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a b s t r a c t

The paper introduces and compares several multiscale models of blood flow in the
aortic bifurcation against a reference 3D FSI solution [1]. All these models reproduce
the 3D flow in a small neighborhood of the junction. A three-scale model composed
of 3D, 1D and 0D equations provides flow rate and pressure close to the reference
3D FSI solution.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Our research was motivated by the comparative study of 3D fluid–structure interaction (FSI) and 1D
hemodynamic simulations for different parts of human arterial tree [1]. The study demonstrates good
agreement in averaged (at vessel cross-sections) blood pressures and flow rates of both models. Therefore,
one can use low-cost 1D hemodynamic simulations in clinical applications which need the averaged flow
rates and pressures. However, if clinicians want to visualize or postprocess 3D blood flow in a small part of
the arterial tree and cannot afford to wait for the result of time-consuming 3D FSI modeling, they have to
use a multiscale approach. In this approach, only a region of particular interest has 3D flow model, the other
part of the arterial tree is represented by a combination of 1D network and 0D models. However, even in
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the reduced 3D domain, the 3D FSI simulation is still computationally expensive, and the practical question
arises: can a 3D flow model with rigid walls be relevant for visualization and postprocessing? The answer
depends on the part of the arterial tree we are interested in.

It is known [2] that the 3D flow induced by a contracting pump in a compliant vessel differs essentially
from that in a vessel with rigid walls. In the rigid vessel, the pressure waveform everywhere is similar
and synchronous with that at the inlet, only amplitude being scaled according to localization of such
measurement. The volume flow rate does not change at any cross-section of the vessel. Therefore, in general,
one cannot expect similar waveforms in vessels with compliant and rigid walls. However, the aortic bifurcation
is known to be the major site of pressure wave reflection [2]. Physically, this implies that the bifurcation
behaves as an inserted patch with stiffer walls and considering the bifurcation as a rigid vessel may give an
acceptable result.

The paper introduces and compares several multiscale models of blood flow in the aortic bifurcation
against the reference solution of a 3D fluid–structure interaction problem computed in [1]. In contrast
to fast 1D hemodynamic solvers, all these models reproduce the 3D flow in a small neighborhood of the
junction and therefore are more efficient than the reference 3D FSI solver. A three-scale model incorporating
3D Navier–Stokes equations in the junction vicinity, 0D models of a compliant sphere at the inlet and outlet
of the 3D model, and 1D models at the inlet and outlet segments of the bifurcation provides flow rate and
pressure close to the reference 3D FSI solutions.

The paper is organized as follows. Section 2 describes an idealized aortic bifurcation with physiologically
relevant sizes and parameters of blood flow and the aortic wall. Section 3 introduces the reference 3D
fluid–structure interaction model and the 1D hemodynamic model. Section 4 describes reduced multiscale
models with various degrees and meanings of reduction. Section 5 presents comparative results of numerical
simulation by these models and a discussion of these results.

2. Experimental setting

We address an idealized model of the aortic bifurcation [1,3] with an inlet segment (abdominal aorta,
marked with subscript a) and two equal branch segments (iliac arteries marked with subscript i) forming
the angle 47.9 degrees. They are represented by three cylinders Ωa, Ωi,1, Ωi,2 with lengths La = 8.6 cm,
Li = 8.5 cm, radii ra = 0.86 cm, ri = 0.60 cm, diastolic cross-sectional areas Aa = 1.8062 cm2,
Ai = 0.9479 cm2, wall thicknesses ha = 1.032 mm, hi = 0.72 mm, Young’s modulii Ea = 500 kPa,
Ei = 700 kPa, density ρw = 1 g/cm3. The blood is assumed to have viscosity µb = 4 mPa s and density
ρb = 1060 kg/m3 and mean flow rate Q̄a = 0.4791 l/min.

The blood velocity profile at the inlet is assumed to be axisymmetric and constant in shape, the axial
velocity being equal to

u(ξ, t) = U(t)n−1(n + 2)[1 − (ξr−1)n], (2.1)

where r is the lumen radius, ξ is the radial coordinate, n = 9 is the polynomial order providing a good
approximation of experimentally measured profile, U(t) is the axial blood flow velocity averaged over the
cross-section. The flow rate Q(t) (the integral of u(ξ, t) over the inlet) is a given function of time [3], and
U(t) can be recovered from Q(t) if cross-sectional area is known. Depending on the model, one may impose
the velocity (for rigid wall models) or the flow rate (for compliant wall models) as the boundary condition
on the inlet. Each terminal vessel is coupled with a three-element 0D Windkessel model:

Q(1 + R1/R2) + CR1∂Q/∂t = (P − Pout)/R2 + C∂P/∂t, (2.2)

where Q and P are unknown flow rate and pressure; R1 = 6.8123 · 107 Pa s m−3 and R2 = 3.1013 · 109 Pa s
m−3 are resistances; C = 3.6664 · 1010 m3 Pa−1 is compliance; Pout = 0 is the pressure at which flow to the
microcirculation ceases [1]. Windkessel models represent downstream vasculature.
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The values of interest are the flow rate and the pressure as functions of time at the cross-section located
at the beginning of branching (the intersection of vessels centerlines called the junction).

3. Conventional models of blood flow in compliant aortic bifurcation

3.1. Full 3D FSI model

Let a time-dependent domain (blood vessel) Ω ⊂ R3 be partitioned into subdomains Ωb and Ωw occupied
by blood and vessel wall, respectively, with the interface Γbw := ∂Ωb ∩ ∂Ωw. The blood and the vessel wall
are assumed to be incompressible media, with the densities ρb and ρw and the Cauchy stress tensors σb,
σw. The velocity field v is assumed to be continuous at Γbw, the pressure p may jump across Γbw. If one
assumes that the vessel wall kinematics is linearized, the conservation of momentum equations for the wall
and blood written in the Eulerian coordinates, respectively, takes the form [1]

∂v
∂t

=
{

ρ−1
w div σw in Ωw,

ρ−1
b div σb − (v · ∇)v in Ωb.

(3.1)

For incompressible blood, the mass conservation equation reads:

div v = 0 in Ωb. (3.2)

On the interface between the blood and the wall, we assume the balance of normal stresses

σbn = σwn on Γbw, (3.3)

where n is the unit normal vector on Γbw. On the flow inlet one imposes the Dirichlet boundary condition
(u(ξ, t)), whereas on the flow outlet the normal stress is balanced by the exterior pressure from the Windkessel
model. On all boundaries of the vessel wall, except Γbw, one imposes the free-stress condition. Initial
conditions are not important for us since we are focused on quasi-periodic flows caused by the inflow velocity
(2.1).

The blood is considered to be Newtonian fluid:

σb = −pI + µb(∇v + ∇vT ) in Ωb. (3.4)

The wall is assumed to be a linear incompressible material with Lame constant µw: is

σw = 2µwE − pwI, E := 1
2

(
∇u + ∇uT

)
, (3.5)

where u is the displacement. The reference state (u = 0) corresponds to the diastole.
The 3D FSI problem consists in finding pressure p, velocity v in Ω and displacement u in Ωw satisfying

the set of equations (3.1)–(3.5). The reference numerical solution of (3.1)–(3.5) denoted as 3dFSI is based
on a stabilized semi-discrete P1–P1 finite element (FE) method using an ‘enhanced’ membrane formulation
[1]. Our goal is to compare various reduced models with the reference solution [1].

3.2. Reduced 1D model

The simplest reduced model is the 1D model of the bifurcation. Although it provides good agreement [1]
with the numerical solution of (3.1)–(3.5), it does not provide the 3D flow in the bifurcation. However, the 1D
model is an important component of multiscale models and has to be presented. The aortic bifurcation can
be considered as three compliant vessels with a junction point. Assume that the ratio of each vessel diameter
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to its length is relatively small. The reduced 1D model is based on the mass and momentum conservation
laws which form a system of hyperbolic equations:

∂A/∂t + ∂(AU) /∂x = 0, (3.6)
∂U/∂t + ∂

(
U2/2 + p/ρb

)
/∂x = fU , (3.7)

where x is the coordinate along the vessel, A(t, x) is the cross-section area of the vessel, U(t, x) and
p are the averaged over the cross-section linear velocity and blood pressure, ρb is the blood density,
fU = −2(n + 2)µbπUA−1ρ−1

b is the flow acceleration due to friction derived under assumption of the
axisymmetric velocity profile (2.1) [1].

In the 1D blood flow models, the conventional description of elastic properties of the vessel wall is provided
by the pressure to cross-section area relationship p(A) [1,3]:

P = Pd + βA−1
d (

√
A −

√
Ad), β = 4

√
πEh/3, (3.8)

where Ad is the diastolic cross-sectional area, Pd = 9.5 kPa is the diastolic pressure. For a detailed discussion
of the relationship we refer to [4,5].

The 1D flow equations in each vessel are coupled at the junction point by boundary conditions. The
aortic bifurcation features a subsonic flow regime, therefore, for every vessel end point there exists one
incoming and one outgoing characteristic of hyperbolic equations (3.6)–(3.7) which imposes a compatibility
condition [6]. At the junction of N vessels one imposes conservation of mass and Bernoulli integral [7–9]∑

k=k1,k2,...,kN

εkAkUk = 0,
U2

k

2 + pk(Ak)
ρb

= P l, k = k1, k2, . . . , kN , (3.9)

where {k1, . . . , kN } are the indices of the incident vessels, εk = 1 (−1) for incoming (outgoing) vessels, pk

and P l are the pressure and the total pressure at the junction point with index l, respectively. In total,
at each junction one imposes 2N + 1 boundary conditions in terms of nonlinear algebraic equations. The
boundary conditions are: the flow is prescribed on the inlet, the Windkessel model (2.2) is coupled to the
outlets.

The numerical solution of (3.6)–(3.9) denoted as 1dHem is based on the grid-characteristic method [10–12].

4. Multiscale models

Both conventional (3D FSI and 1D hemodynamics) models have practical deficiencies when one is
interested in analyzing the 3D flow at the bifurcation: the full model is very complex and computationally
expensive, the reduced model cannot reproduce the 3D flow. The remedy is provided by multiscale
approaches.

4.1. 3D Navier–Stokes equations and their reduction

The rigid wall assumption reduces the system (3.1)–(3.5) to the conventional Navier–Stokes equations
(3.1), (3.2), (3.4) in Ωb. Velocity profile (2.1) defines the Dirichlet boundary condition at the inlet. At the
outlet, we impose the Neumann boundary condition σn = p1n, where p1(t) is the outlet pressure for the
1dHem solution. The numerical solution of (3.1), (3.2), (3.4) denoted as 3dNS is based on the Taylor–Hood
FEM (P2 for velocity, P1 for pressure) for a quasiuniform tetrahedral mesh with 23532 cells with average
size h = 0.3 cm. The method is implemented on the basis of the package Ani3D [13].

Eqs. (3.1), (3.2), (3.4) imply the solution of a 3D FE problem in the entire blood domain Ωb which is
still costly both for computer memory and computing time. Further reduction is based on the method of
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asymptotic partial decomposition of the domain which is a combination of the 3D FE solution of (3.1), (3.2),
(3.4) in a junction neighborhood Ωj and analytical solutions to 1D problems in the cylindrical subdomains
Ω ′

a, Ω ′
i,1, Ω ′

i,2 [14]. The corresponding solution is denoted by 3dNSred. The lengths of the abdominal and iliac
branches in Ωj are equal to 4ra and 4ri, respectively. The lengths of the remaining 1D parts are: lΩ ′

a
= 5.16

cm, lΩ ′
i,1

= lΩ ′
i,2

= 6.1 cm. The number of cells in a quasiuniform tetrahedral mesh in Ωj is 8304, therefore,
the solution 3dNSred is obtained at least 3 times faster than the solution 3dNS. At each time step t = k∆t

one solves the 3D Navier–Stokes equations in Ωj with Dirichlet boundary conditions and shifts the resulted
3D pressure field by p1(t) − pext(t) where pext is the pressure linearly extrapolated from Ωj-outlets to the
outlets of cylinders Ω ′

i,k. One sets the velocity on the inlet or outlet of Ωj as the trace of a 3D velocity field
v at the middle cross-section of Ω ′

a or Ω ′
i,k [15]. The field v is obtained by the “off line” solution of (3.1),

(3.2), (3.4) in Ω ′
a or Ω ′

i,k with any profile on the boundary providing given fluxes. The flow rate Q(t) defines
the fluxes on inlet and outlet of Ω ′

a, whereas Q(t) and the ratio of fluxes at outlets of the iliac arteries for the
solution 1dHem with very stiff vessel walls define the fluxes in Ω ′

i,k. Impact of the profile on the boundary
on the profile at the middle cross-section decays exponentially with lΩ ′

i,k
, lΩ ′

a
[14]. It is shown [14] that the

solution 3dNSred approximates the solution 3dNS in Ωj with the accuracy O(εM ) in the H1(Ωj)-norm, if
diam(Ωj) ∼ Mε|ln(ε)|, where ε = max{2ral−1

Ω ′
a
, 2ril

−1
Ω ′

i,1
}, M is a positive integer.

4.2. 3D–1D two-scale model

In the vicinity of the junction Ωj we consider the 3D Navier–Stokes equations (3.1), (3.2), (3.4) whereas
the flow in the remaining part of Ωb is described by the 1D hemodynamic equations (3.6)–(3.7). Continuity
of the fluid flux and the normal stress is prescribed on the interfaces between 1D and 3D models. An iterative
numerical algorithm matching 1D and 3D solutions is described in [16]. The Dirichlet boundary condition on
the inlet of Ωj and the Neumann boundary condition on the outlets of Ωj are provided by the 1D solution
on each matching iteration. The resulted numerical solution is denoted by 131d.

4.3. 3D–1D–0D three-scale model

The three-scale model is derived from the two-scale model by insertion of 0D models between the 1D and
3D models. The 0D model represents an elastic sphere filled with blood and is formalized by a system of
ODEs. The elastic spheres compensate the lack of compliance in the 3D domain with rigid walls. An iterative
numerical algorithm for matching 0D, 1D and 3D solutions is described in [16]. The numerical solution is
denoted by 10301d.

5. Results and discussion

The numerical solutions 1dHem, 3dNS, 3dNSred, 131d, 10301d are compared with the reference solution
3dFSI. Fig. 5.1 demonstrates flow rate and pressure waveforms computed by different methods as well as
their deviations from the reference 3dFSI waveform. The waveforms of the solutions 1dHem, 10301d provide
the best match to the reference waveform 3dFSI.

Table 5.1 presents the average relative error avg%, the maximum relative error max%, the normalized
errors for systolic and diastolic flux and pressure sys% and dias% defined in [1]. The three-scale solution
10301d provides the minimal error for flux and pressure among the considered multiscale solutions providing
the 3D flow in bifurcation neighborhood Ωj . We explain the success of the three-scale model by incorporation
of the 0D elastic spheres which add compliance to the model with rigid wall in the bifurcation. The two-scale
models do not account compliance of the bifurcation region.
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Fig. 5.1. Top row: Flow rate waveform (left) and pressure waveform (right) at the junction computed by different methods. Bottom row:
deviations of these waveforms from the reference 3dFSI waveform.

Table 5.1
Error at the junction in flow rate (left) and pressure (right) computed by different methods.

Error in method Flux Pressure

avg% max% sys% dias% avg% max% sys% dias%

1dHem 0.78 3.53 −3.50 1.76 0.41 0.74 −0.63 0.32
3dNS 9.15 30.02 28.62 −13.13 1.41 8.31 −1.59 0.81
3dNSred 9.15 30.02 28.62 −13.13 1.40 8.26 −1.58 0.81
131d 2.51 9.13 6.12 −4.17 6.24 10.25 9.27 0.71
10301d 1.15 4.49 0.61 −1.79 2.02 3.48 0.13 1.59
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