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Abstract We present a finite volume method with improved well modelling for

the subsurface flow simulation. The method is based on the nonlinear monotone

finite volume scheme developed for diffusion, advection-diffusion and multiphase

flow model equations with full anisotropic discontinuous permeability tensors on

conformal polyhedral meshes. The new method uses the nonlinear (e.g. logarithmic)

correction for the flux approximation in the near-well regions to utilize the singularity

of the well-driven flow solution and improve accuracy of the pressure and the flux

calculation. The method is applicable for anisotropic media, polyhedral grids, and

different well cases including slanted, partially perforated or shifted from the grid

cell center. Numerical experiments show the significant reduction of numerical errors

compared to the original monotone nonlinear FV scheme with the conventional

Peaceman well model or with the given analytical well rate.
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1 Introduction

Cell-centered finite volume methods with nonlinear flux discretization on cell faces

have proven to be an effective instrument for multiphase flow modelling and attract

growing attention [5]. A monotone second order method with nonlinear two-point

discretization of the diffusion and convection fluxes that preserves the non-negativity

of the discrete solution was presented in [2]. The method was implemented for

the two- and three-phase black oil models [11] on conformal hexahedral meshes,

polyhedral meshes based on dynamic octrees [14] or dynamic octrees with cut cells.

The scheme was later modified [1, 9] to a nonlinear multi-point scheme which

satisfies the Discrete Maximum Principle (DMP). Benefits of using the DMP scheme

for two-phase flows were discussed in [10].

The latest enhancement of the nonlinear method aims to incorporate well mod-

elling into the finite volume framework. The well model is the sensitive part of

the black-oil simulator and has the largest impact on all calculated well rates and

breakthrough times. The solution in the near-well region is highly influenced by the

singularity (e.g. logarithmic) of the well. The idea to use the solution singularity in

the FV schemes was suggested in [3]. Later this approach was combined with the

nonlinear FV method for the well-oriented prismatic grids with isotropic homoge-

neous and heterogeneous media [4]. Our new method generalizes these ideas for

anisotropic media, arbitrary polyhedral grids and arbitrary wells adjusted neither

with cells centers nor with edges [8].

The central idea of the method is to use a nonlinear correction for the reconstructed

solution inside the nonlinear flux discretization scheme in the near-well region. For

the isotropic case the linear-logarithmic reconstruction is used. The resulting method

is exact on both linear and logarithmic solutions by construction and is generalized

for the anisotropic case and for slanted wells. Numerical experiments show the sig-

nificant reduction of the numerical errors compared to the original nonlinear FV

scheme with the conventional Peaceman well model [12] or with the given analyti-

cal well rate.

2 Original FV Method

First we consider the stationary diffusion equation in order to introduce the numerical

scheme and remind the basic ideas of the FV schemes construction.

Let Ω be a three-dimensional polyhedral domain with the Lipschitz boundary

Γ = ΓN ∪ ΓD . The diffusion equation for unknown pressure p with the Dirichlet or

Neumann boundary conditions is written in the mixed form:

q = −K∇ p, div q = g in Ω,

p = gD on ΓD

q · n = 0 on ΓN .

(1)
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Here K(x) is a symmetric positive definite (possibly anisotropic) diffusion

tensor, g(x) is a source term, gD(x) is a given value on the Dirichlet part of the

boundary ΓD .

The cell-centered FV scheme uses one degree of freedom per cell T , pT , collocated

at cell barycenter xT . Integrating the mass balance Eq. (1) over T and using the

divergence theorem, we obtain:

∑

f ∈∂T

σT, f q f | f | =

∫

T

g dx, q f =
1

| f |

∫

f

q · n f ds, (2)

where q f | f | is the normal flux across the face, | f | is the area of face f , and σT, f

is either 1 or −1 depending on the mutual orientation of the unit normal vectors n f

and nT (nT denotes the outward normal vector for T ).

Possible approaches for the flux (2) discretization include the nonlinear monotone

two-point scheme [2] and the nonlinear DMP preserving compact multi-point scheme

[1, 9]. In the next chapter we present a multi-point scheme designed for the near-well

regions.

3 Near-Well Correction Scheme

Consider an isolated well which generates pressure singularity (see Fig. 1). The cen-

tral idea of the nonlinear correction finite volume (NCFV) method is to select some

region around the well and modify the FV scheme (following [3, 4]) to utilize the

singularity and take into account the nonlinear component of the solution. In contrast

to [4], our method is designed for anisotropic media, arbitrary polyhedral cells and

arbitrary well location.

Fig. 1 Example of singularity in the near-well region: isotropic (left) and anisotropic (right) media
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The original nonlinear FV method uses the piecewise linear reconstruction of

the unknown field for flux calculation. The NCFV method takes into account the

nonlinear component of the solution near the specific objects such as wells or large

fractures.

We consider the pressure field to be the sum of the linear and nonlinear functions

for each cell in a near-well region:

pT = a x + b y + c z + d
︸ ︷︷ ︸

plin

+ e F(x, y, z)
︸ ︷︷ ︸

pF

, (3)

where F(x, y, z) is a function representing the singularity.

The finite volume discretization requires the mean value of the normal component

of the flux q = −K∇ p to be calculated for each face f of T :

∫

f

q · n f d S = −

∫

f

(K∇ pT ) · n f d S = −

∫

f

(K∇ plin) · n f d S −

∫

f

(K∇ pF ) · n f d S. (4)

Since the method is derived for arbitrary grid cells and well direction, we consider

the diagonal permeability tensor K = diag
(

kx , ky, kz

)

for clarity. Using (3) for the

integral (4) gives:

q f = −
1

| f |

∫

f
q · n f d S = akx S f x + bky S f y + ckz S f z + e

∫

f
(K∇F(x, y, z)) · n f d S

= aℓ1 + bℓ2 + cℓ3 + eℓ4. (5)

The coefficients ℓi depend solely on the mesh and problem data and are calculated

explicitly, while the coefficients (a, b, c, e) are recovered from the solution in a set

of neighboring cells.

Let T+ and T− be neighboring cells sharing a face f , and x+, x− denote the centers

of these cells. We take four points xi (xi �= x+) that denote centers of the neighboring

cells or faces of T+ and call four vectors ti = xi − x+ a quadruplet. The points are

chosen as described below.

Considering the same representation (3) for vectors of quadruplet gives us:







p1 − p+

p2 − p+

p3 − p+

p4 − p+







=







x1 − x+ y1 − y+ z1 − z+ F1 − F+

x2 − x+ y2 − y+ z2 − z+ F2 − F+

x3 − x+ y3 − y+ z3 − z+ F3 − F+

x4 − x+ y4 − y+ z4 − z+ F4 − F+













a

b

c

e







, (6)

where pi = p(xi ), p+ = p(x+) and Fi = F(x1, y1, z1).

From the set of admissible quadruplets we choose the one with the largest matrix

(6) determinant. Solving it provides the coefficients a+, b+, c+, e+ for the cell T+:
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a+ =
∑

j

(p j − p+) m1, j , b+ =
∑

j

(p j − p+) m2, j ,

c+ =
∑

j

(p j − p+) m3, j , e+ =
∑

j

(p j − p+) m4, j , (7)

where mi, j are the elements of the inverse matrix from (6). Taking T− instead of T+

and considering −q · n f provides us the second flux approximation.

Applying (7) to Eq. (5) gives us:

q+ = −

∫

f

q · n f d S =
[

ℓ1

∑

j

(p j − p+) m+
1, j + ℓ2

∑

j

(p j − p+) m+
2, j +

ℓ3

∑

j

(p j − p+) m+
3, j + ℓ4

∑

j

(p j − p+) m+
4, j

]

= (8)

[ ∑

j

p j

∑

i

ℓi m+
i, j

︸ ︷︷ ︸

k+
j

−p+

∑

j

∑

i

ℓi m+
i, j

︸ ︷︷ ︸

k+
j

]

=
(∑

j

k+
j (p j − p+)

)

.

in similar way we get

q− = −
( ∑

j

k+
j (p j − p−)

)

. (9)

The resulting flux approximation is obtained as the weighted sum of q+ and q−

with coefficients µ+ + µ− = 1. The weights can be chosen to ensure specific features

of the solution. In our numerical experiments we considered µ+ = µ− = 1/2 which

resulted in the linear multi-point flux discretization:

q f = µ+

( ∑

j

k+
j (p j − p+)

)

+ µ−

( ∑

j ′

k−
j ′ · (p j ′ − p−)

)

. (10)

Note: Different cases of anisotropic media and non-trivial wells including

slanted or partially perforated are handled by choosing an appropriate singu-

larity function F(x, y, z). For the anisotropic case a special F from [13] can be

used, while for more complex cases one can implement techniques presented

in [7]. For the wells not passing through the grid cell center we use two col-

location points for the well cell (the one in the cell center and an additional

point on the well), which provides one additional equation and allows to avoid

using the conventional Peaceman formula for the well flux (see [8] for more

details).
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4 Numerical Experiments

Here we consider three numerical experiments for the near-well nonlinear correction

scheme (NCFV) compared with the original monotone nonlinear FV scheme (NFV)

with conventional Peaceman well model [12] or direct analytical flux to the well cell.

For tests 1 and 3 the permeability tensor is scalar K = I and test 2 deals with the

anisotropic media. More general cases are presented in [8].

Defining the well pressure and flux gives us the analytical solution in the domain.

For our experiments we put the Dirichlet conditions on the domain boundaries and

use either given well pressure or given well flux from the analytical solution.

If the analytical rate for the well cell is given, we can compare the NFV scheme and

the NCFV scheme without the influence of the well cell model. In this case we com-

pute relative L2-norms for the numerical pressure field errors of the NFV and NCFV

schemes compared to known analytical solution: err(p)N FV,anl and err(p)NC FV,anl ,

respectively.

If the well pressure is given, we use the numerical model for the well cell. Peace-

man formula is applicable only for the cubic grids and is used with the NFV scheme,

while the NCFV scheme is used for all experiments. In this case we compute relative

L2-norm for the pressure error for the NFV scheme + Peaceman (err(p)N FV,pcm ) and

for the NCFV scheme (err(p)NC FV ), and the errors between the numerical well rate

of the NFV and NCFV schemes and the analytical rate (err(q)N FV and err(q)NC FV ,

respectively).

4.1 Test 1: Single Shifted Well, Hexagonal Prismatic Grid

For the first experiment we use one layer of the regular hexagonal prismatic grid.

The well is shifted from the well cell centroid along the vector v = (1, 1, 0) by the

value α · d/2, where d is the cell diagonal length.

Table 1 shows the relative L2-norms of pressure error for the NFV scheme with

the analytical well cell rate and for the NCFV scheme.

Table 1 Solution relative errors for the NFV scheme and the near-well correction method for

shifted well on hexagonal prismatic grid

α err(p)N FV,anl err(p)NC FV

0 1.1e-4 8.2e-11

0.1 1.4e-3 2.0e-11

0.3 4.2e-3 1.0e-11

0.5 7.1e-3 1.1e-11
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Fig. 2 Solution for the NCFV scheme for shifted well on hexagonal prismatic grid, α = 0.5

Table 2 Solution error for the NFV and the NCFV, and the flux error for the NCFV scheme. 3D

anisotropic case with the 60◦ slanted well

err(p)N FV,anl err(p)NC FV err2(p)N FV,anl err2(p)NC FV err(q)NC FV

3.8e-6 2.5e-10 1.9e-2 1.2e-6 2.9e-5

Fig. 3 Analytical solution for 3D anisotropic case with the 60◦ slanted well

Any well index based method incorporating the well within a single cell, will not

provide the non-symmetric solution by construction. In contrast, the NCFV scheme

can reproduce a non-symmetric solution (see Fig. 2).

4.2 Test 2: Slanted Well in 3D Anisotropic Media

Now we consider the slanted well in 3D rotated by 60◦ from the vertical. The tensor

is diagonal anisotropic: K = diag{10, 100, 1}. The orthogonal grid has 10 layers

and Dirichlet boundary conditions are given for all boundaries (Fig. 3) .
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Fig. 4 Relative error for the NFV scheme with Peaceman well model (left) and the NCFV scheme

(right) in the log-scale. Cubic grid 134 × 67 × 1

The pressure and flux errors for this case are presented in Table 2. Due to the high

anisotropy the solution variation is very small: p ∈ [1.997, 1.999]. To capture the

error compared to this variation, we introduce err2(p)∗, which is the relative error

normalized by ||panl − panl,min||.

4.3 Test 3: Two Vertical Wells, Cubic Grid

The second experiment deals with two wells in the box domain with a cubic grid. The

well rates are q1 = 1, q2 = 4 and the analytical solution suggested in [6] is defined

by fixing the pressure in the middle point between two wells.

Table 3 shows the relative errors for the NFV and the NCFV scheme for the

analytical well rates, relative errors for pressure and well rates (the first and the second

well) for the numerical well models: NFV + Peaceman and the NCFV scheme.

Figure 4 presents the error fields for two methods in the log-scale. The NFV

scheme reduces to the standard TPFA for this case and the cubic grid is ideal for the

Peaceman method. The largest error of the NFV scheme is concentrated in regions

around the wells that are covered by the near-well regions of the new method. The

NCFV scheme gives considerably smaller errors than the conventional method.

5 Conclusion

We present the near-well nonlinear correction FV scheme applicable for the general

case of anisotropic media, polyhedral grids and arbitrarily oriented wells including

slanted, shifted and partially perforated cases.

Numerical experiments show the significant reduction of the numerical errors

compared to the original monotone nonlinear FV scheme with the conventional

Peaceman well model or with the given analytical well rate.
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Table 3 Solution relative errors and flux errors for q1 and q2 for the problem with two wells

100/h err(p)N FV,anl err(p)NC FV,anl err(p)N FV,pcm err(p)NC FV err(q)N FV err(q)NC FV

33 1.2e-2 2.8e-5 1.2e-2 2.8e-5 4.6e-3 1.9e-2 2.1e-5 4.1e-5

67 5.1e-3 7.0e-6 5.2e-3 7.6e-6 4.6e-3 1.9e-2 2.3e-5 5.4e-5

99 3.1e-3 3.2e-6 3.1e-3 4.1e-6 4.6e-3 1.8e-2 2.0e-5 7.0e-5
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