Subsurface flow with a phreatic surface: Simulation in aquifers with the complicated hydrogeological structure

D. Logashenko and G. Wittum

CEMSE, KAUST, Saudi Arabia and G-CSC, Frankfurt University, Germany in collaboration with GRS, Braunschweig/Germany

Week of Applied Mathematics and Mathematical Modelling Vladivostok/Russia, Oct. 6–11, 2019

1 Density-driven groundwater flow with a phreatic surface

2 Coupling flow and interface motion

 ω (mass fraction of the salt), *p* (hydrodynamic pressure).

$$\left. \begin{aligned} \partial_t (\Phi \rho \omega) + \nabla \cdot (\rho \omega \mathbf{q} - \rho \mathbf{D} \nabla \omega) &= 0 \\ \partial_t (\Phi \rho) + \nabla \cdot (\rho \mathbf{q}) &= 0. \end{aligned} \right\} \quad \mathbf{q} = -\frac{\mathbf{K}}{\mu} (\nabla \rho - \rho \mathbf{g}), \end{aligned}$$

where $\rho = \rho(\omega)$, $\mu = \mu(\omega)$.

+ bnd cond. for ω and p + init. cond. for ω

 ω (mass fraction of the salt), *p* (hydrodynamic pressure).

$$\left. \begin{aligned} \partial_t (\Phi \rho \omega) + \nabla \cdot (\rho \omega \mathbf{q} - \rho \mathbf{D} \nabla \omega) &= 0 \\ \partial_t (\Phi \rho) + \nabla \cdot (\rho \mathbf{q}) &= 0. \end{aligned} \right\} \quad \mathbf{q} = -\frac{\mathbf{K}}{\mu} (\nabla p - \rho \mathbf{g}), \end{aligned}$$

where $\rho = \rho(\omega)$, $\mu = \mu(\omega)$.

+ bnd cond. for ω and p + init. cond. for ω

The **phreatic surface** separates the **saturated** (Ω_2) and **unsaturated** (Ω_1) subdomains

Model

 ω (mass fraction of the salt), *p* (hydrodynamic pressure).

$$\left. \begin{aligned} \partial_t (\Phi \rho \omega) + \nabla \cdot (\rho \omega \mathbf{q} - \rho \mathbf{D} \nabla \omega) &= 0 \\ \partial_t (\Phi \rho) + \nabla \cdot (\rho \mathbf{q}) &= 0. \end{aligned} \right\} \quad \mathbf{q} = -\frac{\mathbf{K}}{\mu} (\nabla \rho - \rho \mathbf{g}), \end{aligned}$$

where $\rho = \rho(\omega)$, $\mu = \mu(\omega)$.

+ bnd cond. for ω and p + init. cond. for ω

+ velocity of the phreatic surface: $\tilde{\mathbf{q}} := (\mathbf{q} + r\mathbf{e}_z)/\Phi$

Treatment of the moving boundary

Only one (top) moving boundary, often almost horizontal and near the top of the domain motivates the "moving grids" for the lower subdomain.

but

The layered structure of the domain motivates a fixed grid and a separate treatment of the interface by Level Set or VOF methods.

Numerical methods

Implementation: Application **d**³**f** based on the *ug4*-toolbox (https://github.com/UG4/ugcore)

Methods for the groundwater flow:

- Unstructured grid
- Spatial discretization: a vertex-centered collocated FV scheme, linear and multi-linear shape functions.
- Time stepping (in presented examples): implicit Euler scheme
- Discretized non-linear system in time steps: Newton's method
- Linearized systems: BiCGStab, preconditioned with GMG; smoothers: ILU

Interface tracking: a Level-Set method on the same grid

BC at the interface: a Ghost-Fluid method

LSF ψ : $\Gamma = \{x : \psi(x) = 0\}, \ \psi(x) > 0 \text{ in } \Omega_1, \ \psi(x) < 0 \text{ in } \Omega_2.$

LSF
$$\psi$$
: $\Gamma = \{x : \psi(x) = 0\}, \ \psi(x) > 0 \text{ in } \Omega_1, \ \psi(x) < 0 \text{ in } \Omega_2.$

Level-set equation for velocity $\mathbf{u} : \Omega \to \mathbb{R}^3$:

$$\psi_t + \mathbf{u} \cdot \nabla \psi = \mathbf{0}$$

where $\mathbf{u}|_{\Gamma} = \tilde{\mathbf{q}}|_{\Gamma}$ should be the velocity of the moving boundary.

LSF
$$\psi$$
: $\Gamma = \{x : \psi(x) = 0\}$, $\psi(x) > 0$ in Ω_1 , $\psi(x) < 0$ in Ω_2 .

Level-set equation for normal velocity $u_n : \Omega \to \mathbb{R}$:

$$\psi_t + u_n |\nabla \psi| = 0$$

where $u_n|_{\Gamma}$ should the normal velocity of the moving boundary.

Coupling with the flow: $u_n = \tilde{\mathbf{q}} \cdot \frac{\nabla \psi}{|\nabla \psi|}$ on Γ .

LSF
$$\psi$$
: $\Gamma = \{x : \psi(x) = 0\}$, $\psi(x) > 0$ in Ω_1 , $\psi(x) < 0$ in Ω_2 .

Level-set equation for normal velocity $u_n : \Omega \to \mathbb{R}$:

$$\psi_t + u_n |\nabla \psi| = 0$$

where $u_n|_{\Gamma}$ should the normal velocity of the moving boundary.

Coupling with the flow: $u_n = \tilde{\mathbf{q}} \cdot \frac{\nabla \psi}{|\nabla \psi|}$ on Γ .

Initial condition for ψ : The signed distance function.

LSF
$$\psi$$
: $\Gamma = \{x : \psi(x) = 0\}$, $\psi(x) > 0$ in Ω_1 , $\psi(x) < 0$ in Ω_2 .

Level-set equation for normal velocity $u_n : \Omega \to \mathbb{R}$:

$$\psi_t + u_n |\nabla \psi| = 0$$

where $u_n|_{\Gamma}$ should the normal velocity of the moving boundary.

Coupling with the flow: $u_n = \tilde{\mathbf{q}} \cdot \frac{\nabla \psi}{|\nabla \psi|}$ on Γ .

Initial condition for ψ : The signed distance function.

Problem: u_n should be defined throughout in Ω .

LSF
$$\psi$$
: $\Gamma = \{x : \psi(x) = 0\}, \ \psi(x) > 0 \text{ in } \Omega_1, \ \psi(x) < 0 \text{ in } \Omega_2.$

Level-set equation for normal velocity $u_n : \Omega \to \mathbb{R}$:

$$\psi_t + u_n |\nabla \psi| = 0$$

where $u_n|_{\Gamma}$ should the normal velocity of the moving boundary.

Coupling with the flow:
$$u_n = \tilde{\mathbf{q}} \cdot \frac{\nabla \psi}{|\nabla \psi|}$$
 on Γ .

Initial condition for ψ : The signed distance function.

Problem: u_n should be defined throughout in Ω .

Caution: Inappropriate choice of the extension of u_n causes numerical problems (in $\nabla \psi$, CFL etc.)

Start with the initial conditions for ω and ψ (= SDF for init. Γ).

Start with the initial conditions for ω and ψ (= SDF for init. Γ).

In every time step:

For Γ_{old} = {x : ψ_{old}(x) = 0}, compute the solution ω_{new}, p_{new} in Ω_{2,old}. This provides the flow field **q** = **q**(ω_{new}, p_{new}).

Start with the initial conditions for ω and ψ (= SDF for init. Γ).

In every time step:

- For $\Gamma_{\text{old}} = \{x : \psi_{\text{old}}(x) = 0\}$, compute the solution ω_{new} , p_{new} in $\Omega_{2,\text{old}}$. This provides the flow field $\tilde{\mathbf{q}} = \tilde{\mathbf{q}}(\omega_{\text{new}}, p_{\text{new}})$.
- Compute the extension of $u_n = \tilde{\mathbf{q}} \cdot \frac{\nabla \psi_{\text{old}}}{|\nabla \psi_{\text{old}}|}$ from Γ_{old} to Ω .

Start with the initial conditions for ω and ψ (= SDF for init. Γ).

In every time step:

- For $\Gamma_{\text{old}} = \{x : \psi_{\text{old}}(x) = 0\}$, compute the solution ω_{new} , p_{new} in $\Omega_{2,\text{old}}$. This provides the flow field $\tilde{\mathbf{q}} = \tilde{\mathbf{q}}(\omega_{\text{new}}, p_{\text{new}})$.
- Compute the extension of $u_n = \tilde{\mathbf{q}} \cdot \frac{\nabla \psi_{\text{old}}}{|\nabla \psi_{\text{old}}|}$ from Γ_{old} to Ω .
- Solve the level-set equation with u_n: get ψ_{new} from ψ_{old}. This defines Γ_{new} and Ω_{2,new}.

Extension of the velocity

• Compute the Signed Distance Function $\hat{\psi}$ for Γ : Solve the Eikonal equation $|\nabla \hat{\psi}| = \pm 1$

with $\hat{\psi} = 0$ on Γ .

Extension of the velocity

• Compute the Signed Distance Function $\hat{\psi}$ for Γ : Solve the Eikonal equation $|\nabla \hat{\psi}| = \pm 1$

with $\hat{\psi} = 0$ on Γ .

• Transfer the interface velocity u_n "orthogonally" to the interface: Solve $\nabla \hat{\psi}$ $\nabla u_n = 0$

$$\frac{\nabla\psi}{|\nabla\hat{\psi}|}\cdot\nabla u_n=0$$

with $u_n = \tilde{\mathbf{q}} \cdot \frac{\nabla \psi}{|\nabla \psi|}$ on Γ .

Extension of the velocity

• Compute the Signed Distance Function $\hat{\psi}$ for Γ : Solve the Eikonal equation $|\nabla \hat{\psi}| = \pm 1$

with $\hat{\psi} = 0$ on Γ .

• Transfer the interface velocity u_n "orthogonally" to the interface: Solve $\nabla \hat{\psi}$

$$\frac{\nabla\psi}{|\nabla\hat{\psi}|}\cdot\nabla u_n=0$$

with $u_n = \tilde{\mathbf{q}} \cdot \frac{\nabla \psi}{|\nabla \psi|}$ on Γ .

• For this u_n and $\psi|_{t=0} = \hat{\psi}|_{t=0}$, ψ is the SDF at every time point: No reinitialization required.

• Compute the Signed Distance Function $\hat{\psi}$ for Γ : Solve the Eikonal equation $|\nabla \hat{\psi}| = \pm 1$

with $\hat{\psi} = 0$ on Γ .

• Transfer the interface velocity u_n "orthogonally" to the interface: Solve $\nabla \hat{\psi}$

$$\frac{\nabla\psi}{|\nabla\hat{\psi}|}\cdot\nabla u_n=0$$

with $u_n = \tilde{\mathbf{q}} \cdot \frac{\nabla \psi}{|\nabla \psi|}$ on Γ .

- For this u_n and $\psi|_{t=0} = \hat{\psi}|_{t=0}$, ψ is the SDF at every time point: No reinitialization required.
- The CFL number of the interface tracking is determined only by the normal velocity at Γ.

• Introduce the *artificial time s*: $\hat{\psi} = \hat{\psi}(s, x)$, $u_n = u_n(s, x)$.

D. Logashenko Simulation of phreatic surface in groundwater 10 /

• Introduce the artificial time s: $\hat{\psi} = \hat{\psi}(s, x)$, $u_n = u_n(s, x)$.

• Compute $\hat{\psi}$ for Γ : Solve the Eikonal equation

$$\hat{\psi}_{\mathbf{s}} + |\nabla \hat{\psi}| = \pm 1$$

with $\hat{\psi} = 0$ on Γ . (Steady state achieved in finite time.)

• Introduce the artificial time s: $\hat{\psi} = \hat{\psi}(s, x)$, $u_n = u_n(s, x)$.

• Compute $\hat{\psi}$ for Γ : Solve the Eikonal equation

$$\hat{\psi}_{s} + |\nabla \hat{\psi}| = \pm 1$$

with $\hat{\psi} = 0$ on Γ . (Steady state achieved in finite time.)

• Transfer the interface velocity u_n : Solve

$$u_{n,s} + \frac{\nabla \hat{\psi}}{|\nabla \hat{\psi}|} \cdot \nabla u_n = 0$$

with
$$u_n = \tilde{\mathbf{q}} \cdot \frac{\nabla \psi}{|\nabla \psi|}$$
 on Γ .

• Introduce the artificial time s: $\hat{\psi} = \hat{\psi}(s, x)$, $u_n = u_n(s, x)$.

• Compute $\hat{\psi}$ for Γ : Solve the Eikonal equation

$$\hat{\psi}_{s} + |\nabla \hat{\psi}| = \pm 1$$

with $\hat{\psi} = 0$ on Γ . (Steady state achieved in finite time.)

• Transfer the interface velocity u_n : Solve

$$u_{n,s} + \frac{\nabla \hat{\psi}}{|\nabla \hat{\psi}|} \cdot \nabla u_n = 0$$

with $u_n = \tilde{\mathbf{q}} \cdot \frac{\nabla \psi}{|\nabla \psi|}$ on Γ .

 Compute only few time steps in s and choose Δs so that the CFL is near 1.

• Introduce the artificial time s: $\hat{\psi} = \hat{\psi}(s, x)$, $u_n = u_n(s, x)$.

• Compute $\hat{\psi}$ for Γ : Solve the Eikonal equation

$$\hat{\psi}_{s} + |\nabla \hat{\psi}| = \pm 1$$

with $\hat{\psi}=0$ on $\Gamma.$ (Steady state achieved in finite time.)

• Transfer the interface velocity u_n : Solve

$$u_{n,s} + \frac{\nabla \hat{\psi}}{|\nabla \hat{\psi}|} \cdot \nabla u_n = 0$$

with $u_n = \tilde{\mathbf{q}} \cdot \frac{\nabla \psi}{|\nabla \psi|}$ on Γ .

 Compute only few time steps in s and choose Δs so that the CFL is near 1.

• Advantages: unstructured grids, parallelization.

Phreatic surface and flow in a dam (no salt)

Phreatic surface and flow in a dam (no salt)

Phreatic surface and flow in a dam (no salt)

Phreatic surface and flow in a dam (no salt)

Phreatic surface and flow in a dam (no salt)

Extended normal velocity

LSF pprox SDF (dotted lines) and the extended normal velocity (color)

Discretization

These equations have the form

$$\phi_t + rac{
abla \hat{\psi}}{|
abla \hat{\psi}|} \cdot
abla \phi = Q$$

for
$$\phi = \hat{\psi}$$
 or $\phi = u_n$ (with $\phi, Q : \Omega \to \mathbb{R}$).

D. Logashenko Simulation of phreatic surface in groundwater 13/3

Discretization

These equations have the form

$$\phi_t + rac{
abla \hat{\psi}}{|
abla \hat{\psi}|} \cdot
abla \phi = oldsymbol{Q}$$

for $\phi = \hat{\psi}$ or $\phi = u_n$ (with $\phi, Q : \Omega \to \mathbb{R}$).

Currently applied method: An explicit FV scheme based on the high-resolution flux-based level set method by P. Frolkovič and K. Mikula with a special treatment of Q. (A 2nd order scheme, explicit in time. A 1st order scheme available.)

Ghost-fluid method interface velocity

Boundary conditions at the interface:

- Extrapolation from the inner to the outer corners in the cut elements
- Otherwise use of the regular spatial FV discretization as for inner elements

Ghost-fluid method interface velocity

Boundary conditions at the interface:

- Extrapolation from the inner to the outer corners in the cut elements
- Otherwise use of the regular spatial FV discretization as for inner elements

Computation of \mathbf{q} at the interface:

- Accuracy of the velocity evaluated in the cut elements depends on the extrapolation significantly.
- ∇p : Special treatment in the multi-linear elements, $[\nabla p]_E = \text{const.}$

Ghost-fluid method interface velocity

Boundary conditions at the interface:

- Extrapolation from the inner to the outer corners in the cut elements
- Otherwise use of the regular spatial FV discretization as for inner elements

Computation of \mathbf{q} at the interface:

- Accuracy of the velocity evaluated in the cut elements depends on the extrapolation significantly.
- ∇p : Special treatment in the multi-linear elements, $[\nabla p]_E = \text{const.}$

Current issue:

• Mass conservation holds only asymptotically.

3D Example 1: Problem setting

3D Example 1: Problem setting

- $\bullet\,$ Hor. size ≈ 100 km, depth ≈ 0.5 km. 6 geological layers.
- BC: No-flux for entire fluid phase on the walls and bottom; no-flux for ω on the walls; $\omega = 1$ on the bottom.
- Initial position of the phreatic surface specified by a raster of the depths.
- Time-dependent recharge.
- Unstruct. grid of prisms. Anisotropic refinement required. Projection to the actual outer and inner boundaries.
- The coarsest grid: approx. 2000 grid nodes (2856 prisms).
- Presented result: approx. 10⁵ nodes (182784 prisms).
- Time step $\tau = 0.05$ year.

Data and results: GRS/Braunschweig (A. Schneider and Dr. H. Zhao).

Grid: G-CSC/Frankfurt University (Dr. S. Reiter) using ProMesh.

3D Example 1: Results

3D Example 1: Results

3D Example 2: Problem setting

3D Example 2: Problem setting

- $\bullet\,$ Hor. size \approx 40 km, depth \approx 0.2 km. 6 geological layers.
- BC: No-flux for entire fluid phase and salt on the walls and bottom up to one wall where $\omega = 1$ and hydrostatic p is imposed.
- Initial position of the phreatic surface specified by a raster of the depths.
- Position- and time-dependent recharge.
- 1d objects: channels ("rivers") modelled as the recharge depending on the depth of the phreatic surface.
- Unstruct. grid of prisms. Anisotropic refinement required.
- The coarsest grid: approx. 11500 grid nodes (18252 prisms).
- Presented result: approx. 82000 nodes (146016 prisms).
- Parallel computation on 20 cores.

Data and results: GRS/Braunschweig (A. Schneider and Dr. H. Zhao).

Grid: G-CSC/Frankfurt University (Dr. S. Reiter) using ProMesh.

3D Example 2: Results

3D Example 2: Results

Conclusions

We have presented a coupling of the density-driven flow with the level-set technique for the simulation of the phreatic boundary in the real-world geometries.

We have presented a coupling of the density-driven flow with the level-set technique for the simulation of the phreatic boundary in the real-world geometries.

Acknowledgements:

- A. Schneider, H. Zhao, K.-P. Kröhn (GRS, Braunschweig),
- S. Reiter (former member of G-CSC, Frankfurt University),

• P. Frolkovič (Slovak University of Technology, Bratislava) for cooperation.

We have presented a coupling of the density-driven flow with the level-set technique for the simulation of the phreatic boundary in the real-world geometries.

Acknowledgements:

- A. Schneider, H. Zhao, K.-P. Kröhn (GRS, Braunschweig),
- S. Reiter (former member of G-CSC, Frankfurt University),

• P. Frolkovič (Slovak University of Technology, Bratislava) for cooperation.

Thank you for your attention!

