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Model

Ω

ω (mass fraction of the salt), p (hydrodynamic pressure).

∂t(Φρω) +∇ · (ρωq− ρD∇ω) = 0

∂t(Φρ) +∇ · (ρq) = 0.

 q = −K

µ
(∇p − ρg),

where ρ = ρ(ω), µ = µ(ω).

+ bnd cond. for ω and p + init. cond. for ω
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Model

p = 0

Γ

Ω2

Ω1

Ω=Ω1∪Ω2

ω (mass fraction of the salt), p (hydrodynamic pressure).

∂t(Φρω) +∇ · (ρωq− ρD∇ω) = 0

∂t(Φρ) +∇ · (ρq) = 0.

 q = −K

µ
(∇p − ρg),

where ρ = ρ(ω), µ = µ(ω).

+ bnd cond. for ω and p + init. cond. for ω

The phreatic surface separates
the saturated (Ω2) and unsaturated (Ω1) subdomains
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Model

p = 0, ∂ω/∂n = 0 recharge r
Γ

Ω=Ω1∪Ω2 Ω2

Ω1

ω (mass fraction of the salt), p (hydrodynamic pressure).

∂t(Φρω) +∇ · (ρωq− ρD∇ω) = 0

∂t(Φρ) +∇ · (ρq) = 0.

 q = −K

µ
(∇p − ρg),

where ρ = ρ(ω), µ = µ(ω).

+ bnd cond. for ω and p + init. cond. for ω

+ velocity of the phreatic surface: q̃ := (q + rez)/Φ
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Treatment of the moving boundary

Only one (top) moving boundary, often almost horizontal and near
the top of the domain motivates the “moving grids” for the lower

subdomain.

but

The layered structure of the domain motivates a fixed grid and a
separate treatment of the interface by Level Set or VOF methods.
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Numerics

Discretization of
the density-driven

flow
(FV, FE, FD, ...)

Representation &
tracking of

the interface
(LSF, VoF,

moving grids, ...)
Discretization of

the interface
conditions (GF,

Nitsche’s, XFEM,
… methods)

velocity of the interface

position of
the interface

contributions to
the discretized

system
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Numerical methods

Implementation: Application d3f based on the ug4 -toolbox
(https://github.com/UG4/ugcore)

Methods for the groundwater flow:

Unstructured grid

Spatial discretization: a vertex-centered collocated FV
scheme, linear and multi-linear shape functions.

Time stepping (in presented examples): implicit Euler scheme

Discretized non-linear system in time steps: Newton’s method

Linearized systems: BiCGStab, preconditioned with GMG;
smoothers: ILU

Interface tracking: a Level-Set method on the same grid

BC at the interface: a Ghost-Fluid method
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Level-set representation of the boundary

LSF ψ: Γ = {x : ψ(x) = 0}, ψ(x) > 0 in Ω1, ψ(x) < 0 in Ω2.

Level-set equation

Initial condition for ψ: The signed distance function.

Problem: un should be defined throughout in Ω.

Caution: Inappropriate choice of the extension of un causes
numerical problems (in ∇ψ, CFL etc.)
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Coupling Flow and LSM

Start with the initial conditions for ω and ψ (= SDF for init. Γ).

In every time step:

For Γold = {x : ψold(x) = 0}, compute the solution ωnew,
pnew in Ω2,old. This provides the flow field q̃ = q̃(ωnew, pnew).

Compute the extension of un = q̃ · ∇ψold
|∇ψold| from Γold to Ω.

Solve the level-set equation with un: get ψnew from ψold. This
defines Γnew and Ω2,new.
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Extension of the velocity

Compute the Signed Distance Function ψ̂ for Γ: Solve the
Eikonal equation

|∇ψ̂| = ±1

with ψ̂ = 0 on Γ.

Transfer the interface velocity un “orthogonally” to the
interface: Solve ∇ψ̂

|∇ψ̂|
· ∇un = 0

with un = q̃ · ∇ψ
|∇ψ| on Γ.

For this un and ψ|t=0 = ψ̂|t=0, ψ is the SDF at every time
point: No reinitialization required.

The CFL number of the interface tracking is determined
only by the normal velocity at Γ.
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Extension on the unstructured grids

Introduce the artificial time s: ψ̂ = ψ̂(s, x), un = un(s, x).

Compute ψ̂ for Γ: Solve the Eikonal equation

ψ̂s + |∇ψ̂| = ±1

with ψ̂ = 0 on Γ. (Steady state achieved in finite time.)

Transfer the interface velocity un: Solve

un,s +
∇ψ̂
|∇ψ̂|

· ∇un = 0

with un = q̃ · ∇ψ
|∇ψ| on Γ.

Compute only few time steps in s and choose ∆s so that the
CFL is near 1.

Advantages: unstructured grids, parallelization.
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Illustrative 2D Example

Phreatic surface and flow in a dam (no salt)
Recomputation of an example from P. Frolkovic, DOI: 10.1016/j.advwatres.2012.06.013
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Extended normal velocity

LSF ≈ SDF (dotted lines) and the extended normal velocity (color)
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Discretization

These equations have the form

φt +
∇ψ̂
|∇ψ̂|

· ∇φ = Q

for φ = ψ̂ or φ = un (with φ,Q : Ω→ R).

Currently applied method: An explicit FV scheme based on the
high-resolution flux-based level set method by P. Frolkovič and K.
Mikula with a special treatment of Q. (A 2nd order scheme,
explicit in time. A 1st order scheme available.)
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Ghost-fluid method interface velocity

Boundary conditions at the interface:

Extrapolation from the inner to
the outer corners in the cut elements

Otherwise use of the regular spatial
FV discretization as for inner elements

Computation of q at the interface:

Accuracy of the velocity evaluated in the cut elements
depends on the extrapolation significantly.

∇p: Special treatment in the multi-linear elements,
[∇p]E = const.

Current issue:

Mass conservation holds only asymptotically.

Ω
1 Ω

2

Γ

x
2

x
1

x
3
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3D Example 1: Problem setting

(Scaled ×100 in z-direction.)
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3D Example 1: Problem setting

Hor. size ≈ 100 km, depth ≈ 0.5 km. 6 geological layers.

BC: No-flux for entire fluid phase on the walls and bottom;
no-flux for ω on the walls; ω = 1 on the bottom.

Initial position of the phreatic surface specified by a raster of
the depths.

Time-dependent recharge.

Unstruct. grid of prisms. Anisotropic refinement required.
Projection to the actual outer and inner boundaries.

The coarsest grid: approx. 2000 grid nodes (2856 prisms).

Presented result: approx. 105 nodes (182784 prisms).

Time step τ = 0.05 year.

Data and results: GRS/Braunschweig (A. Schneider and Dr. H. Zhao).

Grid: G-CSC/Frankfurt University (Dr. S. Reiter) using ProMesh.
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3D Example 1: Results

Init. water table and ω. (Scaled ×50 in z .)
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3D Example 1: Results

Water table and ω at t = 150 years. (Scaled ×50 in z .)
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3D Example 2: Problem setting

(Scaled ×100 in z-direction.)
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3D Example 2: Problem setting

Hor. size ≈ 40 km, depth ≈ 0.2 km. 6 geological layers.

BC: No-flux for entire fluid phase and salt on the walls and
bottom up to one wall where ω = 1 and hydrostatic p is
imposed.

Initial position of the phreatic surface specified by a raster of
the depths.

Position- and time-dependent recharge.

1d objects: channels (“rivers”) modelled as the recharge
depending on the depth of the phreatic surface.

Unstruct. grid of prisms. Anisotropic refinement required.

The coarsest grid: approx. 11500 grid nodes (18252 prisms).

Presented result: approx. 82000 nodes (146016 prisms).

Parallel computation on 20 cores.

Data and results: GRS/Braunschweig (A. Schneider and Dr. H. Zhao).

Grid: G-CSC/Frankfurt University (Dr. S. Reiter) using ProMesh.
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3D Example 2: Results

Water table (colored by height) and ω (color in volume)
at t = 80 years. (Scaled ×100 in z .)
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3D Example 2: Results

Water table (colored by height) and ω (color in volume)
at t = 180 years. (Scaled ×100 in z .)
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Conclusions

We have presented a coupling of the density-driven flow with the
level-set technique for the simulation of the phreatic boundary in
the real-world geometries.
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