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Abstract: The paper discusses a stabilization of a finite element method for the equations of fluid motion
in a time-dependent domain. After experimental convergence analysis, the method is applied to simulate a
blood flow in the right ventricle of a post-surgery patient with the transposition of the great arteries disorder.
The flow domain is reconstructed from a sequence of 4D CT images. The corresponding segmentation and
triangulation algorithms are also addressed in brief.
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Last decades evidenced a remarkable progress in the development of mathematical and computational mod-
els for physiological flows and their interaction with surrounding tissues and organs. In particular, computer
simulations of the human cardiovascular system and its parts have been a focus of intense research. We refer
to the recentmonographs [14, 18, 19] for the overview of the field. Based on these advances, the CFD visualiza-
tion and quantification of blood flow in the heart and large vessels has a potential to become a clinical stan-
dard and to complement Doppler sonography as a decision supporting tool for practicing cardiologists [13].
Nevertheless, reliable and predictive patient-specific simulations of flow in the heart chambers remains a
challenge, especially under pathological or post-surgery conditions. For example, for the CFD reconstruc-
tion of the flow in a heart ventricle, the challenge consists of quality image acquisition, image segmentation,
recovery of tissuemotions, a suitable volume tessellation (meshing), a discretization of the system of govern-
ing partial differential equations, fast solution methods and postprocessing of the computed solution. While
the present paper briefly addresses several of these stages of personalized CFD simulations, the focus here
is on building a stable discrete approximation of the Navier–Stokes equations for a transitional flow in an
evolving domain. A concrete practical problem we are interested in here is the simulation of blood flow in
the right ventricle reconstructed from 4D CT images of the heart of a patient with transposition of the great
arteries (TGA).

The rest of the paper is organized in four sections. In Section 1 we introduce a system of the Navier–
Stokes equations governing the motion of incompressible viscous fluid (blood) in a time-dependent domain
(the heart chamber) with appropriate boundary conditions. Section 2 discusses a discretization method with
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particular attention to spatial stabilization. Section 3 adds details of themedical image processing andmesh-
ing techniques. Section 4 splits into two parts. In the first part, we show the results of convergence tests for
the numerical method, which confirm the expected accuracy rates. The second part presents the CFD visual-
ization and analysis of flow in the right ventricle.

1 Mathematical model

We represent theheart chamber as a 3D time-dependent domainΩ(t) ⊂ ℝ3 occupiedby a viscousfluid (blood)
for the simulation time t ∈ [0, T]. We assume that the deformation of Ω(t) is smooth enough in the sense
that there exists a two times continuously differentiable one-to-one mapping ξ from the reference domain
Ω0 = Ω(0) to the physical domain, i.e., ξ : Ω0 → Ω(t) for t ∈ [0, T] and ξ ∈ C2([0, T] × Ω0).

For the blood flow in the heart, it is reasonable to assume that the fluid is Newtonian and incompress-
ible [19]. The dynamics of incompressible Newtonian fluid is governed by the system of Navier–Stokes equa-
tions,

{{
{{
{

d
dt
u − 2νdiv (D(u)) + ∇p = f

divu = 0
in Ω(t), t ∈ (0, T) (1.1)

written for the unknownfluid velocity vector fieldu(x, t) and the unknown pressure function p(x, t). In equa-
tion (1.1), ν is the kinematic viscosity coefficient, D(u) stands for the rate of deformation tensor, and d/dt
denotes the material (Lagrangian) derivative, i.e. the derivative along material trajectories of particles. For
numerical purposes, it is convenient to expand the material derivative in Eulerian terms and to re-write the
fluid system in the so-called arbitrary Lagrangian–Eulerian (ALE) form,

{{
{{
{

∂u
∂t

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Ω0

+ ((u −w) ⋅ ∇)u − 2νdiv (D(u)) + ∇p = f

divu = 0
in Ω(t), t ∈ (0, T). (1.2)

Herew := ∂ξ (t, ξ−1(x))/∂t is the ALE velocity at x ∈ Ω(t) and ∂u/∂t󵄨󵄨󵄨󵄨Ω0
:= ∂û(t, ξ−1(x))/∂t, with û := u ∘ ξ ,

is the time derivative of velocity in the reference frame. Further we shall write ut for the sake of notation
simplicity.

System (1.2) should be supplemented with boundary conditions for velocity or stress. These boundary
conditions drive the flow and so they are important part of the model. On the walls of the chamber, denoted
by ∂Ωns(t), we set no-penetration and no-slip boundary condition for fluid, which for the moving domain
take the following form:

u = ξ t ∘ ξ
−1 on ∂Ωns(t). (1.3)

The part of the boundary corresponding to the tricuspid valve is designated as the inflow part, ∂Ωin(t), with
the following boundary conditions

u = ξ t ∘ ξ
−1 on ∂Ωin(t), for systolic phase

σn = 0 on ∂Ωin(t), for diastolic phase
(1.4)

where σ = −2νD(u) + pI is the Cauchy stress tensor, n is the unit normal vector on the boundary of Ω(t).
These conditions imply that the blood freely flows in the ventricle through the tricuspid valve driven by the
compartment expansion. The part of the boundary with the pulmonary valve represents the outflow part,
∂Ωout(t), with the boundary condition

σn = 0 on ∂Ωout(t), for systolic phase
u = ξ t ∘ ξ

−1 on ∂Ωout(t), for diastolic phase.
(1.5)

Finally, we need to define an initial state of the system,which in the absence of other datawe assume to be the
fluid at rest, u = 0 in Ω(0). One may need to simulate several cardiac cycles to obtain u and p non-sensitive
to the error induced by such non-physiological initial state.
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To build a discrete model, we first need an integral formulation of the system. Wemultiply the first equa-
tion in (1.2) by a smooth vector function ψ : Ω(t) → ℝ3 such that ψ = 0 on ∂Ωns(t) ∪ ∂Ωin(t) during systolic
phase and ψ = 0 on ∂Ωns(t) ∪ ∂Ωout(t) during diastolic phase. Integrating the resulting identity over Ω(t)
and by parts we get

∫
Ω(t)

{ut + ((u −w) ⋅ ∇)u} ⋅ ψ dx + 2ν ∫
Ω(t)

D(u) : D(ψ)dx − ∫
Ω(t)

pdivψ dx + ∫
Ω(t)

qdivudx = ∫
Ω(t)

f ⋅ ψ dx (1.6)

where we used boundary conditions and added the second equation in (1.2) tested by a smooth function
q : Ω(t) → ℝ. For a regular solution to (1.2)–(1.5), i.e. for smooth velocity field u and pressure p, identity (1.6)
holds for any t ∈ (0, T) and any smooth test functions q and ψ as specified above.

2 Discrete models

We start with building a triangulation of the reference domain Ω0: Let Th be a set of tetrahedra such that
Ω0 = ⋃T∈Th

T and any two tetrahedra from Th intersect by either an entire face, an entire edge, a vertex, or
the empty set. We also assume that the mesh is regular in the sense that the minimum angle condition holds
for all tetrahedra from Th (cf., e.g., [4]). A triangulation satisfying all above conditions is called admissible. In
turn, triangulations Th(t) of Ω(t) are built using ξ (t) to map tetrahedra vertices from Ω0 to Ω(t). Themapping
ξ should be such that the resulting sequence of meshes has the same connectivity and delivers admissible
triangulations of Ω(t). Consider conforming FE spaces 𝕍h(t) ⊂ H1(Ω(t))d and ℚh(t) ⊂ L2(Ω(t)), spaces of
continuous piecewise polynomial functions on Th(t); 𝕍0h is a subspace of 𝕍h of functions vanishing on the
same part of the boundary as the test function from the integral formulation (1.6). In this paper, we choose
the Taylor–Hood (P2/P1) pair of finite element spaces for the velocity–pressure pair [9]:

𝕍h(t) = {uh ∈ C(Ω(t))3 : uh|T ∈ [P2(T)]3 ∀ T ∈ Th(t)}
ℚh(t) = {qh ∈ C(Ω(t)) : qh|T ∈ P1(T) ∀ T ∈ Th(t)}

(2.1)

which are known to satisfy the necessary inf-sup stability condition [1]. The mapping ξ is also approximated
with a piecewise polynomial mapping ξ h ∈ 𝕍h(0), which is constructed by the interpolation of ξ using its
nodal values.

Let us consider discretization in time. Assume a constant time step ∆t = T/N, where N is the total number
of steps. We use the notations tk = k∆t, uk := u(tk , x), and similar for p, ξ , and Ωk = Ω(tk). For a sequence
of functions f i, i = 0, . . . , k, all defined in the reference domain, [f ]kt := (f k − f k−1)/∆t denotes the backward
finite difference at tk. Letu0h be the Lagrange interpolant of the initial velocity field. The fully discrete problem
builds on the integral formulation (1.6) and reads: For k = 1, 2, . . . , find ukh ∈ 𝕍h(tk), p

k
h ∈ ℚh(tk) satisfying

Dirichlet boundary conditions in (1.3)–(1.5), and the integral equality

∫
Ωk

{[ûh]kt ∘ (ξ
k
h)
−1 + ((ũk−1h −w

k
h) ⋅ ∇)u

k
h} ⋅ ψh dx + 2ν ∫

Ωk

D(ukh) : D(ψh)dx

− ∫
Ωk

pkhdivψh dx + ∫
Ωk

qhdivukh dx = ∫
Ωk

f ⋅ ψh dx (2.2)

for all ψh ∈ 𝕍
0
h(tk), qh ∈ ℚh(tk). Here the advection velocity is computed with the help of the mapping to

the reference domain, wk
h(x) = [ξ h]

k
t ((ξ

k
h)
−1(x)), as well as ũk−1h (x) := u

k−1
h (ξ

k−1
h (ξ

k
h)
−1(x)), for x ∈ Ωk, and

ûkh := u
k
h ∘ ξ

k
h.

Note that the inertia terms are linearized so that a linear algebraic system should be solved at each time
step.

Blood flow in the heart ventricles is characterized by transitional or even turbulent regimes (see, e.g.,
[3, 8, 15]). Therefore, sufficiently fine resolution of spatial and time scales in u is required for the direct nu-
merical simulation of blood flows in the ventricles. Adopting such resolution would lead to computations
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prohibitively expensive for patient specific modelling. An alternative to employing very fine triangulation
and time stepping is the use of a Large Eddy Simulation (LES) model of turbulence [3] or another subgrid
method designed to model the effect of unresolved scales and to dissipate excessive energy. Such models
aim to deliver stable numerical approximations for the mean flow statistics. This is the approach taken in the
present paper. More specifically, we consider a combination of the classical Smagorinski LES model [17] and
the streamline upwinded Petrov–Galerkin (SUPG) method [2].

The SUPG method introduces subgrid modelling on the level of discretization [10]. The variant we use
consists in adding to (2.2) the elementwise residual term of the form

∑
T∈Th(tk)

τT ∫
T

(akh ⋅ ∇)ψh {[ûh]
k
t + (a

k
h ⋅ ∇)u

k
h − 2ν div (D(u

k
h)) + ∇p

k
h − f} dx (2.3)

with akh := ũ
k−1
h −w

k
h.

The parameters τT are defined elementwise as follows

τT =
1

√d1 + d2 + d3

with
d1 = 60ν2tr(GGT), d2 =

4
|∆t|2

, d3 = (akh)
TGakh .

Matrix G ∈ ℝ3×3 is the element metric tensor defined as G = BTB, where B = ∂α/∂x ∈ ℝ4×3, and α is the
mapping from the bulk to the barycentric coordinates of T.

The SUPG method is sufficiently accurate, since it is a residual type method. However, we found SUPG
formulation alone not always sufficiently stable for flow regimes typical to the ventricles on acceptable com-
putational grids. Therefore, we suggest to increase the robustness of the SUPG method by combining it with
the Smagorinski model. In the Smagorinski approach the effect of unresolved scales is modeled by introduc-
ing additional (turbulent) viscosity in the equation. The turbulent viscosity depends on the local strain rate
and adds to the physical viscosity. The Smagorinski model is relatively simple, but known to be excessively
dissipative, especially near walls [21]. We incorporate it in SUPG formulation by replacing ν in (2.2) with

νT = ν +M ⋅ (0.2hT)2√2D(ũk−1h ) : D(ũ
k−1
h ) (2.4)

where hT = diam(T), for any tetrahedral cell T ∈ Th. Factor M regulates how much turbulent viscosity we
add to the method. Our goal is to set M to a minimal possible value, which makes SUPG stabilization robust
for flow regimes typical for the ventricles. Modification of viscosity increases the finite element error, yet the
method is consistent in the sense that the added viscosity vanishes as hT → 0.

3 Image segmentation and mesh generation

In this work, we use the finite element CFD analysis for personalizedmodelling of the flow in the right ventri-
cle of a patient with transposition of the great arteries (TGA), a rare congenital defect. Themotion of the heart
is reconstructed from 4D CT images. The incoming data set is a series of 10 contrast enhanced CT images with
512 × 512 × 304 voxels and 0.355 × 0.355 × 0.5 mm resolution. We crop and resample each CT image to
162×112×136 voxels with 1 mm isotropic resolution. The right ventricle is manually segmented for each of
the ten CT images using a semi-automatic level-set method from ITK-SNAP package [20].

Since the temporal resolution of ten images per cardiac cycle is not enough for smooth mesh transition,
we also perform temporal resampling. For each frame we convert the binary mask of the segmented right
ventricle to a signed distance function, which is negative inside the ventricle, positive outside, and zero at the
ventricle boundary. These ten scalar frames are resampled to 90 frames per cycle using a cubic interpolation
in time with the periodic conditions at the end points of the time interval. For each new frame, the boundary
of the right ventricle is recovered as a zero isosurface of this interpolant. Thus, the set of 90 frames represents
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(a) (b) (c)

Fig. 1: The right ventricle surface mesh: (a) beginning of systole (frame 0), (b) middle of systole (frame 23), (c) end of systole
(frame 44).

(a) (b) (c)

Fig. 2: The right ventricle volume mesh, the cutplane passes through ventricle apex and the centers of the valves: (a) beginning
of systole (frame 0), (b) middle of systole (frame 23), (c) end of systole (frame 44).

a periodic motion. We next apply a cyclic shift of the frame indices to set the starting frame to be the one with
the maximum volume of the ventricle. Then, the frame 44 shows the minimum volume of the ventricle. We
assume that frames from 0 to 44 represent systole of the cardiac cycle, and frames from 45 to 89 represent
diastole.

We manually select two static cutoff planes to represent the position of valves in the right ventricle. We
note that actual valves are moving during the cardiac cycle and do not stay in the same planes. Therefore, we
estimate the average position of the valves based on the available sparse temporal resolution.

The mesh generation process is similar to the one proposed in our previous paper [5] and we refer to that
paper for any omitted details. The algorithm requires a reference domain, which is defined implicitly as an
enclosed volume of the averaged distance function over all 90 frames. This volume is also bounded by static
valve planes. A reference quasi-uniform unstructured tetrahedral mesh is first constructed with the help of
Delaunay triangulation algorithm from CGAL Mesh library [16]. We next improve the reference mesh quality
using aniMBA library from the Ani3D package [11] and also enforce each tetrahedron to have at least one
internal node.

At the next stage, we deform the reference mesh to sequentially adapt to all frames from 0 to 89, which is
followedby the second cycle of themeshadaptation to ensure a smoothperiodic transitionof themeshes from
one cardiac cycle to the next one. Each step of themesh deformation is split into two substeps. First, wemove
only boundary nodes while simultaneously propagating and smoothing the surface mesh. Each boundary
node is shifted in the direction of the weighted sum of two vectors: the surface normal vector (weight 0.5)
and the vector pointing at the center of surrounding nodes (weight 0.04). This procedure is repeated until the
maximum displacement drops below ε = 0.0001 mm, or until the maximum number of 2000 iterations is
exceeded. For vertices lying on the valve planes, the displacement vectors are projected to these planes, thus
ensuring the vertices stay on valve planes (see Fig. 1). At the second step, we apply a simultaneous untangling
and smoothing algorithm [7]; the boundary nodes are then fixed, and only the internal nodes are shifted. The
untangling stage is robust due to the presence of internal nodes in all tetrahedra.

The final result is a ‘periodic’ series of 90 topologically invariant meshes with 13,222 nodes, 86,920 edges
and 70,533 tetrahedra for the right ventricle (see Figs. 1 and 2).
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4 Numerical examples

Numerical examples include convergence and stability tests for a problem with known analytical solution
and personalized simulation of the flow in the right ventricle of a post-surgery patient with TGA. The finite
element method (2.2)–(2.4) is implemented within the open source Ani3D software [11].

4.1 Convergence and stability tests

To set up convergence test with a synthetic solution, we let the reference domain Ω0 to be the axisymmetric
tube defined in cylindrical coordinates (r, y, φ) as:

Ω0 = {(r, y, φ) : −4 ⩽ y ⩽ 4, r2 ⩽ ey/4+1}.

Neumann boundary condition is set at outflow boundary ∂Ωout
0 = {(r, y, φ) : r ⩽ e, y = 4}, and Dirichlet

boundary condition is set on the remaining part of the boundary ∂Ωns
0 = ∂Ω0 \ ∂Ωout

0 .
The time-dependent domain and the analytical solution {u, p} to (1.2), (1.3) are defined as follows [12]:

Ω(t) = {(r, y, φ) : −4 ⩽ y ⩽ 4, r2 ⩽ ey/4+1 (1 − 14
t)} , t ∈ [0, 3]

ur = −
2e−y/4−1r3

(4 − t)2
, uy =

8
4 − t
−
32e−y/4−1r2

(4 − t)2
, uφ = 0

p = 512ν e
−y/4−1

(4 − t)2
− 8 y
(t − 4)2

+ p̃(t)

where p̃(t)depends only on t. Requirement p = 0on ∂Ωout(t)guarantees theuniquepressure solution. To sim-
plify calculation of the corresponding body force, we replace the term 2ν ∫Ω(t) D(u) : D(ψ)dx in the Galerkin
formulation (1.6) to ν ∫Ω(t) ∇u : ∇ψ dx, and in the SUPG residual of (2.3) we use −ν∆ukh for the viscous term.

The right-hand side f = (fr , fy , fφ)T is obtained by substituting {u, p} to (1.2) for the given viscosity ν:

fr = ν
e−y/4−1

(4 − t)2
(16r + 18

r3) − 4 e
−y/2−2

(t − 4)4
r5, fy = 2ν

e−y/4−1

(4 − t)2
r2 − 128 e

−y/2−2

(t − 4)4
r4, fφ = 0.

To check the convergence of the discrete velocity and pressures, we run a series of five simulations using
a sequence of unstructured quasi-uniform tetrahedral meshes with mesh sizes hi = 2(1−i)/2, i = 1, . . . , 5.
The time integration interval is [0, 0.2]. According to numerical analysis [12] and numerical evidence, the
scheme (2.2) without convective stabilizations delivers a two-times reduction of the energy error norm if the
time step ∆t decreases by two for each next mesh in this sequence. For uk := u(k∆t), pk := p(k∆t), we define
the error of the finite element solution {ukh , p

k
h} as {e

k , ek} := {uk − ukh , p
k − pkh}. To check the effect of the

SUPG stabilization on the convergence rate, we perform the experiment with and without the stabilization
and report the computed error norms in Table 1. We see that the second order asymptotic convergence in
the energy norm is observed both for the SUPG-stabilized and non-stabilized finite element schemes. The
L2-norm of the error demonstrates the third order convergence. In the numerical test we set viscosity to ν =
µ/ρ = 4.2 ⋅ 10−5/1.05 ⋅ 10−3 = 0.04 (SI units are used except for length which is in cm) which corresponds
to that of blood. Note that the mesh size and the analytical solution are such that scheme (2.2) can be used
without stabilization.

Now we fix the third mesh with h = 0.5 and perform N = 300 time steps with ∆t = 0.01. This setting
allows the numerical instability to develop for smaller viscosities. In Table 2 we present the velocity norm
√max0⩽k⩽N 1

2 ‖u
k
h‖

2 + ν∑Nk=1 ∆t‖∇u
k
h‖

2 for different values of viscosity. Here and further ‖ ⋅ ‖ denotes the L2

norm. SUPG stabilization as well as the combined SUPG/Smagorinski stabilization with M = 0.01 produce
stable solutions while scheme (2.2) without convective stabilization blows up.

In order to study the impact of the scaling given by M in definition (2.4) of the turbulent viscosity, we
compute the finite element errors in the setup of the previous experiment. In Table 3 we show the L2- and
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Tab. 1: Finite element errors for the given analytical solution, ν = 0.04.

Mesh size 1.0 1.0/√2 0.5 0.5/√2 0.25
Time step 0.04 0.02 0.01 0.005 0.0025

No stabilization:
max0⩽k⩽N ‖ek‖ 0.067 0.038 0.0179 0.00761 0.00240
Error ratio — 1.76 2.1 2.35 3.17
√∑Nk=1 ∆t‖∇ek‖2 0.203 0.138 0.0820 0.0466 0.0212
Error ratio — 1.47 1.68 1.76 2.20
SUPG stabilization:
max0⩽k⩽N ‖ek‖ 0.066 0.037 0.0178 0.00760 0.00241
Error ratio — 1.76 2.1 2.34 3.15
√∑Nk=1 ∆t‖∇ek‖2 0.200 0.137 0.0813 0.0464 0.0212
Error ratio — 1.46 1.69 1.75 2.19

Tab. 2: Numeric velocity norm√max0⩽k⩽N 1
2 ‖u

k
h‖

2 + ν∑Nk=1 ∆t‖∇u
k
h‖

2 over the period of N = 300 time steps of size ∆t = 0.01
each for the triangulation with mesh size h = 0.5.

Viscosity 0.04 0.004 0.0004

No stabilization 33.2 29.8 3.62 ⋅ 105

SUPG stabilization 33.2 29.8 29.4
Combined SUPG/Smagorinski stabilization 33.2 29.7 29.3

Tab. 3: Finite element errors for the given analytical solution after N = 300 time steps with ∆t = 0.01 and h = 0.5.

Viscosity 0.04 0.004 0.0004

SUPG stabilization:
max1⩽k⩽N ‖ek‖ 0.106 0.198 0.562
√∑Nk=1 ∆t‖∇ek‖2 1.00 2.089 7.00
√max1⩽k⩽N 1

2 ‖ek‖2 + ν∑
N
k=1 ∆t‖∇ek‖2 0.214 0.192 0.422

Combined SUPG/Smagorinski stabilization:
max1⩽k⩽N ‖ek‖ 0.198 0.328 0.396
√∑Nk=1 ∆t‖∇ek‖2 1.47 3.08 4.24
√max1⩽k⩽N 1

2 ‖ek‖2 + ν∑
N
k=1 ∆t‖∇ek‖2 0.326 0.303 0.293

energy norm errors of the finite element solutions stabilized by SUPG or the combined SUPG/Smagorinski
method. For relatively large viscosity, the addition of the turbulent viscosity increases the L2- and the energy
norm errors by 100% and 50%, respectively. To the contrary, for small viscosity the partial addition of the
turbulent viscosity reduces the error norms by 30% and 40%, respectively, suggesting slightly oscillatory
behavior of the pure SUPG-stabilized solution and warranting the inclusion of the weighted Smagorinski
term.

4.2 Blood flow in the right ventricle

We now apply the finite element methods with Smagorinski, SUPG and the combined stabilization to simu-
late blood flow in the right ventricle. For this purpose we use a sequence of topologically equivalent meshes
described in section 3. The duration of the cardiac cycle is 0.87s. Since we have 90 time frames, the time
step ∆t in (2.2) was set to be equal to 0.87/90s. Boundary conditions were set according to (1.3)–(1.5), with
ξ t computed on the boundary by the first order finite-difference stencil directly from the displacement at the
nodes and edges. Numerical simulations start from the flow at rest as the initial condition and run over two
cardiac cycles. All results below are shown for the second cycle.
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Smagorinski 0.01⋅Smagorinski+SUPG SUPG

Fig. 3: Visualization of streamlines: the beginning of systole (top row) and the middle of systole (bottom row).

Smagorinski 0.01⋅Smagorinski+SUPG SUPG

Fig. 4: Visualization of vortex regions according to the Q-criterion: the beginning of systole (top row) and the middle of systole
(bottom row).

From the numerical results for the problem with the synthetic solution, we see that both SUPG and the
combination of weighted Smagorinski and SUPG stabilizations deliver convergent solutions with the pure
SUPG being closer to the borderline of numerically stable simulations. Pure Smagorinski stabilization is a
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Smagorinski 0.01⋅Smagorinski+SUPG SUPG

Fig. 5: Visualization of the wall shear stress: the beginning of systole (top row) and the middle of systole (bottom row).

well-known turbulent LESmodel that, however,may over-dissipate.We are now interested in how these prop-
erties affect the patient specific CFD visualization of blood flow in the right ventricle.

In Fig. 3 we show streamlines that are computed as particle tracers in blood flow at a given time. The
flow is visualized at the beginning and middle of systole. We see that among three models the pure SUPG
and the weighted Smagorinski combined with SUPG stabilizations capture the large recirculation zone in
front of the pulmonary valve. This observation is confirmed by the picture of the Q-criterion levels in Fig. 4:
the zones where Q = 1

2 (tr
2(∇u) − tr([∇u]2)) is positive are identified as vortexes in incompressible flow [6].

Again, the pure SUPG model suggests most distinct vortical regions and using standard Smagorinski model
suppresses vorticity. The combination of SUPG and weighted Smagorinski model is doing a reasonably good
job in identifying the vortical region. All these observations confirm that standard Smagorinski stabilization
is over-diffusive for numerical simulations of the flow in the heart.

Finally, we calculate the wall shear stress (WSS) predicted by the three models and show them in Fig. 5.
The WSS is likely underestimated by the Smagorinski model, which is a consequence of its overall poor ac-
curacy. Less diffusive methods predict larger wall shear stress.

We conclude that both SUPG and the combination of SUPG and weighted Smagorinski stabilizations of
the finite element method can be used in a predictive CFD visualization of cardiac flows with SUPG being the
least diffusive, while SUPG/weighted Smagorinski adds extra stability.
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