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Abstract We present a cell-centered finite volume (FV) scheme with the compact

stencil formed mostly by the closest neighboring cells. The discrete solution satisfies

the discrete maximum principle and approximates the exact solution with second-

order accuracy. The coefficients in the FV stencil depend on the solution; therefore,

the FV scheme is nonlinear. The scheme is applied to the steady state diffusion

equation discretized on a general polyhedral mesh.

1 Introduction

We present a new monotone FV method for the 3D diffusion equation with anisotropic

coefficients based on a nonlinear multi-point flux approximation scheme. It satisfies

the discrete maximum principle (DMP), works for full anisotropic diffusion tensors

and on polyhedral meshes, provides the second order accuracy and has a compact

stencil. The basic idea of our approach belongs to LePotier [7] who proposed a

monotone FV scheme with a nonlinear two-point flux approximation for the dis-

cretization of parabolic equations on triangular meshes. The method was extended

to steady-state diffusion problems with full anisotropic tensors on general meshes

[4, 8, 11]. For a comprehensive review of nonlinear FV methods we refer to [5].

Recently a new cell-centered minimal stencil FV method with DMP was proposed

for full diffusion tensors and unstructured conformal polygonal 2D meshes [9]. The
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3D extension of the method was proposed in [3], the similar algorithm was proposed

independently in [6]. In this paper, we demonstrate the properties of the 3D method

from [3] on the set of benchmark problems [1]. The FV scheme works on general

polyhedral meshes and satisfies DMP in contrast to nonlinear two-point FV scheme

from [4], which provides only non-negativity of the discrete solution.

2 Steady State Diffusion Equation

Let Ω be a three-dimensional polyhedral domain with boundary Γ .We consider a

model diffusion problem for unknown concentration c:

−div(K∇c) = g in Ω

c = gD on ΓD

−n · K∇c = gN on ΓN ,

(1)

where Γ = ΓD ∪ ΓN , ΓD �= ∅, K(x) = K
T (x) > 0 is a diffusion tensor, g is a

source term and n is the exterior normal vector.

We consider a conformal polyhedral mesh T composed of shape-regular cells

with planar faces. We assume that each cell is a star-shaped 3D domain with respect

to its barycenter. For simplicity, we assume that the diffusion tensor K(x) is constant

inside each cell; however it may jump across mesh faces as well as may change

orientation of principal directions.

We denote by FI , FB disjoint sets of interior and boundary faces, respectively.

The subset FJ ⊂ FI collects faces with jumping tensor. Let FT denote the sets of

faces of polyhedron T . The set FB is further split into subsets F D
B and F

N
B where

the Dirichlet and Neumann boundary conditions, respectively, are imposed.

3 Nonlinear FV Scheme

The FV scheme uses one degree of freedom, CT , per cell T collocated at xT , the

barycenter of the cell. For every face f ∈ FI ∪ FB , we denote the face barycenter

by x f and associate a collocation point with x f for f ∈ FB .

We shall refer to collocation points on faces as the auxiliary collocation points.

They are introduced for mathematical convenience and will not enter the final alge-

braic system although will affect system coefficients. In contrast, we shall refer to

the other collocation points as the primary collocation points whose discrete concen-

trations form the unknown vector in the algebraic system.

For every cell T we define a set �T of nearby collocation points. First, we add to

�T the collocation point xT . Then, for every face f ∈ FT \ (FJ ∪FB), we add the



A Finite Volume Scheme with the Discrete Maximum 199

collocation point xT ′
f
, where T ′

f is the cell sharing f with T . Finally, for boundary

faces f ∈ FT ∩ FB , we add the collocation point x f .

Let q = −K∇c denote the flux which satisfies the mass balance equation:

div q = g in Ω. (2)

A cell-centered FV scheme is derived by integrating Eq. (2) over a polyhedral cell T

and using the Green’s formula:

∫

∂T

q · nT ds =

∫

T

g dx, (3)

where nT denotes the external unit normal to ∂T . Let f denote a face of cell T and n f

be the corresponding normal vector. It will be convenient to assume that |n f | = | f |,

where | f | denotes the area of face f . The Eq. (3) becomes

∑

f ∈∂T

q f · n f =

∫

T

g dx, (4)

where q f is the average flux density for face f .

3.1 Diffusive Flux in Homogeneous Anisotropic Medium

Let us first consider a homogeneous medium. We assume that for every cell-face pair

Ti ∈ T , f ∈ FTi
, there exist three points x f, j , x f,k , and x f,l in set �Ti

such that

the following condition holds: the co-normal vector ℓ f = K(x f )n f started from xTi

belongs to the trihedral corner formed by vectors

ti j = x f, j − xTi
, tik = x f,k − xTi

, til = x f,l − xTi
, (5)

and

ℓ f = αi j ti j + αiktik + αil til , (6)

where αi j > 0, αik ≥ 0, αil ≥ 0. We assume that the first point, x f, j , belongs to

the cell T j which shares f with Ti . If �Ti
does not contain the desired points, one

can extend �Ti
with other neighbors of Ti . This extension leads to increasing the

minimal stencil. The algorithm of a search of such points is described in [4].

Recalling the definition of the diffusive flux and using finite differences to approx-

imate directional derivatives, we obtain:

q · n f = −∇c · (KTi
n f ) = −αi j∇c · ti j − αik∇c · tik − αil∇c · til

= −αi j (CT j
− CTi

) − αik(CTk
− CTi

) − αil(CTl
− CTi

) + O(| f |).
(7)



200 A. Chernyshenko and Y. Vassilevski

Fig. 1 Co-normal vector ℓ f
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The numerical diffusive flux is obtained by dropping out the term O(| f |).

Setting i = 1, j = 2, k = 3, l = 4 in (7) (see Fig. 1) we obtain a numerical

diffusive flux q
(1)
f from cell T1 to cell T2 through their common face f . Similarly,

setting i = 2, j = 1, k = 5, l = 6 in (7) and assuming that −ℓ f started from xT2

belongs to the trihedral corner formed by vectors t21, t25, t26, we obtain a different

numerical flux, q
(2)
f , in the opposite direction. The final numerical flux is a linear

combination of these two fluxes:

q f = µ1q
(1)
f + µ2(−q

(2)
f )

= µ1(α12(CT1 − CT2) + α13(CT1 − CT3) + α14(CT1 − CT4))

− µ2(α21(CT2 − CT1) + α25(CT2 − CT5
) + α26(CT2 − CT6)).

(8)

In [4] the weights µ1 and µ2 are selected to obtain the two-point discretization. In

this work they are selected to balance the relative contribution of the left and the

right fluxes to the final flux. The second requirement is to approximate the true flux.

These requirements lead us to the following system

q
(1)
f µ1 + q

(2)
f µ2 = 0,

µ1 + µ2 = 1. (9)

If |q
(1)
f | + |q

(2)
f | = 0, the solution of these two equations is not unique and we

set µ1 = µ2 = 1/2. Otherwise, we have |q
(1)
f | + |q

(2)
f | �= 0 and must consider two

cases. In the first case q
(1)
f q

(2)
f ≤ 0 and the solution is

µ1 =
|q

(2)
f |

|q
(1)
f | + |q

(2)
f |

, µ2 =
|q

(1)
f |

|q
(1)
f | + |q

(2)
f |

. (10)

Thus,

q f =
2q

(1)
f |q

(2)
f |

|q
(1)
f | + |q

(2)
f |

= −
2q

(2)
f |q

(1)
f |

|q
(1)
f | + |q

(2)
f |

(11)
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and the diffusive flux has two equivalent algebraic representations:

q f = 2µ1(α12(CT1 − CT2) − α13(CT1 − CT3) − α14(CT1 − CT4))

= A12(CT1 − CT2) + A13(CT1 − CT3) + A14(CT1 − CT4)
(12)

and

−q f = 2µ2(α21(CT2 − CT1) − α25(CT2 − CT5
) − α26(CT2 − CT6))

= A21(CT2 − CT1) + A25(CT2 − CT5
) + A26(CT2 − CT6)

(13)

with non-negative coefficients A12, A13, A14, A21, A25 and A26. Note that these coef-

ficients depend on the fluxes and hence on the concentrations at neighboring cells.

The second case q
(1)
f q

(2)
f > 0 leads to a potentially degenerate diffusive flux. In order

to avoid this degeneracy, we re-group the terms in (8) following [11]

q f = µ1q̃
(1)
f + µ2(−q̃

(2)
f ) + (µ1α12 + µ2α21)(CT1 − CT2), (14)

where q̃
(1)
f = α13(CT1 −CT3)+α14(CT1 −CT4), q̃

(2)
f = α25(CT2 −CT5

)+α26(CT2 −

CT6). The coefficients µ1 and µ2 are computed by balancing the modified numerical

fluxes

q̃
(1)
f µ1 + q̃

(2)
f µ2 = 0

and using the convexity condition. Again, if the solution is not unique, we set

µ1 = µ2 = 1/2. For the case q̃
(1)
f q̃

(2)
f ≤ 0 we obtain

q f = 2µ1q̃
(1)
f + (µ1α12 + µ2α21)(CT1 − CT2)

= A13(CT1 − CT3) + A14(CT1 − CT4) + A12(CT1 − CT2)

= −2µ2q̃
(2)
f − (µ1α12 + µ2α21)(CT2 − CT1)

= −A25(CT2 − CT5
) − A26(CT2 − CT6) − A21(CT2 − CT1),

(15)

where A12 = A21 = µ1α12 + µ2α21. For the case q̃
(1)
f q̃

(2)
f > 0, we obtain

q f = (µ1α12 + µ2α21)(CT1 − CT2) = A12(CT1 − CT2). (16)

The coefficients A12, A13, A14, A21, A25 and A26 in (15), (16) are non-negative by

construction and depend on the concentrations.

We use the Dirichlet boundary data on faces f ∈ F D
B , C f =

∫

f
gDds/| f | as

the known values of the concentration at points x f . For the Neumann boundary data

on faces f ∈ F
N
B we calculate the diffusive flux as q f = gN , f , where gN , f is the

average value of gN on f .
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3.2 Diffusive Flux in Heterogeneous Anisotropic Medium

Let us consider a heterogeneous medium. Let a face f ∈ FJ be shared by cells T1

and T2. We denote the plane containing f by p f and consider a continuous piecewise

linear function R(x) such that

R(xT1) = CT1 , R(xT2) = CT2 , (17)

and the diffusive flux of R(x) is continuous:

KT1∇R(x)|T1 · n f = KT2∇R(x)|T2 · n f . (18)

Then, there exists a harmonic averaging point y f ∈ p f and a coefficient 0 ≤ α f ≤ 1

independent of R such that [2]:

C f ≡ R(y f ) = α f CT1 + (1 − α f )CT2 , (19)

where

α f =
d2, f n f · (KT1 n f )

d2, f n f · (KT1 n f ) + d1, f n f · (KT2 n f )
, (20)

and di, f is the distance from point xTi
to plane p f .

The scheme can be adjusted to discontinuous tensors by using harmonic averaging

points. The approximation of the directional derivative ∇c · ti j is accurate only inside

each material. This limits significantly the number of admissible directions ti j to the

point that expansion (6) does not exist. The additional vectors from collocation

points xTi
and xT j

to the harmonic point y f can be used to find the expansion.

The formula for the final diffusive flux q f involves both CTi
and C f , but the latter

can be eliminated using the convex combination (19) without increasing the stencil

size and preserving the DMP. For example, formula (12) is modified as follows:

q f = A12(CT1 − C f ) + A13(CT1 − CT3) + A14(CT1 − CT4)

= A12(1 − α f )(CT1 − CT2) + A13(CT1 − CT3) + A14(CT1 − CT4).
(21)

The other formulas are modified similarly.

3.3 Solution of the System

Let C be the vector of all cell-centered unknowns. Replacing the fluxes in Eq. (4) by

their numerical approximations, we obtain a system of nonlinear equations

M(C)C = F(C). (22)
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with a square M-matrix M and a right hand side vector F. The entries of M are

defined by formulas (12), (13), (15), (16) and (21) and depend on C. We note that

coefficients from (12) and (13) are landed into the rows of M corresponding the cells

T1 and T2, respectively. The matrix M has diagonal dominance in rows, which leads

to the DMP. The system is solved by the Picard method or Anderson method [10].

The DMP holds for both the converged solution and each Picard iterate.

4 Numerical Experiments

We verify the convergence and monotonicity properties of the proposed nonlinear

FV scheme with a few numerical experiments. We consider 3D benchmark problems

from FVCA-6 [1] with corresponding notations.

• Test 1: Mild anisotropy, c(x, y, z) = 1+sin(πx) sin
(

π
(

y + 1
2

))

sin
(

π
(

z + 1
3

))

,

min = 0, max = 2, Tetrahedral meshes (B),Voronoi meshes (C), Kershaw

meshes(D), Checkerboard meshes (I)

Mesh i nu nmat umin umax normg erl2 ratiol2 ergrad ratiograd

2 3898 23300 0.003 1.986 1.764 6.23e−03 1.399 2.06e−01 0.872

3 7711 44504 0.004 1.997 1.771 3.69e−03 2.303 1.67e−01 0.923

B 4 15266 86993 0.002 1.997 1.780 2.81e−03 1.197 1.31e−01 1.066

5 30480 169809 1e−04 1.998 1.785 1.67e−03 2.258 1.06e−01 0.919

6 61052 334864 3e−05 1.998 1.789 1.15e−03 1.611 8.66e−02 0.873

2 66 1159 0.045 1.925 1.627 7.50e−02 −0.054 5.70e−01 1.695

3 130 2241 0.020 1.967 1.608 3.92e−02 2.871 4.23e−01 1.320

C 4 228 3875 0.020 1.965 1.689 2.56e−02 2.275 3.13e−01 1.608

5 356 6100 −0.002 1.991 1.689 2.05e−02 1.496 2.50e−01 1.513

2 4096 33832 0.002 2.000 1.693 6.73e−02 0.398 5.55e−01 0.115

D 3 32768 250058 −0.002 1.996 1.723 4.95e−02 0.443 4.00e−01 0.472

4 262144 1810432 0.003 1.997 1.761 3.02−03 0.713 2.31e−01 0.792

2 288 3240 0.050 1.960 1.761 3.32e−02 1.060 3.16e−01 0.989

I 3 2304 23376 0.001 1.995 1.770 9.35e−03 1.828 1.37e−01 1.206

4 18432 176544 0.002 1.998 1.789 2.79e−03 1.745 5.90e−02 1.215

5 147456 1369920 1e−04 2.000 1.796 9.23e−04 1.596 2.72e−02 1.117

• Test 2: Heterogeneous anisotropy, c(x, y, z) = x3 y2z + x sin(2πxz) sin(2πxy)

sin(2π z), min = −0.862, max = 1.0487, Prism meshes

i nu nmat umin umax normg erl2 ratiol2 ergrad ratiograd

1 1210 14275 −1.006 1.006 3.035 3.36e−02 3.14e−01

2 8820 92696 −0.971 0.971 3.388 8.29e−03 2.114 1.17e−01 1.491

3 28830 289232 −1.000 1.000 3.492 3.68e−03 2.057 6.07e−02 1.662

4 67240 658039 −0.998 0.998 3.534 2.07e−03 2.038 3.67e−02 1.782
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The differential problems of Test 1 and Test 2 do not satisfy the maximum principle

since the exact solution has local extrema. Therefore, no numerical scheme can

guarantee DMP.

• Test 4: Flow around a well, min = 0, max = 5.415, Well meshes

i nu nmat umin umax normg erl2 ratiol2 ergrad ratiograd

3 5016 40585 0.172 5.329 1581.870 1.92e−03 2.765 7.22e−02 2.207

4 11220 87248 0.128 5.330 1603.979 1.18e−03 1.814 4.79e−02 1.529

5 23210 175975 0.097 5.339 1612.048 6.86e−04 2.239 3.20e−02 1.665

6 42633 318146 0.075 5.345 1615.236 4.78e−04 1.782 2.21e−02 1.826

7 74679 551433 0.058 5.361 1617.424 3.39e−04 1.839 1.69e−02 1.436

• Test 5: Discontinuous permeability, c(x, y, z) = ai sin(2πx) sin (2πy) sin

(2π z), min = −100, max = 100, Locally refined meshes

i nu nmat umin umax normg erl2 ratiol2 ergrad ratiograd

1 22 124 −209.045 209.045 442.542 1.09e+00 1.00e+00

2 176 1112 −43.618 43.618 58.442 2.23e−01 2.289 1.80e+00 −0.848

3 1408 9376 −83.042 83.042 89.814 5.76e−02 1.953 3.16e−01 2.510

4 11264 76928 −95.567 95.567 97.224 1.36e−02 2.082 1.53e−01 1.046

The proposed 3D nonlinear FV scheme for the diffusion equation satisfies the

discrete maximum principle and has a compact stencil. The scheme provides asymp-

totic second order accuracy for concentrations except for extremely irregular Kershaw

meshes.
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