �h is reconstructed as a second order approximation of �. We shall describe the reconstruction algorithm further in 
the section. We assume that similar to �, the reconstructed surface �h divides � into N subdomains �i,h , and ∂�h ⊂ ∂�. 
We do not assume any restrictions on how �h intersects the background mesh.

The induced tessellation of �i,h can be considered as a subdivision of the volume into general polyhedra. Hence, for 
the transport and diffusion in the matrix we apply a non-linear FV method devised on general polyhedral meshes in [35,
11], which is monotone and has compact stencil. The trace of the background mesh on �h induces a ‘triangulation’ of 
the fracture, which is very irregular, and so we do not use it to build a discretization method. To handle transport and 
diffusion along the fracture, we first consider finite element space of piecewise trilinear functions for the volume octree 
mesh Th . We further, formally, consider the restrictions (traces) of these background functions on �h and use them in a 
finite element integral form over �h . Thus the irregular triangulation of �h is used for numerical integration only, while the 
trial and test functions are tailored to the background regular mesh. Available analysis and numerical experience suggest 
that the approximation and convergence properties of this trace finite element method depend only on the mesh size and 
refinement strategy for the background mesh, and they are independent on how �h intersects Th . The TraceFEM was devised 
and first analyzed in [41] and extended for the octree meshes in [12]. A natural way to couple two approaches is to use the 
restriction of the background FE solution on �h as the boundary data for the FV method and to compute the FV two-side 
fluxes on �h to provide the source terms for the surface discrete equation. We provide details of each of these steps in 
sections 3.3–3.5 below.

3.2. Reconstructed surface

The reconstructed surface �h is a C0,1 surface that can be partitioned in planar triangular segments:
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Fig. 2. a) Example of a bulk domain with a fracture. In this example, the background mesh is refined near the fracture; b) The reconstructed �h; c) The 
zoom-in of the induced surface triangulation Fh .

�h =
⋃

K∈Fh

K , (10)

where Fh is the set of all triangular segments K . Without loss of generality we assume that for any K ∈ Fh there is only 
one cell TK ∈ Th such that K ⊂ TK (if K lies on a face shared by two cells, any of these two cells can be chosen as TK ).

In practice, we construct �h as follows. For each connected piece of � let φ be a Lipschitz-continuous level set function, 
such that φ(x) = 0 on �. We set φh = I(φ) a nodal interpolant of φ by a piecewise trilinear continuous function with respect 
to the octree grid Th . Consider the zero level set of φh ,

�̃h := {x ∈ � : φh(x) = 0}.
If � is smooth, then �̃h is an approximation to � in the following sense:

dist(�, �̃h) ≤ ch2loc, |n(x) − nh(x̃)| ≤ chloc, (11)

where x is the closest point on � for x̃ ∈ �̃h and hloc is the local mesh size. We note that in some applications, φh is 
computed from a solution of a discrete indicator function equation (e.g., in the level set or the volume of fluid methods), 
without any direct knowledge of �.

Note that �̃h is still not completely suitable for our purposes, since φh is trilinear and so numerical integration over its 
zero level is not straightforward. Therefore, we next build a suitable polygonal approximation of �̃h which is our final �h . 
Once φh is computed, we recover �h by the cubical marching squares method from [27] (a variant of the very well-known 
marching cubes method). The method provides a triangulation of �̃h within each cube such that �h is continuous over 
cubes interfaces, the number of triangles within each cube is finite and bounded by a constant independent of �̃h and a 
number of refinement levels. Moreover, the vertices of triangles from Fh are lying on �̃h . This final discrete surface �h is 
still an approximation of � in the sense of (11). A example of bulk domain with embedded surface and background mesh 
is illustrated in Fig. 2.

Note that the resulting triangulation Fh is not necessarily regular, i.e. elements from T may have very small internal 
angles and the size of neighboring triangles can vary strongly. Thus, �h is not a regular triangulation of �. The surface 
triangulation Fh is used only to define quadratures in the finite element method, while approximation properties of the 
method depend on the volumetric octree mesh.

3.3. Monotone finite volume method

First we consider a FV method for the advection–diffusion equation (1) in each subdomain �i,h . Let Ti,h be the tessel-
lation of �i,h into non-intersected polyhedra, which is induced by overlapping �i,h and the background mesh Th . Since 
the background mesh is the octree Cartesian, each element T ∈ Ti,h is either a cube, if it lies in the interior of �i,h , or a 
cut cube, if ∂�i,h intersects a background cell from Th . We assume the octree grid is gradely refined, i.e. the sizes of two 
neighboring elements of Th can differ at most by a factor of two. Such octree grids are also known as balanced. The method 
applies for unbalanced octrees, but in our experiments we use balanced grids. For the balanced grid, each interior cell may 
have from 6 to 24 neighboring cells (cells sharing a face). In the FV method we treat such cells as a polyhedra with up 
to 24 faces. Since we reconstruct � inside each cell as a triangulated surface without holes, the cut cell from Ti,h can be 
treated as a general polyhedral element as well. By Fi,h we denote the set of all faces of polyhedra from Ti,h .

The FV discretization below is applied to each subdomain �i separately, so we will skip in this section the redundant 
index i for the concentration, coefficients and the flow vector field in �i . Note that ∂�i,D includes the fracture part of the 
boundary of ∂�i .

As the first step, we assume a time discretization (say, the implicit Euler method) and consider the mixed form of (1)
and boundary conditions,
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q = wu − D∇u, φ̃ u + div q = f in �i,

u = ũD on ∂�i,D ,

−Dn∂� · ∇u = 0 on ∂�i,N ,

(12)

where the right hand side f accounts for the source term and for the values of concentration from the previous time step, 
φ̃ is the porosity coefficient scaled by the reciprocal of the time step size, and ∂�i,D includes ∂�i ∩ �, where ũD = v .

For a cell T ∈ Ti,h , xT denotes the barycenter of T , and uT denotes the averaged concentration. We formally assign uT to 
xT . Integrating the mass balance equation (12) over T and using the divergence theorem, we obtain:

φ̃|T |uT +
∑
F∈∂T

qF · nF =
∫
T

f dx, qF = 1

|F |
∫
F

qds, (13)

where qF · nF is the averaged normal flux across face F , and nF is the normal vector on F pointing outward for T ; 
|F | (|T |) denotes the area (volume) of F (T ). The Dirichlet boundary data on faces F ∈ ∂�D will be accounted in the 
scheme via boundary faces concentration values uF = 1

|F |
∫
F uD ds. We assume that uF are assigned to barycenters of 

faces. Enforcing homogeneous Neumann boundary conditions on faces from ∂�i,N is straightforward, for F ∈ ∂T ∩ ∂�N the 
normal flux qF · nF in (13) is set to 0.

In the conventional cell-centered FV method, the normal flux qF · nF is replaced by its discrete counterpart qF ,h · nF , 
which is computed from cell concentrations uT and boundary data uF . For simplicity of presentation we shall omit subscript 
h in notations of the discrete flux. The discrete flux is the combination of the diffusive and convective fluxes and we 
discretize them separately following [34,35,40].

For T ∈ Ti,h , we define ω(T ) := {T ′ ∈ Ti,h | area(T ′ ∩ T ) �= 0}, the set of all neighboring cells of T , and ω∂(T ) := {F ∈
Fi,h | F⊂∂T ∩ ∂�i,D}, the set all faces of T with prescribed Dirichlet data. For T ∈ Ti,h , the set of points P collects all 
barycenters of the elements from ω(T ) and ω∂(T ). Furthermore, for each T ∈ Ti,h we define the bundle of vectors, v(T ) :=
{t ∈R

3 | t = y − xT , y ∈P(T )}.
Consider an arbitrary internal face F shared by two cells T+, T− from Ti,h and assume that nF points from T+ to T− . 

We introduce the co-normal vector lF = DnF . Vector lF can make a nonzero angle with nF in the case of an anisotropic 
diffusion tensor. To define the discrete diffusive flux on F , we first consider three vectors t+i ∈ v(T+), i = 1, 2, 3, such that 
for the co-normal vector lF = Dn f we have

lF = α+ t+1 + β+ t+2 + γ+ t+3 , (14)

with non-negative coefficients α+ , β+ and γ+ . Such a triplet can be always found (in some rare pathological situations, one 
has to expand P(T+) slightly, cf. [13]).

The normal flux is the directional derivative along the co-normal vector l+ := lF , and hence it can also be represented 
as the linear combination of three derivatives along t+i . The latter are approximated by central differences (may reduce to 
one side differences near Dirichlet boundaries). Thus, we get qF · nF ≈ q+ ,

q+ = α′+ (u+ − u+,1) + β ′+ (u+ − u+,2) + γ ′+ (u+ − u+,3), u+ = u(xT+), u+,i = u(xT+ + t+i ), (15)

where coefficients α′+, β ′+, γ ′+ are computed from α, β , γ in (14) for the cell T+ , using the simple scaling with |t+i |/|lF |. 
For the same co-normal vector one has another decomposition based on v(T−) vector bundle, l− := −lF = α− t−1 +β− t−2 +
γ− t−3 , t−i ∈ v(T−). This decomposition yields another approximation, qF · nF ≈ q−:

q− = α′− (u− − u−,1) + β ′− (u− − u−,2) + γ ′− (u− − u−,3), u− = u(xT−), u−,i = u(xT− + t−i ), (16)

with non-negative coefficients α′− , β ′− and γ ′− . Fig. 3 illustrates the construction in 2D.
Now we can take a linear combination of (15) and (16) with non-negative coefficients μ+ and μ−:

qF · nF = μ+q+ + μ−(−q−). (17)

The discrete flux (17) approximates the differential one if μ+ , μ− satisfy

μ+ + μ− = 1. (18)

Following [35], to construct the monotone FV discretization, we set both representations of the flux equal:

μ+q+ = −μ−q−. (19)

If |q+| = |q−| = 0, then the solution of (18), (19) in not unique. In this case we choose μ+ = μ− = 1/2. Otherwise, the 
solution is given by

μ+ = q−
q− − q+

, μ− = q+
q+ − q−

.
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Fig. 3. For the 2D case, the figure illustrates our constructions for the approximation of the directional derivative lF · ∇u on the face (edge in 2D) F =
T+ ∩ T− . Bold dots show the barycenters xT of the cells from T1,h and T2,h . The mean values of the concentration are assigned to these barycenters.

If q+q− > 0, we avoid potentially degenerate case by applying the modification from [49]; see also formulas in [35], p. 374. 
We note that the resulting multi-point flux approximation is nonlinear and compact, i.e. the stencil includes the values of 
concentration only from neighboring cells.

To define the normal component of the discrete advective flux qF ,a = 1
|F |

∫
F uw ds, we adopt the nonlinear upwind 

approximation (subscript h is again omitted for the sake of notation):

qF,a · nF = w+
FRT+(xF ) + w−

FRT−(xF ), (20)

where

w+
F = 1

2
(wF + |wF |), w−

F = 1

2
(wF − |wF |), wF = 1

|F |
∫
F

w · nF ds,

RT is a linear reconstruction of the concentration over cell T which depends on the concentration values from neighboring 
cells.

On each cell T , the linear reconstruction is defined by

RT (x) =
{
uT +LT gT · (x− xT ), x ∈ T ,

0, x /∈ T ,
(21)

where gT denotes the gradient of the linear reconstruction of concentration in xT , and LT is a slope limiting operator. 
The gradient is recovered from the best affine least-square fit for uh over a subset of barycenter nodes and, possibly, the 
boundary data nodes from cells neighboring T . The slope limiting operator LT is introduced to avoid non-physical extrema. 
It provides the smallest possible changes of the reconstructed least-square slope. Details can be found in [34,35,40].

Replacing fluxes in equations (13) by their numerical approximations, we obtain a system of nonlinear equations

�U+M(U)U = F(U), M(U) = Mdi f (U) +Madv(U), (22)

with a diagonal matrix �. For any fixed vector V, M(V) is a square sparse matrix, F(V) is a right-hand side vector. Matrix 
Mdi f is an M-matrix which has diagonal dominance in rows. The stencil of this matrix is compact, each row contains 
non-zero off-diagonal entries corresponding mainly (and in most cases only) to degrees of freedom at the cells sharing 
a face with the current cell. For a cubic uniform mesh and the Poisson equation, the matrix Mdi f corresponds to the 
conventional seven-point stencil. Although matrix Madv has no diagonal dominance in rows, it can be shown, cf. [35], that 
the solution to (22) satisfies the discrete maximum principle.

3.4. The trace finite element method

Consider now the volumetric finite element space of all piecewise trilinear continuous functions with respect to the bulk 
octree mesh Th:

Vh := {vh ∈ C(�) | v|S ∈ Q 1 ∀ S ∈ Th}, with Q 1 = span{1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}. (23)

The surface finite element space is the space of traces on �h of all piecewise trilinear continuous functions with respect to the outer 
triangulation Th defined as follows

V �
h := {ψh ∈ H1(�h) | ∃ vh ∈ Vh such that ψh = vh|�h }. (24)
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Given the surface finite element space V �
h , the finite element discretization of (2) is as follows: Find vh ∈ V �

h such that 
vh|∂�D,h = vhD and∫

�h

(
φ�,h

∂vh
∂t

wh + dhD�,h∇�h vh · ∇�h wh + (wh · ∇�h vh)wh + (div�hwh) whvh

)
dsh

=
∫
�h

(F�,h(uh) + f�,h)wh dsh (25)

for all wh ∈ V �
h , s.t. wh|∂�D,h = 0. Here wh , vhD , dh , D�,h and f�,h are the problem data lifted from � to �h , in the case if 

� �= �h . The bulk domain contributes through the flux F�,h(uh), which is reconstructed from the numerical concentration in 
the porous matrix.

Similar to the plain Galerkin finite element for advection–diffusion equations the method (25) is prone to instability 
unless mesh is sufficiently fine such that the mesh Peclet number is less than one. Following [42], we consider the SUPG 
stabilized TraceFEM. The stabilized formulation reads: Find vh ∈ V �

h such that∫
�h

(
φ�,h

∂vh
∂t

wh + dhD�,h∇�h vh · ∇�h wh + (wh · ∇�h vh)wh + (div�hwh) whvh

)
dsh

+
∑
T∈Fh

δK

∫
K

(φ�,h
∂vh
∂t

− dhdiv�h D�,h∇�h vh +wh · ∇�h vh + (div�hwh) vh)wh · ∇�h wh dsh

=
∫
�h

(F�,h(uh) + f�,h)wh dsh +
∑
K∈Fh

δK

∫
K

(F�,h(uh) + f�,h)(wh · ∇�h wh)dsh ∀ wh ∈ V �
h . (26)

For the definition of K ∈ Fh , TK ∈ Th we refer to section 3.2. The stabilization parameter δK depends on K ⊂ TK . The side 

length of the cubic cell TK is denoted by hTK . Let PeK := hTK ‖wh‖L∞(K )

2ε
be the cell Peclet number. We take

δK =

⎧⎪⎪⎨⎪⎪⎩
δ0hTK

‖wh‖L∞(K )

if PeK > 1,

δ1h2TK

ε
if PeK ≤ 1,

(27)

with some given positive constants δ0, δ1 ≥ 0.
For the matrix–vector representation of the TraceFEM one uses the nodal basis of the bulk finite element space Vh rather 

than tries to construct a basis in V �
h . This convenient choice, however, has some consequences. In general, the restrictions 

to �h of the outer nodal basis functions on �h can be linear dependent or (in most cases) almost linear dependent. This 
and small cuts of background cells lead to badly conditioned mass and stiffness matrices. In recent years stabilizations have 
been developed which are easy to implement and result in matrices with acceptable condition numbers, see the overview 
in [44]. In this paper we use the “full gradient” stabilization of the TraceFEM [15,48]. In this variant of the method, one 
modifies the surface diffusion part of the method (25) to include the normal part of the gradient:∫

�h

dhD�,h∇�h vh · ∇�h wh dsh yields to
∫
�h

dhD�,h∇vh · ∇wh dsh.

We note that the method remains consistent on smooth surfaces (up to second order geometric errors), since the true sur-
face solution extended off the surface along normal directions satisfies both variational formulations on �. The modification 
improves algebraic properties of the (diagonally scaled) stiffness matrix of the method [48]. The full-gradient method uses 
the background finite element space Vh instead of the surface finite element space V �

h in (25). However, practical implemen-
tation of both methods uses the frame of all bulk finite element nodal basis functions φi ∈ Vh such that supp(φi) ∩ �h �= ∅. 
Hence the active degrees of freedom in both methods are the same. The stiffness matrices are, however, different.

3.5. Coupling between discrete bulk and surface equations

The equations in the bulk and on the surface are coupled through the boundary condition ui = v on ∂�i,h ∩ �h (second 
equation in (1)) and the net flux F�h (u) on �h , which stands as the source term in the surface equation (2). On �h the 
solution vh is defined as a trace of the background finite element piecewise trilinear function. The averaged value of vh
is computed on each surface triangle K ∈ Fh using a standard quadrature rule. These values assigned to the barycenters 
of K from Fh serve as the Dirichlet boundary data for the FV method on �h . The discrete diffusive and convective fluxes 
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are assigned to barycenters of all faces on Ti,h , i = 1, . . . , N . Since each triangle K ∈ Fh is a face for two cells Ti ∈ Ti,h and 
T j ∈ T j,h , i �= j, the diffusive and convective fluxes are assigned to K from both sides of �h . The discrete net flux F�h (uh) at 
the barycenter of K is computed as the jump of the fluxes over K . In the TraceFEM this value is assigned to all x ∈ K , and 
numerical integration is done over all surface elements K ∈Fh to compute the right-hand side of the algebraic system.

To satisfy all (discretized) equations and boundary conditions we iterate between the bulk FV and surface FE solvers on 
each time step. We assume an implicit time stepping method (in experiments we use backward Euler). This results in the 
following system on each time step.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Lu := φ̃u + div(wu − D∇)u = f̂ in � \ �,

u = v on �,

Dn∂� · ∇u = 0 on ∂�N , u = uD on ∂�D ,

L�v := φ̃�v + div�(w�v − dD�∇�v) = F�(u) + f̂� on �,

D�n∂� · ∇v = 0 on ∂�N , v = vD on ∂�D ,

(28)

the right hand sides f̂ and f̂� account for the solution values at the previous time step. Note that condition (5) is satisfied 
by the construction of trace spaces in the finite element method and condition (6) is accounted weakly by the TraceFEM 
variational formulation.

We solve the coupled system (28) by the fixed point method: Given u0, v0, the initial guess, we iterate for k = 0, 1, 2, . . .
until convergence:

Step 1: Solve for uk+1,{
Luk+1 = f̂ in � \ �, uk+1 = vk on �,

Dn∂� · ∇uk+1 = 0 on ∂�N , uk+1 = uD on ∂�D .
(29)

Step 2: Solve for vaux and update for vk+1 with a relaxation parameter ω,⎧⎪⎪⎨⎪⎪⎩
L�v

aux = F�(uk+1) + f̂� on �,

D�n∂� · ∇�v
aux = 0 on ∂�N , vaux = vD on ∂�D

vk+1 = ωvaux + (1− ω)vk, ω ∈ (0,1].
(30)

Remark 3.1. Below we show that the fixed point method is equivalent to a preconditioned Richardson iteration for the 
discrete Poincaré–Steklov operator. Assume that L is linear (this is true for our differential model, but the particular FV 
discretization applied here is actually non-linear). Let’s split u = u0 + û, v = v0 + v̂ , where u0, v0 satisfy{

Lu0 = f̂ in � \ �, u0 = 0 on �,

Dn∂� · ∇u0 = 0 on ∂�N , u0 = uD on ∂�D ,

{
L�v0 = 0 on �,

D�n∂� · ∇v0 = 0 on ∂�N , v0 = vD on ∂�D

Now the iterations (29)–(30) can be written in terms of û and v̂ parts of the bulk and surface concentrations:{
Lûk+1 = 0 in � \ �, ûk+1 = v̂k on �,

Dn∂� · ∇ûk+1 = 0 on ∂�N , ûk+1 = 0 on ∂�D ,⎧⎪⎪⎨⎪⎪⎩
L� v̂

aux = F�(uk+1) + f̂� on �,

D�n∂� · ∇� v̂
aux = 0 on ∂�N , v̂aux = 0 on ∂�D

v̂k+1 = ω v̂aux + (1− ω)v̂k, ω ∈ (0,1].

(31)

Now we note that û is a (generalized) harmonic extension of v̂ on � \ � and S� : v̂ → F�(û) is the Dirichlet to Neumann 
(discrete) Poincaré–Steklov operator. Using this notation, one can write the surface equation for v̂ in the compact operator 
form,

(L�,0 − S�)v̂ = F̂ on �, with F̂ := F�(u0) + f̂�. (32)

We use zero index in L�,0 to stress that the operator accounts for homogeneous boundary conditions on ∂�. It is easy to 
see that (31) is the Richardson iterative process for the surface equation (32), with the preconditioner W = L−1

�,0 and the 
relaxation parameter ω:

v̂k+1 = v̂k − ωW
(

(L� − S�)v̂k − F̂
)

, k = 0,1,2, . . . . (33)
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From (33) we see that a more efficient iterative process based on a different choice of preconditioner and employing Krylov 
subspaces may be feasible (if L is non-linear one may consider Anderson’s mixing to accelerate convergence). However, we 
do not pursue this topic further in this paper.

4. Numerical results and discussion

This section collects several numerical examples, which demonstrate the accuracy and capability of the hybrid method. 
We perform a series of tests, where we simulate steady and time-dependent solutions in a bulk domain with an imbedded 
fracture. We also include an a example with a smooth curved surface (a sphere) embedded in a bulk domain and a given 
analytical solution for a surface–bulk problem with Henry interface condition. To measure the error we shall use L2 , H1 and 
L∞ surface and volume norms. For the computed solutions uh, vh and true solutions u, v , these norms are defined below. 
In the volume, we set

errL∞(�) := max
T∈Th

|uh(xT ) − u(xT )|, errL2(�) :=
⎛⎝ ∑

T∈Th

vol(T )|uh(xT ) − u(xT )|2
⎞⎠

1
2

,

errH1(�) :=
⎛⎝ ∑

T∈Th

vol(T )|∇ I(uh)(xT ) − ∇u(xT )|2
⎞⎠

1
2

,

where I(uh) is the P1 least-square interpolant to the values of uh in barycenters of the cells from ω(xT ) ∩ �i , for T ∈ �i . 
Over the surface, we set

errL∞(�) := max
�

|vh − ve|, errL2(�) := ‖vh − ve‖L2(�), errH1(�) := ‖∇�h vh − ∇�h v‖L2(�),

where ve is the extension of v from � to �h along normal directions to �.

4.1. Steady analytical solution for a triple fracture problem

Our next experiment deals with the coupled surface–bulk diffusion problem in the domain � = [0, 1]3 with an embedded 
piecewise planar �. We design � to model a branching fracture. In the basic model, � = �(0) consists of three planar pieces,

�(0) = �12 ∪ �13 ∪ �23, �i j = �i ∩ � j i �= j,

such that

�1 = {x ∈ � | x <
1

2
and y > x}, �2 = {x ∈ � | x >

1

2
and y > x− 1}, �3 = � \ (�1 ∪ �2).

This subdivision is illustrated in Fig. 4 (left). The pieces �i j belong to certain planes of symmetry for the cube, and so the 
induced triangulation of �(0) and the cut cells in the bulk domain are all quite regular. To model a generic situation when �
cuts through the background mesh in an arbitrary way, we consider other tessellations of � = [0, 1]3 into three subdomains 
by a surface �(α). The surface �(α) is obtained from �(0) by applying the clockwise rotation by the angle α around the 
axis x = z = 0.5. We take α = 20◦ and α = 40◦ , the resulting tessellations of � are illustrated in Fig. 4 (middle and right 
pictures); and the induced surface meshes are shown in Fig. 5. More precisely, we define

�(α) = {x ∈ � |y ∈ �(0), y− x0 = Qα(x− x0)}, withQα =
⎡⎣cosα 0 − sinα

0 1 0
sinα 0 cosα

⎤⎦ , x0 = (
1

2
,0,

1

2
)T .

Similar to the series of numerical experiments with the embedded spherical �, here we set the source terms f i and f�
and the boundary conditions such that the solution to the stationary problem (1)–(7) is known. To define the solution {v, u}
solving the stationary equations (1)–(7), we first introduce

ψ1 =
{

16(y − 1
2 )4, y > 1

2

0, y ≤ 1
2

, ψ2 = x− y, ψ3 = x+ y − 1.

We define the solution of the basic model problem (α = 0)

u(x) =
⎧⎨⎩ sin(2π z) · ψ2(x) · φ3(x) x ∈ �1,

sin(2π z) · ψ1(x) x ∈ �2,

sin(2π z)2x · ψ1(x) x ∈ �3,

v = u|�(0).
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Fig. 4. The figure illustrates the bulk domain with uniform mesh and the fracture. On the left picture the fracture is set orthogonal to the xy-plane, while 
on the middle and right pictures the fracture is rotated by 20 and 40 degrees.

Fig. 5. The figure illustrates the induced surface mesh on the fracture, when it cuts through the uniform bulk mesh in different ways.

Table 1
The error in the numerical solution for the steady problem with triple fracture, α = 0.

#d.o.f. L2-norm Rate H1-norm Rate L∞-norm Rate

� 855 6.374e−3 4.214e−1 3.920e−2
7410 1.698e−3 1.84 1.631e−1 1.36 1.276e−2 1.56
61620 4.235e−4 1.97 6.193e−2 1.39 3.506e−3 1.83
502440 1.044e−4 2.00 2.348e−2 1.40 1.129e−3 1.62

� 232 8.469e−3 2.914e−1 9.280e−3
1242 2.003e−3 1.79 1.387e−1 0.92 2.779e−3 1.44
5662 5.588e−4 1.84 6.874e−2 1.01 1.217e−3 1.09
24102 1.791e−4 1.64 3.395e−2 1.02 5.181e−4 1.18

Note that the constructed exact solution is continuous across �(0), but the normal derivatives are discontinuous. Other 
parameters in (1)–(2) are set to be w = w� = 0, φ1 = φ2 = φ� = 0, D1 = D2 = D� = I , and d = 1. For the problem setup 
with the rotated fracture, α > 0 we set the exact solution vα(x) = v(y), uα(x) = u(y), with y =Qα(x − ( 12 , 0, 12 )T ).

The numerical results for this coupled problem with the triple fracture problem are reported in Tables 1–3. We observe 
stable convergent results for α = 0 as well as for more general case of α > 0. An interesting feature of this problem is that 
the surface � is only piecewise smooth. The bulk grid is not fitted to the internal edge E = �12 ∩ �13 ∩ �23, and hence the 
tangential derivatives of v are discontinuous inside certain cubic cells from T �

h . Therefore, a kink in v cannot be represented 
by the finite element approximation. This may result in a reduction of convergence order. Both the performance of the FV 
method for cut cells (cut cells inherit a regular structure from the background mesh for α = 0, but are very irregular for 
α > 0) and the presence of the kink influences the observed convergence rates.

Finally, Table 4 shows the performance of the fixed-point iteration (29)–(30). We set ω = 1 and take u0 = 0, v0 = 0. The 
solver is stopped after a relative reduction of the Euclidean norm of both surface and bulk equations residuals by a factor of 
104 (a stronger convergence criterion was not found to improve solution accuracy). In each outer iteration, the surface linear 
subproblem was solved by exact factorization, while a few Picard iterations with exact factorization of linearized problem 
were done to solve the bulk system in (29). The solver does not scale in an optimal way with respect to the mesh size and 
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Table 2
The error in the numerical solution for the steady problem with triple fracture, α = 20.

#d.o.f. L2-norm Rate H1-norm Rate L∞-norm Rate

� 965 6.319e−3 4.208e−1 3.754e−2
7872 1.805e−3 1.79 1.661e−1 1.34 1.280e−2 1.55
63592 5.623e−4 1.80 6.371e−2 1.38 3.411e−3 1.90
510390 1.602e−4 1.81 2.442e−2 1.39 1.146e−3 1.57

� 321 7.792e−3 2.694e−1 2.716e−2
1692 2.084e−3 1.59 1.240e−1 1.12 5.400e−3 1.94
7944 7.019e−4 1.41 6.291e−2 0.98 2.001e−3 1.29
33272 2.441e−4 1.52 3.173e−2 0.99 7.217e−4 1.47

Table 3
The error in the numerical solution for the steady problem with triple fracture, α = 40.

#d.o.f. L2-norm Rate H1-norm Rate L∞-norm Rate

� 991 5.934e−3 4.080e−1 3.783e−2
7996 1.700e−3 1.80 1.621e−1 1.33 1.276e−2 1.56
64046 4.907e−4 1.80 6.263e−2 1.37 3.515e−3 1.86
512258 1.503e−4 1.82 2.541e−2 1.39 1.237e−3 1.61

� 353 8.167e−3 2.709e−1 2.696e−2
1932 2.146e−3 1.66 1.275e−1 1.09 5.566e−3 1.85
8766 7.115e−4 1.59 6.279e−2 1.02 2.063e−3 1.31
36676 2.538e−4 1.49 3.121e−2 1.01 7.251e−4 1.51

Table 4
Iteration numbers in (29)–(30) for the steady prob-
lem example in section 4.1.

Ref. level α = 0 α = 20◦ α = 40◦

0 22 74 24
1 29 90 32
2 212 325 228
3 782 917 851

more research is needed to improve its performance, cf. Remark 3.1. We postpone this topic for the future research. We also 
note that for time dependent problems studied below including time-dependent terms and taking initial guess to be the 
solution from the previous time step improves convergence of (29)–(30) a lot, and we typically need 1 or 2 iterations for 
each time step.

4.2. Propagating front in the porous medium with triple fracture

In the last series of experiments we compute the time dependent solution of (1)–(7). The bulk domain � and the fracture 
� are the same as in the previous experiment in section 4.1. At time t0 = 0 we set u(t0) = 0 in � and v(t0) = 0 on �. On the 
face {y = 1} of the cube we prescribe the constant concentration of a contaminant, while on other parts on the boundary 
the diffusion flux is set equal zero. Thus in (7), we have

∂�D = ∂� ∩ {y = 1}, ∂�N = ∂� \ ∂�D , ∂�D = ∂� ∩ {y = 1}, ∂�N = ∂� \ ∂�D ,

uD = 1, vD = 1, u0 = 0, and v0 = 0.

The time independent velocity field transports the contaminant in the bulk and along the fractures. We set

wi = 2κ(0,−1,0)T , i = 1,2,3, in �

w� = 5κ(0,−1,0)T in �12, w� = κQα(
1√
2
,− 1√

2
,0)T in �23, w� = κQα(− 1√

2
,− 1√

2
,0)T in �13,

where κ ≥ 0 is a parameter. One easily verifies the condition (4) on the edge E = �12 ∩ �13 ∩ �23. Other parameters are set 
to be

D1 = D2 = 0.1 I, d = 1, D� = I, φ1 = φ2 = φ� = 1.

The computed solutions for κ = 1/8 (diffusion dominated case) and κ = 8 (convection plays a significant role) are 
illustrated in Figs. 6–7. The fracture angle parameter α was set to 0 and 20 degrees, respectively.

For this problem, the exact solution is not known. The computed solution occurs to be physically reasonable. We see no 
sign of spurious oscillations. As expected, the contaminant propagates faster along the fractures.
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Fig. 6. The figures illustrates the propagating front of the concentration in the fracture and in the bulk: Pictures a), b) show dominating diffusion case, 
while c), d) show dominating convection case. Pictures a) and c) show snapshots of the computed solution at time t = 0.018, while pictures b) and d) 
snapshots the computed solution at time t = 0.033. See the supplementary material for the full animation of the experiment.

Fig. 7. The figures illustrates the propagating front of the concentration in the fracture and in the bulk, with α = 20◦: Picture a) shows dominating diffusion 
case, picture b) shows dominating convection case; both at time t = 0.033. See the supplementary material for the full animation of the experiment.
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Fig. 8. The matrix and fracture in the test with contaminant transport along the fracture.

4.3. Contaminant transport along the fracture

In this test we place a continuous contaminant source on the upstream boundary of the fracture. The matrix–fracture 
configuration for this test is shown in Fig. 8, � = (0, 1)3, and � = {x ∈ � : z + 1

2 x = 0.51}. The boundary x = 0 is inflow, 
in the fracture the wind is constant w� = (w1, 0, w3), |w�| = 1, and the contaminant source occupies the part of ∂�, 
∂�D = {(0, y, 0.51) : y ∈ ( 14 , 34 )}, vD = 1 on ∂�D . We assume that the porous matrix is almost impermeable and so we set 
wi = 0 in �i (no flow in the rock) and Di = 10−6 I , i = 1, 2, ∂� = ∂�N . In the fracture we assume isotropic diffusion with 
D� = 10−4 I . Other parameters are the same as in the previous test, and v = 0, u = 0 at t = 0. Therefore, we expect that 
the contaminant transport happens along the fracture with very small diffusion to the porous matrix. This is a bulk–surface 
variant of a standard test case of numerical solvers for convection–diffusion problems [50], and one is typically interested 
in the ability of a method to capture the right position and the shape of the sharp propagating front and avoid spurious 
oscillations. For a comparison purpose, one may consider the exact solution for the problems posed in a half-plane (or 
half-space) from [31,32]. This solution C(x, y, 0) is given in (34), it solves Ct − D�C + Cx = 0 in �̃ = {(x, y) ∈ R

2 : x > 0}, 
with the boundary condition C(0, y, t) =

{
c0, when |y| < a,
0, when |y| > a,

and initial conditions: C(x, y, 0) = 0 in �̃.

C(x, y, t) = xc0

(16πD)
1
2

t∫
0

τ− 3
2

{
erf

[
a + y

(4Dτ )
1
2

]
+ erf

[
a − y

(4Dτ )
1
2

]}
· exp

⎡⎣−
(

x− τ

(4Dτ )
1
2

)2
⎤⎦dτ , (34)

where

erf(x) = 2√
π

x∫
0

e−t2dt, erfc(x) = 1− erf(x) = 2√
π

∞∫
x

e−t2dt.

We run our simulations with the uniform background mesh, h = 1
32 , �t = 10−2. The fracture cuts through the back-

ground mesh as illustrated in Fig. 8 (for better visualization, this figure shows the background mesh for h = 1
16 ). The 

computed solution and the ‘reference’ solution is shown in Fig. 9 at several time instances. We recall that the coupled 
problem was solved and the contaminant also diffuses into the bulk, but this bulk diffusion was minor. We observe that the 
computed solution well approximates the reference one; the computed front has the correct position and is not smeared 
too much. Moreover, we do not observe overshoots or undershoots in vh .

4.4. An example with a spherical drop immersed in a bulk

We include one more test case but now with a different interface condition. This is the instantaneous absorption–
desorption condition (9) with the Henry law to define gi and f i . This condition is common in the literature to model 
dissolvable surfactant transport in two-phase flows. In this test from [24] we consider a prototypical configuration for such 
models consisting of a spherical drop embedded in a cubic domain. We take � to be the unit sphere centered at the origin 
and � = [−1.2, 1.2]3. By �1 we denote the interior of �, so �1 is the unit ball, �2 = � \ �1. For the velocity field we take 
a rotating field in the x–z plane: w = 1

10 (z, 0, −x). This w satisfies divw = 0 in � and w · n = 0 on �, i.e. the velocity field 
is everywhere tangential to the boundary and hence the steady interface is consistent with the kinematic condition: w · n
is equal to the normal velocity of � for immersible two-phase fluids, e.g. [25]. We set wi = w|�i and w� = w|��

.
The material parameters are chosen as D1 = 0.5, D2 = 1, D� = 1 and k1,a = 0.5, k2,a = 2, k1,d = 2, k2,d = 1, d = 1. The 

source terms f i ∈ L2(�), i = 1, 2, and f� ∈ L2(�) and data on ∂� are taken such that the exact solution of the stationary
equations (1)–(2) is given by
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Fig. 9. Reference 2D solution (left) and the fracture component of the computed solution (right) for the contaminant transport along the fracture test case. 
The solutions is shown for the times t = 0.17, 0.34, 0.5.

v(x, y, z) = 3x2 y − y3, u1(x, y, z) = 2u2(x, y, z), u2(x, y, z) = e1−x2−y2−z2 v(x, y, z).

Since we solve for a steady-state solution, so we set φ1 = φ2 = φ� = 0. We prescribe Dirichlet boundary conditions on ∂�, 
i.e. ∂�N = ∅, ∂�N = ∅, and ∂�D = ∅ in (7). Conditions (4)–(6) for this test case are not relevant, since the surface is globally 
smooth and has no boundary.

In this set of experiments we take the sequence of uniform cubic meshes in �, starting with h = 0.3. The surface �h is 
reconstructed as described in section 3.2 for φ(x) = 1 − |x|2. The computed solution as well as volume and induced surface 
meshes are illustrated in Fig. 10. The computed errors for the bulk and surface concentrations are shown in Table 5. For 
this example, the method demonstrates optimal convergence: O (h) in the H1 and O (h2) in the L2 and surface norms. This 
is consistent with what is known about the convergence of the TraceFEM for linear bulk elements, see e.g. analysis and 
convergence rates for the same experiment in [24], where the TraceFEM has been used to discretized equations both on the 
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Fig. 10. Left: Induced surface mesh and the surface component of computed solution. Right: Cut of the bulk mesh and the volume component of computed 
solution.

Table 5
Convergence of numerical solutions in the experiment with a spherical � embedded in a cube.

#d.o.f. L2-norm Rate H1-norm Rate L∞-norm Rate

� 736 3.223e−02 9.706e−01 1.072e−01
4920 6.687e−03 2.27 1.555e−01 2.64 3.799e−02 1.50
36088 2.005e−03 1.74 5.363e−02 1.55 9.180e−01 −4.59
275544 5.055e−04 1.99 1.825e−02 1.56 2.777e−03 8.37

� 460 1.670e−02 2.065e−01 3.863e−02
1660 4.037e−03 2.05 9.647e−02 1.10 1.060e−02 1.87
6628 9.211e−04 2.13 4.745e−02 1.02 3.881e−03 1.45
26740 2.457e−04 1.91 2.396e−02 0.99 8.875e−04 2.13

surface and in the bulk. For the volume component of the solution, the convergence is close to the second order in the L2
norm and 1.5 order in the H1 norm. It is also consistent with the results in [35], where super-convergence of the method 
in the H1 norm was observed. Convergence in the L∞-norm is somewhat less regular. We note that the L∞ convergence of 
the TraceFEM and of the non-linear FV method that we used has not been studied before.

The aim of the next (final) test is to illustrate the performance of the method for the case of locally refined grids. 
The setup is similar to the test with the sphere above, but the coefficients and the known solution are taken different to 
represent the situation of a convection dominated problem with an internal layer. More precisely, for the velocity field we 
take w = (−y

√
1− z2, x

√
1− z2, 0), and set wi = w|�i and w� = w|��

.
The material parameters are chosen as D1 = D2 = D� = ε and k1,a = 0.5, k2,a = 2, k1,d = 2, k2,d = 1, d = 1. The source 

terms f i ∈ L2(�), i = 1, 2, and f� ∈ L2(�) and data on ∂� are taken such that the exact solution of the stationary equations 
(1)–(2) is given by

v(x, y, z) = xzarctan

(
2z√
ε

)
, u1(x, y, z) = 2u2(x, y, z), u2(x, y, z) = e1−x2−y2−z2 v(x, y, z).

We take ε = 1 (very smooth solution) and ε = 0.01 (solution has an internal layer along the midplane z = 0).
We build a sequence of locally refined meshes as illustrated in Fig. 11. For ε = 0.01 the meshes are fitted to the layer 

and intend to capture the sharp variation of the solution. We computed numerical solutions on a sequence of 3 meshes, the 
second mesh is illustrated in Fig. 11. Each mesh has two levels of refinement in the region |z| < 1

8 . The convergence of the 
method is reported in Table 6. The optimal order of convergence is attended for the surface component of the solution, but 
the FV method in the bulk domain shows lower order convergence for the convection dominated case. We conclude that 
more studies are required to improve the performance of the FV method on such type of meshes.

5. Conclusions

The paper proposed a hybrid finite volume – finite element method for the coupled bulk–surface systems of PDEs. The 
distinct feature of the method is that the same background mesh is used to solve equations in the bulk and on the surfaces, 
and that there is no need to fit this mesh to the embedded surfaces. This makes the approach particularly attractive to 
treat problems with complicated embedded structures of lower dimension like those occurring in the simulations of flow 
and transport in fractured porous media. We consider the particular monotone non-linear FV method with compact stencil, 
but we believe that the approach can be carried over and used with other FV methods on polyhedral meshes (e.g. some 
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Fig. 11. Left: Induced surface mesh and the surface component of computed solution. Right: The bulk mesh and the volume component of computed 
solution.

Table 6
Convergence of numerical solutions in the experiment with a spherical � and locally refined mesh.

#d.o.f. ε = 1 ε = 1e−2

L2-norm Rate H1-norm Rate L∞-norm Rate L2-norm Rate H1-norm Rate L∞-norm Rate

�

5840 3.993e−03 8.322e−02 1.706e−02 5.666e−02 3.987e−01 1.945e−01
43552 6.706e−04 2.57 2.828e−02 1.56 4.926e−03 1.79 2.609e−02 1.12 2.440e−01 0.71 8.403e−02 1.21
318696 2.200e−04 1.61 1.038e−02 1.45 2.158e−02 −2.13 1.353e−02 0.95 1.708e−01 0.52 5.003e−02 0.75

�

1500 1.916e−03 3.609e−02 6.850e−03 8.353e−03 4.026e−01 4.538e−02
6740 5.106e−04 1.91 1.710e−02 1.08 1.919e−03 1.84 1.854e−03 2.17 1.619e−01 1.31 1.335e−02 1.76
25988 1.400e−04 1.87 8.924e−03 0.94 5.624e−04 1.77 3.848e−04 2.26 6.532e−02 1.31 3.694e−03 1.85

of those reviewed in [16]) with possibly better performance in terms of convergence rates. In this paper we treated only 
diffusion and transport of a contaminant assuming that Darcy velocity is given. Extending the method to computing flows 
in fractured porous media is in our future plans together with the design of better algebraic solvers, doing research on 
adaptivity, and adding to the method a fracture prorogation model.
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