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Abstract—The paper is devoted to the nonlinear finite volume method applied for tracking interfaces
on unstructured adaptive meshes. The f luid of volume approach is used. The interface location is
described by the fraction of f luid in each computational cell. The interface propagation involves the
simultaneous solution of the fraction advection and interface compression problems. The compression
problem is solved to recover the interface (front) sharpness, which is smeared due to numerical diffu-
sion. The problem discretization is carried out using the nonlinear monotone finite volume method.
This method is applied to unstructured meshes with adaptive local refinement.
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1. INTRODUCTION

Interface tracking methods are in demand in many physical applications, such as free-surface f luid
flows [1–3], multiphase f luid f lows [4], mean curvature f lows [5–8], solidification of alloys [9], image
enhancement [10], etc. Numerous existing codes use the volume of f luid method to implicitly track the
interface [11–15]. Two main approaches to mitigating the interface smearing are described in the litera-
ture—geometric reconstruction [16–18] and interface compression methods [19–23]. The second
approach requires the solution of a backward parabolic partial differential equation. A typical difficulty in
the compression method is the interface distortion, which becomes more pronounced in the case of large
time steps [18]. Some works propose adaptation of the interface compression parameters to solve this
problem [24–26]. A popular alternative approach is the level set function method [27–30]. This method
requires the solution of reinitialization problem, and it does not preserve the f luid mass; a number of
works are devoted to these issues [31–34]. In this paper, we consider the approach based on the volume
of f luid method in combination with the interface compression method.

A number of high-resolution schemes for solving the volume-of-fluid advection problem were pro-
posed [35–38], in particular, for the advection–compression problem [39, 23, 40–42]. In this paper, we
adopt the nonlinear finite volume method that was earlier developed for the anisotropic diffusion problem
[43–47], for solving the advection–compression problem. In combination with the backward Euler
scheme for the time derivative, the proposed method preserves physical bounds of the calculated f luid
fraction and allows for time steps with the Courant number greater than one. The methods applies to gen-
eral unstrutured meshes, i.e., to consistent meshes with general polyhedral cells.

The paper is organized as follows. In Section 2, we formulate the problem and describe the nonlinear
finite volume method. In Section 3, we present our parallel technology for the adaptive refinement of gen-
eral unstructured meshes. Section 4 describes numerical experiments that demonstrate the capabilities of
the method and the technology based on it.
1041



1042 VASSILEVSKI, TEREKHOV
2. NONLINEAR FINITE VOLUME DISCRETIZATION
Let a scalar function  represent the fraction of volume occupied by the f luid at each point of the com-

putational domain , and let  be a given velocity vector field. Then, the advection of the unknown func-
tion  is governed by the equation

(2.1)

where  is the outward normal to . On the boundary, we condsider the homogeneous Neumann
boundary condition.

The numerical solution of the advection equation smears the interface due to numerical diffusion. To
recover the interface sharpness, the advection equation (2.1) is augmented with the interface compression
term [26, 19]

(2.2)

subject to the same initial and Neumann boundary conditions. The parameter  is typically defined
using , and it controls the strength of the interface compression. In this work, we adjust  adaptively
following [26]. In the denominator, we use the regularized Frobenius norm.

Remark 2.1. Problem (2.2) is a nonlinear advection–diffusion problem 

with a negative diffusion coefficient  which makes Eq. (2.2) a backward parabolic
problem [48].

2.1. Advection Problem

Let  be covered by a consistent polyhedral mesh that can be adapted at different time steps. Denote
the center of the cell  by  and assign to it a degree of freedom.

First, we consider the advection problem (2.1). Applying the Ostrogradsky–Gauss theorem to the inte-
gral over the cell V, we obtain

(2.3)

which is approximated with the second-order accuracy by

(2.4)

where  is the volume of the cell  bounded by the set of faces ,  and  are the area and the bary-
center of the face , and  is the projection of velocity onto the face normal

(2.5)

The sign of  depends on the orientation of the face normal .
To discretize Eq. (2.4), we should approximate the time derivative. To simplify the presentation, we use

the backward Euler scheme:

(2.6)

In practice, we use the Crank–Nicolson scheme.
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Fig. 1. In the upstream method,  is used for approximating  at the face barycenter. 

Upstream collocation point

(velocity vector) u �f = n · u > 0
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V1

�2�1

Downstream collocation point

ψ1 ψ
The residual vector  for the backward Euler scheme (2.4) in the cell  is

(2.7)

which requires the f lux  to be approximated on each face f.

The residual vector  is associated with the Jacobian

In the following description of the Jacobian properties, we omit the time level index and assume that
 and .

In this work, we assume that a discrete divergent-free velocity field  is defined on the mesh faces at
each time step:

(2.8)

Since  is assumed to be given, the key point in the approximation of the f lux  is the compu-

tation of .

Consider an internal face  with the normal  that is outward for the cell  and inward for
the cell . Let ; then, the single-point upstream method approximates  with the first-
order accuracy (Fig. 1).

With such an approximation of , the row of the Jacobian in (2.7) corresponding to the advection in

cell  surrounded by its neighbors  is assembled as

(2.9)

which gives a Jacobian that is an M-matrix [49]. Indeed, the diagonal elements of this Jacobian are posi-
tive, its off-diagonal elements are negative, and the sum of the elements in each row is zero due to (2.8).
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The second-order approximation for  is obtained using the antidiffusive correction

(2.10)

First, we consider the antidiffusive correction on a one-dimensional mesh with equidistant spacing 
between the collocation centers and faces. Using the notation of Fig. 2, we introduce two different approx-
imations for the correction  at the point :

(2.11)

where  and  are the approximations on the cells  and , respectively. With these corrections, we
obtain two second-order approximations of :

(2.12)

with the variations

(2.13)

The corrections  and  do not affect the row sums in the Jacobian matrix. The second-order approxi-
mations of  in the cell  and  in the cell  make the following contributions
to the Jacobian matrix:

(2.14)

which preserves the M-matrix property. However, the use of different approximations of the f lux  on dif-
ferent sides of the face  violates the conservation law. To make the f lux unique, we consider a nonlinear
convex combination of two approximations with nonnegative coefficients :

(2.15)

We use the weights known as Van Leer limited averages [50]

(2.16)

Then, we obtain  for  and  for . To avoid

division by zero, we regularize the modulus operation in (2.16) as , where  is a small con-
stant.

Neglecting the derivatives in  and  and considering the approximation  for  and

 for  in the case , we obtain the following contributions of approximations
(2.15) to the Jacobian:

(2.17)

This approach is known as the Picard iterative method [51], which preserves the M-matrix property of the
Jacobian at each nonlinear iteration and the conservation property when the nonlinear iterations con-
verge. In practice, we use approximation (2.15) within the Newton iterative method.

The antidiffusion correction can be easily extended to unstructured polyhedral meshes in  dimen-
sions. Again, we assume that  and, therefore,  is an upstream cell. Let us find two corrections 
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Fig. 2. Notation for the 1D antidiffusive correction. 
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Fig. 3. Notation for the 2D antidiffusive correction on a polygonal mesh. 
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and  using combinations of adjacent collocation points (see Fig. 3 for the 2D case). We define the anti-
diffusion correction  for the face f in the cell  as follows.

Let the set  consist of the cells  with the collocation  that have at least one common node with
 and the boundary faces with the outward normal  adjacent to . For each element  in , we define

the vector  and the value  by

Note that the scalar product of the vector  with the gradient  is the finite difference in the direc-
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then, the antidiffusion correction  takes the form

(2.19)

where  for the boundary face. The contribution of the correction  preserves the row sums in the
Jacobian and its M-matrix property:

(2.20)

On each boundary face  adjacent to , the unique approximation with the correction  also
preserves the M-matrix property of the Jacobian.

Note that changing the direction of the approximated vector  to  requires the signs of the
coefficients in (2.19)–(2.20) to be reverted.

Similarly, using the set  for the cell , we choose in   elements  ( ) that ensure

 with nonnegative weights  that minimize the expression

Then, the antidiffusion correction in  is given by

The value  is approximated by the nonlinear combination (2.15) with the coefficients (2.16).

2.2. Interface Compression
Consider the integral over a cell for the interface compression equation
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The residual of the backward Euler scheme for the finite volume  (2.2) is
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where  is defined in (2.7).
In problem (2.22), we should discretize the compressive f lux :
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where  is the normal component of the compressive velocity.
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In formula (2.24), vectors  and gradients  in the cells  ( ) are used. The velocity vector
 in  is recovered [52] from the normal face velocities as 

(2.25)

The gradient  in any cell  is recovered by the least-squares method: the set  gives the equations
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Fig. 4. Two cases when both one-sided approximations are not admissible.
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Fig. 5. Splitting steps of an edge (a), face (b), and introduction of faces that split the cell (c). Red indicates new elements
at each step.

(a) (b) (c)
where  is the residual in (2.22) and  is the corresponding Jacobian. The next
approximation is obtained by the rule

(2.37)

The parameter  restricts the maximum change of  in (2.37) in any cell :  [53]. Iter-
ations can stagnate; therefore, we apply the following heuristics to decrease  with increasing number of
nonlinear iterations :

(2.38)

The parameter  is the only constraint in the computation of the next iterative approximation in the
Newton method.

The iterations proceed until , where , . The linear
system (2.36) is assembled and solved using the capabilities of the INMOST platform [54–56].

3. MESH ADAPTATION

For parallel adaptation of unstructured meshes, we use the tools available on the INMOST platform
(www.inmost.org). A detailed description of the algorithms is available in [54–58].

A cell of a polyhedral mesh is locally refined by introducing a new node at its center and hanging nodes
at the centers of faces and edges and further splitting of the cell, faces, and edges as shown in Fig. 5. The
refinement is gradual—refinement levels of two adjacent cells may differ in no more than one.

The local coarsening uses the hierarchy of sets of mesh elements represented by a tree-like structure
(see Fig. 6). As a cell is refined, a new set with a unique name representing this cell is attached to the parent
(root) set. All new cells become elements of this set as illustrated in Fig. 6. Cells can be coarsened only on
the leaf set of the tree structure that was formed as a result of refinement. The information stored in this
set is used to control the local coarsening.

The mesh is refined or coarsened by no more than one level during each sweep over mesh elements. In
the parallel environment, the consistency of the mesh distributed among processors, as well as missing
and excessive elements of overlapping layers, are automatically recovered [58, 54]. In this work, we used
the package Parmetis for mesh partitioning [59, 60].

To transfer data as the mesh is refined or coarsened, we use the mesh modification state. In the mod-
ification state, all the old elements are retained up to the end of this state, so that the solution can be inter-
polated from the old mesh elements to the new ones.

In the preparatory step, we compute the gradients for  and  using the least-squares method.
During refinement, the interpolation from an old cell  to the new cells  is carried out by the rule

(3.1)

ξ( )lR ξ ∂ ξ ∂ ξ T( ) = ( )/ ( )l l lJ R

+ξ ξ + ωΔξ1 = .l l

ω ξl
kV ω ≤ Δξ0.3/| |k

ω
l

( )
( )

 + −
 ω ω 

+ − 
 

51 exp
2= min , .
51 exp

6 2
l

ω

( )ξ ≤ τ τ ψabs rel( ) min , ( )l nR R −τ 9
abs = 10 −τ 2

rel = 10

+ψ 1n ψn

0V iV
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0 0 0 0= ( ) , = ,i i ix x
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 62  No. 7  2022



1050 VASSILEVSKI, TEREKHOV

Fig. 6. Organization of sets of elements into a tree structure (a). The original unsplit mesh of three cells (b). After splitting
the cell , a new set is attached to the parent (root) set (c). This set remembers all the small cells that form the original
cell .

Parent

(a) (b) (c)
Root set Root set

Element set

Child

Sibling

С1 С2 С1 С2 С4 С5

С6 С7

С3

Elements Elements Elements

Element set C3

3C
3C
where  is chosen so as to satisfy the following condition for the new cells :

(3.2)

here  is either  or , and  is the set of cells that share at least one node with . Such an inter-
polation is conservative under the condition  and is monotone due to (3.2). For coars-
ening  to the cell , we use the simple averaging

(3.3)

which is monotone and conservative.
The refinement criterion is based on estimating the variation of the solution on the mesh faces. Let 

be the face dividing the cells  and . Then, both cells are marked to be refined if the maximum refine-
ment level will not be exceeded and if

(3.4)

A cell is coarsened when none of its faces requires refinement and if the minimum coarsening level is not
reached.

The approximate solution of the unsteady problem (2.2) by the finite volume method with mesh adap-
tation is obtained by the following procedure:

1. Solve the advection equation (2.1) for  using the first-order upstream discretization and the
backward Euler scheme in one linear iteration to predict the interface location at the next time step.

2. Locally refine the mesh using the variation of  on the mesh faces, balance the mesh among pro-
cessors, and interpolate  and  to the refined mesh.

3. Perform several Newton iterations for the advection problem (2.1) using the nonlinear second-order
spatial upstream discretization in combination with the Crank–Nicolson scheme to obtain a better initial
guess  for the next step.

4. Solve the advection–compression equation (2.2) using the nonlinear second-order spatial discreti-
zatiion in combination with the Crank–Nicolson scheme to obtain ; here  is used as the initial
approximation for the Newton iterations.

η iV

∈ ∈
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0 0

T
0 0 0
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min ( ) ( ) ( );max

j n j n
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Fig. 7. Isosurface  and the middle ( ) cutaway of the mesh at  colored with . A similar palette
is used in the following figures.
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5. Coarsen the mesh using the variation of  on the mesh faces, balance the mesh among processors,
and interpolate  and  to the coarsened mesh.

The functions , , and  provide (with different errors) approximations of the true interface
location in terms of the isosurfaces for the value . The best approximation is given by  and the
worst approximation is given by .

4. NUMERICAL EXAMPLES
4.1. Zalesak’s Test

Consider Zalesak’s benchmark [61] for a sphere rotating in the velocity field 

(4.1)

The velocity field is specified in the unit cube .

The rotating object is a sphere of radius  centered at the point  with a cut
formed by the box . The projection of velocity  on the face of the cell
and the fraction of f luid  in the cells are computed by subdividing polygons and polyhedra into triangles
and tetrahedra, respectively, and by integrating the mean values with the th order of accuracy. The f luid
fraction  equals 1 inside the object and equals 0 outside the object. The problem is solved for the time

 during which the object performs one revolution.

The initial mesh is obtained from the cubic  mesh with two levels of refinement toward the
interface (see Fig. 7). The resulting adaptive mesh with two refinement levels is consistent if its cubic cells
are considered as polyhedral. The object is visualized using the program Paraview [62] through the isosur-
face .

In Fig. 8, we demonstrate the impact of using the second-order discretization on the solution of the
advection problem (2.1) with the time step  and the Courant number . The accuracy of dis-
cretization both with respect to time and space is extremely important. However, the scheme is fairly dis-
sipative, and severe smearing of the interface causes the mesh coarsening, which further reduces the accu-
racy of recovering the interface.

In Fig. 9, we compare the nonlinear finite volume method for the advection–compression problem
(2.2) with the backward Euler and Crank–Nicolson time discretization schemes with the time step

, . The compression method significantly improves the interface resolution. The Crank–
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Fig. 8. Isosurface  and the middle ( ) cutaway of the mesh at  colored with . Solution of
(2.1) by the single-point upstream method with the backward Euler scheme (UPW1-BE), the second-order nonlinear
finite volume method with the backward Euler scheme (UPW2-BE), and the second-order nonlinear finite volume
method with the Cranc–Nicolson scheme (UPW2-CN). The time step  and .
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Fig. 9. Isosurface  and the middle ( ) cutaway of the mesh at  colored with . Solution of
problem (2.2) by the second-order nonlinear finite volume method with the backward Euler scheme (CUPW2-BE) and
by the second-order nonlinear finite volume method with the Crank–Nicolson scheme (CUPW2-CN). The time step

 and .
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B
E

C
U

PW
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N

ψ = 0.5 = 0.5z = {0.5,1,1.5,2}t ψ
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Nicolson scheme preserves the object’s shape better than the backward Euler scheme while maintaining
the monotonicity of solution.

Figure 10 illustrates the application of the nonlinear finite volume method for solving problem (2.2) at
higher Courant numbers  ( ) and  ( ). For the backward Euler scheme at

, the interface compression is not sufficiently high to preserve a sharp interface; however, 
up to machine precision. The Crank–Nicolson scheme is not monotone at . Therefore, we further
use the Crank–Nicolson scheme with  because it provides the best interface resolution and still a
monotone solution.

The impact of the cubic mesh refinement up to the levels  and  is illustrated in Fig. 11. Even
though the interface is captured better with a finer mesh, the interface distortions are more noticeable on
finer meshes. In Fig. 12, we compare the effect of the adaptive choice of  (2.24) proposed in [26] with
the conventional choice . The artifacts on the interface are less pronounced due to the adaptive

≈ 2K Δ = 0.02t ≈ 4K Δ = 0.04t
≈ 4K ψ ∈ [0,1]

> 1K
≈ 1K

= 3L = 4L

α
α β= f
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Fig. 10. Isosurface  and the middle ( ) cutaway of the mesh at  colored with . Solution
of problem (2.1) by the second-order nonlinear finite volume method with the backward Euler scheme (BE) and Crank–
Nicolson scheme (CN) with the time step ,  (top) and ,  (bottom). Dark green and light
green colors correspond to  and , respectively.
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Fig. 11. Isosurface  and the middle ( ) cutaway of the mesh at  colored with . Solution
of problem (2.2) by the second-order nonlinear finite volume method with the Crank–Nicolson scheme on cubic meshes
(C) with  refinement levels with the time step  (top) and  refinement levels with  (bot-
tom). In both cases, .

(C
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 L
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 L
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 4

ψ = 0.5 = 0.5z = {0.5,1,1.5,2}t ψ

= 3L Δ = 0.005t = 4L Δ = 0.0025t
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choice (2.24). This effect is less noticeable on coarser meshes ( , ). Note that we use a signifi-
cantly larger time step than the conventional schemes.

The proposed method is implemented in the framework of the INMOST platform and, therefore, it
can be used on parallel computers. The distribution of the cubic mesh with  refinement levels
among  processors is illustrated in Fig. 13.

The dynamics of the number of cells and the number of Newton iteration steps in the simulation on a
cubic mesh with  refinement levels is shown in Fig. 14.

Finally, we demonstrate the ability of the method to deal with general polyhedral meshes. We consider
hexagonal and triangular prismatic meshes with  and  refinement levels, see Fig. 15. The

= 2L = 3L

= 4L
16

= 3L

= 2L = 3L
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Fig. 12. Isosurface  at  calculated on a cubic mesh with  refinement levels. The adaptive
choice of  by rule (2.24) (a) and conventional choice  (b).

(a) (b)

ψ = 0.5 = {0.5, 1, 1.5, 2}t = 4L
α α β= f

Fig. 13. Middle ( ) cutaway of the cubic mesh with  refinement levels at  colored with the
processor index .
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Fig. 14. Evolution of the number of cells (a) and the number of Newton method iterations (b) for solving problem (2.2)
by the nonlinear finite volume method with the Crank–Nicolson scheme on a cubic mesh with  refinement levels.
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meshes contain  prismatic layers in the direction , and the resolution of the coarse mesh in the direc-
tions  and  approximately corresponds to the resolution of the  cubic mesh.

4.2. Enright’s Test

Consider Enright’s test [61]. The velocity field  is specified in the unit cube :

(4.2)

16 z
x y × ×16 16 16

v
T= [ , , ]u wu Ω 3= [0,1]

π π π π
− π π π π
− π π π π

v

2

2

2

= 2 sin( ) sin(2 )sin(2 )cos( /3),

= sin(2 )sin( ) sin(2 )cos( /3),

= sin(2 )sin(2 )sin( ) cos( /3).

u x y z t

x y z t

w x y z t
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Fig. 15. Isosurface  and the middle ( ) cutaway of the mesh at  colored with . Solution
of problem (2.2) by the second-order nonlinear finite volume method with the Crank–Nicolson scheme on a hexagonal
prismatic mesh (H) and triangular prismatic mesh (P) with  ( ) and  ( ) refinement levels.
In both cases, .
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Fig. 16. Enright’s test: Isosurface of  at . Cubic mesh with  (b) and  (a) refine-
ment levels.
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ψ = 0.5 = {0.3, 0.75, 1.2, 1.5}T = 3L = 4L
The problem is solved by the nonlinear finite volume method with the Crank–Nicolson scheme on the
time interval . At the initial time , the advected object is defined by the sphere of radius

 centered at . The solutions on the cubic meshes with the refinement levels
 and  are depicted in Fig. 16. The object surface remains smooth, although the object resolu-

tion is much better on the finer mesh. The mesh resolution 16–128 (with  refinement levels) is insuf-
ficient for maintaining a simply connected isosurface .

5. CONCLUSIONS

In this paper, a nonlinear finite volume method for solving the interface advection–compression prob-
lem in the volume of f luid framework is proposed. The proposed scheme keeps the solution within the

∈ [0,1.5]t = 0t
= 0.15r T= [0.35,0.35,0.35]x
= 3L = 4L

= 3L
ψ = 0.5
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specified bounds , and it is applicable to adaptive meshes of general shape and admits large time steps.
A possible application of this scheme is the fully implicit simulation of free surface f lows.

In future, we are going to focus on less dissipative methods for advection, more accurate monotone
time integration methods, and consider other adaptive strategies for choosing the interface compression
parameter. A promising direction for improving the accuracy of schemes is the use of exponential integra-
tors for f lux approximation.
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