Homogenization of linear elasticity with slip displacement conditions

Tanja Lochner

Institute of Mathematics University of Augsburg, Germany

Joint work with Malte A. Peter

supported by

Fourth German-Russian Workshop on Numerical Methods and Mathematical Modelling in Geophysical and Biomedical Sciences,
October 7-9th. 2019

Outline

- Physical motivation
- Statement of the problem
- Existence theory
 - Existence result for the disconnected case
 - Existence result for the connected case
- Periodic Homogenization
 - Two-scale convergence
 - Periodic unfolding method
 - Homogenization result for the connected case
 - Homogenization result for the disconnected case

Physical motivation

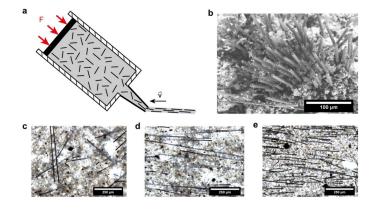


Fig.: (a) By applying a force (F) on the syringe fiber alignment in the extruded cement paste can be achieved; by moving the nozzle in a direction (v) solid samples containing oriented fibers can be fabricated. (b) ESEM micrograph of a fracture edge of a test specimen of nozzle-injected cement paste. Thin sections of (c) randomly distributed carbon fibers and nozzle-aligned carbon fibers at 1 (d) and 3 (e) percent by volume. Source: [Hambach, Möller, Neumann, Volkmer '16]

Physical motivation

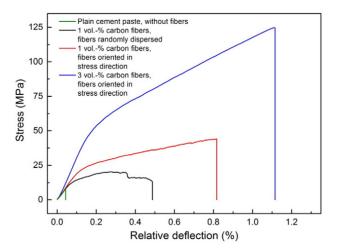
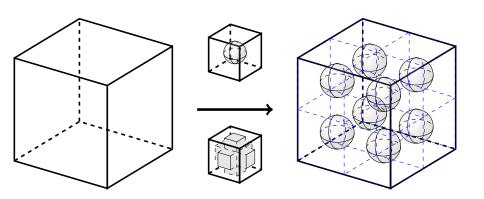


Fig.: Stress-deflection plots of 3-point bending tests for plain cement paste, mold casted and nozzle-injected carbon fiber-reinforced cement paste for 1 and 3 vol.-% carbon fibers. Source: [Hambach, Möller, Neumann, Volkmer '16]

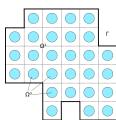
Vladivostok, 7.-9.10.2019

Statement of the problem



We consider the problem

$$\begin{cases} -\nabla \cdot \sigma^{\varepsilon} = f^{\varepsilon} \text{ in } \Omega_{0}^{\varepsilon} \cup \Omega_{1}^{\varepsilon}, \\ u^{\varepsilon} = 0 \text{ on } \Gamma_{1}, \\ \sigma^{\varepsilon} \cdot \nu = g \text{ on } \Gamma_{2} \end{cases}$$



with jump condition 1 on the interface Σ^{ε}

$$\begin{cases} \varepsilon \left[u_n^{\varepsilon}\right]_{\Sigma^{\varepsilon}} = \frac{1}{K_N} \sigma_n^{\Sigma^{\varepsilon}}, \\ \varepsilon \left[u_{\tau^i}^{\varepsilon}\right]_{\Sigma^{\varepsilon}} = \frac{1}{K_T} \sigma_{\tau^i}^{\Sigma^{\varepsilon}}, \ i = 1, 2, \\ \left[\sigma_n^{\varepsilon}\right]_{\Sigma^{\varepsilon}} = 0, \\ \left[\sigma_{\tau_i}^{\varepsilon}\right]_{\Sigma^{\varepsilon}} = 0, \ i = 1, 2, \end{cases}$$

where $K_N, K_T > 0$ are called the normal and tangential stiffness and $\sigma^{\Sigma^{\varepsilon}}$ the stress tensor of the interface.

5/23

¹Lombard, Piraux: Numerical modeling of elastic waves across imperfect contacts.

Notation and assumptions

- scaling factor ε such that $\varepsilon^{-1}\Omega$ can be represented as finite union of axis-parallel cuboids with corner coordinates in \mathbb{Z}^3
- $\sigma^{arepsilon} = (\sigma^{arepsilon}_{ij})_{1 \leq i,j \leq 3}$ stress tensor with

$$\sigma_{ij}^{\varepsilon} = \sum_{k,l=1}^{3} a_{ijkl}^{\varepsilon} e_{kl}(u^{\varepsilon}) = \sum_{k,l=1}^{3} a_{ijkl}^{\varepsilon} \frac{1}{2} \left(\partial_{k} u_{l}^{\varepsilon} + \partial_{l} u_{k}^{\varepsilon} \right),$$

- $\bullet \ \varphi_i = \varphi|_{\Omega_s^i}$
- $[\varphi]_{\Sigma^{\varepsilon}} := (\varphi^1 \varphi^0)|_{\Sigma^{\varepsilon}}$ jump on the interface.

Weak formulation

The weak fomulation in the disconnected case is:

Find u^{ε} such that for all test functions φ

$$\begin{split} &\int_{\Omega_{0}^{\varepsilon}} A^{\varepsilon} e(u_{0}^{\varepsilon}) e(\varphi_{0}) \mathrm{d}x + \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} e(u_{1}^{\varepsilon}) e(\varphi_{1}) \mathrm{d}x \\ &+ \varepsilon \int_{\Sigma^{\varepsilon}} \left(K_{\mathrm{N}} \left[u_{n}^{\varepsilon} \right]_{\Sigma^{\varepsilon}} n + K_{\mathrm{T}} \sum_{i=1}^{2} \left[u_{\tau^{i}}^{\varepsilon} \right]_{\Sigma^{\varepsilon}} \tau^{i} \right) \cdot (\varphi_{1} - \varphi_{0}) \, \mathrm{d}S(x) \\ &= \int_{\Omega_{0}^{\varepsilon}} f^{\varepsilon} \cdot \varphi_{0} \, \mathrm{d}x + \int_{\Omega_{0}^{\varepsilon}} f^{\varepsilon} \cdot \varphi_{1} \, \mathrm{d}x + \int_{\Gamma_{2}} g \cdot \varphi_{1} \mathrm{d}S(x) \end{split}$$

Weak formulation

The weak fomulation in the connected case is:

Find u^{ε} such that for all test functions φ

$$\begin{split} &\int_{\Omega_{0}^{\varepsilon}} A^{\varepsilon} e(u_{0}^{\varepsilon}) e(\varphi_{0}) \mathrm{d}x + \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} e(u_{1}^{\varepsilon}) e(\varphi_{1}) \mathrm{d}x \\ &+ \varepsilon \int_{\Sigma^{\varepsilon}} \left(K_{\mathrm{N}} \left[u_{n}^{\varepsilon} \right]_{\Sigma^{\varepsilon}} n + K_{\mathrm{T}} \sum_{i=1}^{2} \left[u_{\tau^{i}}^{\varepsilon} \right]_{\Sigma^{\varepsilon}} \tau^{i} \right) \cdot (\varphi_{1} - \varphi_{0}) \, \mathrm{d}S(x) \\ &= \int_{\Omega_{0}^{\varepsilon}} f^{\varepsilon} \cdot \varphi_{0} \, \mathrm{d}x + \int_{\Omega_{1}^{\varepsilon}} f^{\varepsilon} \cdot \varphi_{1} \, \mathrm{d}x + \int_{\Gamma_{2} \cap \partial\Omega_{0}^{\varepsilon}} g \cdot \varphi_{0} \mathrm{d}S(x) \\ &+ \int_{\Gamma_{2} \cap \partial\Omega_{0}^{\varepsilon}} g \cdot \varphi_{1} \mathrm{d}S(x) \end{split}$$

Existence result for the disconnected case

Since infinitesimal rotations induce no forces, we can assume that there are no rotations. We define the solution space

$$\begin{split} \mathcal{W}_{\mathrm{d}}(\Omega^{\varepsilon}) &= \{ u \in \left[L^2(\Omega^{\varepsilon}) \right]^3 : \, u_0 \in \left[H^1(\Omega_0^{\varepsilon}) \right]^3, \, u_1 \in \left[H^1(\Omega_1^{\varepsilon}, \Gamma_1) \right]^3, \\ & \nabla \times u_0 = 0 \text{ in } \Omega_0^{\varepsilon} \}, \end{split}$$

equipped with the norm

$$||u||_{\mathcal{W}_{d}(\Omega^{\varepsilon})}^{2}:=||e(u_{0})||_{[L^{2}(\Omega_{0}^{\varepsilon})]^{3\times3}}^{2}+||e(u_{1})||_{[L^{2}(\Omega_{1}^{\varepsilon})]^{3\times3}}^{2}+\varepsilon||[u]_{\Sigma^{\varepsilon}}||_{[L^{2}(\Sigma^{\varepsilon})]^{3}}^{2},$$

which is a Hilbert space.

8 / 23

The operator $\nabla \times \cdot$ is the usual curl operator, i.e.

$$\nabla \times u = \begin{pmatrix} \partial_{x_2} u_3 - \partial_{x_3} u_2 \\ \partial_{x_3} u_1 - \partial_{x_1} u_3 \\ \partial_{x_1} u_2 - \partial_{x_2} u_1 \end{pmatrix}.$$

Theorem

Let $f^{\varepsilon} \in \left[L^{2}(\Omega^{\varepsilon})\right]^{3}$, $g \in \left[L^{2}(\Gamma_{2})\right]^{3}$. Then, there exists a unique weak solution $u \in \mathcal{W}_{d}(\Omega^{\varepsilon})$ for all admissible $0 < \varepsilon \leq 1$. Furthermore there exists an ε -independent constant C with $\|u^{\varepsilon}\|_{\mathcal{W}_{d}(\Omega^{\varepsilon})} \leq C$.

Existence result for the connected case

Instead of

$$\mathcal{W}_{\mathrm{d}}(\Omega^{\varepsilon}) = \left\{ u \in \left[L^{2}(\Omega^{\varepsilon}) \right]^{3} : u_{0} \in \left[H^{1}(\Omega_{0}^{\varepsilon}) \right]^{3}, u_{1} \in \left[H^{1}(\Omega_{1}^{\varepsilon}, \Gamma_{1}) \right]^{3}, \right.$$

$$\nabla \times u_{0} = 0 \text{ in } \Omega_{0}^{\varepsilon} \right\},$$

endowed with the norm

$$\|u\|^2_{\mathcal{W}_{\mathrm{c}}(\Omega^{\varepsilon})} = \|e(u_0)\|^2_{\left[L^2(\Omega^{\varepsilon}_0)\right]^{3\times 3}} + \|e(u_1)\|^2_{\left[L^2(\Omega^{\varepsilon}_1)\right]^{3\times 3}} + \varepsilon \|[u]_{\Sigma^{\varepsilon}}\|^2_{\left[L^2(\Sigma^{\varepsilon})\right]^3},$$

which is a Hilbert space.

Theorem

Let $f^{\varepsilon} \in \left[L^{2}(\Omega^{\varepsilon})\right]^{3}$, $g \in \left[L^{2}(\Gamma_{2})\right]^{3}$. Then there exists a unique solution $u^{\varepsilon} \in \mathcal{W}_{c}(\Omega^{\varepsilon})$ of for all admissible $0 < \varepsilon \leq 1$. Furthermore there exists an ε -independent constant C with $\|u^{\varepsilon}\|_{\mathcal{W}_{c}(\Omega^{\varepsilon})} \leq C$.

Existence result for the connected case

We define

$$\mathcal{W}_{c}(\Omega^{\varepsilon}) = \left\{ u \in \left[L^{2}(\Omega^{\varepsilon}) \right]^{3} : u_{0} \in \left[H^{1}(\Omega_{0}^{\varepsilon}, \Gamma_{1} \cap \partial \Omega_{0}^{\varepsilon}) \right]^{3}, \right.$$
$$u_{1} \in \left[H^{1}(\Omega_{1}^{\varepsilon}, \Gamma_{1} \cap \partial \Omega_{1}^{\varepsilon}) \right]^{3} \right\}.$$

endowed with the norm

$$\|u\|^2_{\mathcal{W}_{\mathrm{c}}(\Omega^{\varepsilon})} = \|e(u_0)\|^2_{\left[L^2(\Omega_0^{\varepsilon})\right]^{3\times 3}} + \|e(u_1)\|^2_{\left[L^2(\Omega_1^{\varepsilon})\right]^{3\times 3}} + \varepsilon \|[u]_{\Sigma^{\varepsilon}}\|^2_{\left[L^2(\Sigma^{\varepsilon})\right]^3},$$

which is a Hilbert space.

Theorem

Let $f^{\varepsilon} \in \left[L^{2}(\Omega^{\varepsilon})\right]^{3}$, $g \in \left[L^{2}(\Gamma_{2})\right]^{3}$. Then there exists a unique solution $u^{\varepsilon} \in \mathcal{W}_{c}(\Omega^{\varepsilon})$ of for all admissible $0 < \varepsilon \leq 1$. Furthermore there exists an ε -independent constant C with $\|u^{\varepsilon}\|_{\mathcal{W}_{c}(\Omega^{\varepsilon})} \leq C$.

Two-scale convergence

Definition (Nguetseng '89, Allaire '92)

Let $\{u^{\varepsilon}\}$ be a sequence of functions in $L^2(\Omega)$ with $\Omega \subset \mathbb{R}^d, d \geq 1$, open and $Y = (0,1)^d$ the unit cube. The sequence is said to two-scale converge to $u \in L^2(\Omega \times Y)$ if

$$\lim_{\varepsilon \to 0} \int_{\Omega} u^{\varepsilon}(x) \varphi\left(x, \frac{x}{\varepsilon}\right) dx = \int_{\Omega} \int_{Y} u(x, y) \varphi(x, y) dy dx$$

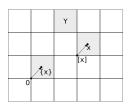
for every $\varphi \in L^2(\Omega; C^{\infty}_{per}(Y))$ and we write $u^{\varepsilon} \stackrel{2}{\longrightarrow} u$.

Theorem (Allaire '92)

Let $\{u^{\varepsilon}\}$ be a bounded sequence in $H^1(\Omega)$ such that $u^{\varepsilon} \rightharpoonup u$ weakly in $H^1(\Omega)$. Then $\{u^{\varepsilon}\}$ two-scale converges to u and there exists up to a subsequence a function $\hat{u} \in L^2(\Omega, H^1_{per}(Y)/\mathbb{R})$ that satisfy

$$u^{\varepsilon} \xrightarrow{2} u(x)$$
 and $\nabla u^{\varepsilon} \xrightarrow{2} \nabla u(x) + \nabla_{v} \hat{u}(x, y)$.

Periodic unfolding method



Let
$$x \in \mathbb{R}^3$$
, then $x = \varepsilon\left(\left[\frac{x}{\varepsilon}\right] + \left\{\frac{x}{\varepsilon}\right\}\right)$ with

$$[x] = \sum_{j=1}^{3} \xi_j e_j$$
, so that $\{x\} := x - [x] \in Y$.

Definition (Donato, Nguyen, Tardieu '11)

Let i=0,1. For any Lebesgue measurable function ϕ on Ω_i^ε the periodic unfolding operator $\mathcal{T}_i^\varepsilon$ is defined by the formula

$$\mathcal{T}_{i}^{\varepsilon}(\phi)(x,y) := \begin{cases} \phi\left(\varepsilon\left[\frac{x}{\varepsilon}\right] + \varepsilon y\right) & \text{ for a.e. } (x,y) \in \hat{\Omega}^{\varepsilon} \times Y_{i}, \\ 0 & \text{ for a.e. } (x,y) \in \Pi^{\varepsilon} \times Y_{i}, \end{cases}$$

where $\hat{\Omega}^{\varepsilon} = \bigcup_{\xi \in \Lambda^{\varepsilon}} \varepsilon(\xi + \overline{Y})$ and $\Pi^{\varepsilon} = \Omega \backslash \hat{\Omega}^{\varepsilon}$.

Let $\{u^{\varepsilon}\}$ be a sequence of weak solutions with $u^{\varepsilon}\in\mathcal{W}_{c}(\Omega^{\varepsilon})$. Then there exist functions $u_{0},u_{1}\in\left[H^{1}(\Omega,\Gamma_{1})\right]^{3}$ and $\hat{u}_{0},\hat{u}_{1}\in\left[L^{2}(\Omega,H^{1}_{per}(Y)/\mathbb{R})\right]^{3}$ such that

$$egin{cases} \widetilde{u}_1^arepsilon & \stackrel{2}{\longrightarrow} u_1, \ e(\widetilde{u}_1^arepsilon) & \stackrel{2}{\longrightarrow} e(u_1) + e_y(\hat{u}_1), \ \widetilde{u}_0^arepsilon & \stackrel{2}{\longrightarrow} u_0, \ e(\widetilde{u}_0^arepsilon) & \stackrel{2}{\longrightarrow} e(u_0) + e_y(\hat{u}_0), \end{cases}$$

whereby $\tilde{\cdot}$ is the extension to Ω defined in [Höpker '16].

Theorem

Let $\{u^{\varepsilon}\}$ be the sequence of weak solutions with $u^{\varepsilon} \in \mathcal{W}_{c}(\Omega^{\varepsilon})$ and $\{f^{\varepsilon}\} \subset \left[L^{2}(\Omega^{\varepsilon})\right]^{3}$ such that $f^{\varepsilon} \stackrel{2}{\longrightarrow} f$ for some $f \in \left[L^{2}(\Omega \times Y)\right]^{3}$. Then the restriction $u = (u_{0}, \hat{u}_{0}|_{\Omega \times Y_{0}}, u_{1}, \hat{u}_{1}|_{\Omega \times Y_{1}})$ is the unique solution of the problem

$$\begin{split} & \int_{\Omega} \int_{Y_{0}} A(e(u_{0}) + e_{y}(\hat{u}_{0})) (e(v_{0}) + e_{y}(\hat{v}_{0})) \, \mathrm{d}y \mathrm{d}x \\ & + \int_{\Omega} \int_{Y_{1}} A(e(u_{1}) + e_{y}(\hat{u}_{1})) (e(v_{1}) + e_{y}(\hat{v}_{1})) \, \mathrm{d}y \mathrm{d}x \\ & + \int_{\Omega} \int_{\Sigma_{Y}} \left(K_{N}(u_{1} \cdot n - u_{0} \cdot n) n + K_{T} \sum_{i=1}^{2} (u_{1} \cdot \tau^{i} - u_{0} \cdot \tau^{i}) \tau^{i} \right) \cdot (v_{1} - v_{0}) \, \mathrm{d}S(y) \mathrm{d}x \\ & = \int_{\Omega} \int_{Y_{0}} f \, \mathrm{d}y \cdot v_{0} \, \mathrm{d}x + \int_{\Omega} \int_{Y_{1}} f \, \mathrm{d}y \cdot v_{1} \, \mathrm{d}x + \int_{\Gamma_{2}} g \cdot h_{0} v_{0} \, \mathrm{d}S(x) + \int_{\Gamma_{2}} g \cdot h_{1} v_{1} \, \mathrm{d}S(x) \end{split}$$

 $\textit{for all } v_0,v_1 \in \left[H^1(\Omega,\Gamma_1) \right]^3, \; \hat{v}_0 \in \left[L^2(\Omega,H^1_{\text{per}}(Y_0)/\mathbb{R}) \right]^3, \; \hat{v}_1 \in \left[L^2(\Omega,H^1_{\text{per}}(Y_1)/\mathbb{R}) \right]^3.$

Formulation of limit problem with effective tensor

Find $u_0, u_1 \in \left[H^1(\Omega, \Gamma_1)\right]^3$ with

$$\begin{split} &\int_{\Omega} \textbf{A}_0^{\mathrm{hom}} e(u_0) e(v_0) \, \mathrm{d}x + \int_{\Omega} \textbf{A}_1^{\mathrm{hom}} e(u_1) e(v_1) \, \mathrm{d}x \\ &+ \int_{\Omega} \int_{\Sigma_Y} \left(K_N(u_1 \cdot n - u_0 \cdot n) n + K_T \sum_{i=1}^2 \left(u_1 \cdot \tau^i - u_0 \cdot \tau^i \right) \tau^i \right) \cdot (v_1 - v_0) \, \mathrm{d}S(y) \mathrm{d}x \\ &= \int_{\Omega} \int_{Y_0} f \, \mathrm{d}y \cdot v_0 \, \mathrm{d}x + \int_{\Omega} \int_{Y_1} f \, \mathrm{d}y \cdot v_1 \, \mathrm{d}x + \int_{\Gamma_2} g \cdot h_0 v_0 \, \mathrm{d}S(x) + \int_{\Gamma_2} g \cdot h_1 v_1 \, \mathrm{d}S(x), \end{split}$$

Formulation of limit problem with effective tensor

Find $u_0, u_1 \in \left[H^1(\Omega, \Gamma_1)\right]^3$ with

$$\int_{\Omega} A_0^{\text{hom}} e(u_0) e(v_0) dx + \int_{\Omega} A_1^{\text{hom}} e(u_1) e(v_1) dx \ldots = \ldots,$$

whereby

$$(A_{\alpha}^{\text{hom}})_{ijkh} = \int_{Y_{\alpha}} a_{ijkh}(y) - \sum_{l,m=1}^{3} a_{ijlm} \left(e_{y}(\chi_{\alpha}^{kh}) \right)_{lm} dy$$

and $\chi_{\alpha}^{lm} \in [H^1(Y_{\alpha})]^3$, $l, m \in \{1, 2, 3\}$ is the unique solution of

$$\begin{cases} \left(-\sum_{j=1}^{3} \frac{\partial}{\partial y_{j}} \left[\left(Ae_{y}(\chi_{\alpha}^{lm})\right)_{ij} - a_{ijlm}\right]\right)_{1 \leq i \leq 3} = 0 & \text{in } Y_{\alpha}, \\ \left(-\sum_{j=1}^{3} \left[\left(Ae_{y}(\chi_{\alpha}^{lm})\right)_{ij} - a_{ijlm}\right]\right)_{1 \leq i \leq 3} \cdot n = 0 & \text{on } \Sigma_{Y}, \\ \chi_{\alpha}^{lm} \text{ is Y-periodic with } \mathcal{M}_{Y_{\alpha}}(\chi_{\alpha}^{lm}) = 0. \end{cases}$$

for $\alpha \in \{0, 1\}$.

Define the Hilbert space

$$\left[L^{2}(\Omega, H^{1}_{per,0}(Y_{1}))\right]^{3} := \{u \in \left[L^{2}(\Omega, H^{1}_{per}(Y_{1}))\right]^{3} : \mathcal{M}_{Y_{1}}(u) = 0\}.$$

Theorem

Let $\{u_1^{\varepsilon}\}$ be a sequence in $\left[H^1(\Omega_1^{\varepsilon},\Gamma_1)\right]^3$ with

$$\|u_1^{\varepsilon}\|_{\left[L^2(\Omega_1^{\varepsilon})\right]^3} + \|e(u_1^{\varepsilon})\|_{\left[L^2(\Omega_1^{\varepsilon})\right]^{3\times 3}} \leq C$$

for a constant C independent of ε . Then there exists a subsequence (again denoted by ε), $u_1 \in \left[H^1(\Omega, \Gamma_1)\right]^3$ and $\hat{u}_1 \in \left[L^2(\Omega, H^1_{per,0}(Y_1))\right]^3$ such that

$$\mathcal{T}_1^{\varepsilon}(u_1^{\varepsilon}) \rightharpoonup u_1$$
 weakly in $\left[L^2(\Omega, H^1(Y_1))\right]^3$, $\mathcal{T}_1^{\varepsilon}(e(u_1^{\varepsilon})) \rightharpoonup e(u_1) + e_y(\hat{u}_1)$ weakly in $\left[L^2(\Omega \times Y_1)\right]^{3 \times 3}$.

Theorem

Let $\{u_0^{\varepsilon}\}$ be a sequence in $\left[\tilde{H}^1(\Omega_0^{\varepsilon})\right]^3:=\{u\in \left[H^1(\Omega_0^{\varepsilon})\right]^3:\nabla\times u=0 \text{ a.e. in }\Omega_0^{\varepsilon}\}$ with

$$\|u_0^{\varepsilon}\|_{\left[L^2(\Omega_0^{\varepsilon})\right]^3} + \|e(u_0^{\varepsilon})\|_{\left[L^2(\Omega_0^{\varepsilon})\right]^{3\times 3}} \leq C$$

for a constant C independent of ε . Then, there exists a subsequence (again denoted by ε) and $u_0 \in \left[L^2(\Omega)\right]^3$ such that

$$\mathcal{T}_0^{\varepsilon}(u_0^{\varepsilon}) \rightharpoonup u_0$$
 weakly in $\left[L^2(\Omega, H^1(Y_0))\right]^3$,

and

$$\varepsilon \mathcal{T}_0^\varepsilon(\nabla u_0^\varepsilon) \to 0 \text{ strongly in } \left[L^2(\Omega \times Y_0)\right]^{3\times 3}.$$

17 / 23

Theorem

Let $\{u_0^\varepsilon\}$ be a bounded sequence in $\left[\tilde{H}^1(\Omega_0^\varepsilon)\right]^3$ with

$$\mathcal{T}_0^{\varepsilon}(u_0^{\varepsilon})
ightharpoonup u_0$$
 weakly in $\left[L^2(\Omega,H^1(Y_0))\right]^3$

for some $u_0 \in [L^2(\Omega)]^3$. Then, the weak limit satisfies $\nabla \times u_0 = 0$.

18 / 23

Let $\{u^{\varepsilon}\}$ be the sequence of weak solutions with $u^{\varepsilon} \in \mathcal{W}_{\mathrm{d}}(\Omega^{\varepsilon})$. Then there exists $u = (u_1, \hat{u}_1, u_0, \hat{u}_0) \in \mathcal{Z}(\Omega, Y_1, Y_0)$, so that

$$\begin{cases} \mathcal{T}_1^\varepsilon(u_1^\varepsilon) \rightharpoonup u_1 \text{ weakly in } \left[L^2(\Omega,\tilde{H}^1(Y_1))\right]^3,\\ \mathcal{T}_1^\varepsilon(e(u_1^\varepsilon)) \rightharpoonup e(u_1) + e_y(\hat{u}_1) \text{ weakly in } \left[L^2(\Omega \times Y_1)\right]^{3\times 3},\\ \mathcal{T}_0^\varepsilon(u_0^\varepsilon) \rightharpoonup u_0 \text{ weakly in } \left[L^2(\Omega,\tilde{H}^1(Y_0))\right]^3,\\ \mathcal{T}_0^\varepsilon(e(u_0^\varepsilon)) \rightharpoonup e_y(\hat{u}_0) \text{ weakly in } \left[L^2(\Omega \times Y_0)\right]^{3\times 3}. \end{cases}$$

Theorem

Let $\{u^{\varepsilon}\}$ be the sequence of weak solutions with $u^{\varepsilon} \in \mathcal{W}_{\mathrm{d}}(\Omega^{\varepsilon})$. Then $u=(u_1,\hat{u}_1,u_0)$ is the solution of the problem

$$\begin{split} &\int_{\Omega} \int_{Y_1} A(y) (e(u_1) + e_y(\hat{u}_1)) (e(v_1) + e_y(\hat{v}_1)) \, \mathrm{d}y \mathrm{d}x \\ &+ \int_{\Omega} \int_{\Sigma_Y} \left(K_{\mathrm{N}} \left[u_1 \cdot n - u_0 \cdot n \right] n + K_{\mathrm{T}} \sum_{i=1}^2 \left[u_1 \cdot \tau^i - u_0 \cdot \tau^i \right] \tau^i \right) \cdot (v_1 - v_0) \, \mathrm{d}S(y) \, \mathrm{d}x \\ &= \int_{\Omega} \int_{Y_1} f \, \mathrm{d}y \cdot v_1 \, \mathrm{d}x + \int_{\Omega} \int_{Y_0} f \, \mathrm{d}y \cdot v_0 \, \mathrm{d}x + \int_{\Gamma_2} g \cdot v_1 \, \mathrm{d}S(x). \end{split}$$

for all $v = (v_1, \hat{v}_1, v_0) \in \mathcal{Z}(\Omega, Y_1, \Gamma_1)$.

We can reformulate the homogenized problem:

Find
$$u_1 \in \left[H^1(\Omega, \Gamma_1)\right]^3$$
, $u_0 \in \left[L^2_{curl}(\Omega)\right]^3$ such that

$$\begin{split} &\int_{\Omega} A_{1}^{\text{hom}} e(u_{1}) e(v_{1}) \, \mathrm{d}x \\ &+ \int_{\Omega} \int_{\Sigma_{Y}} \left(K_{N}(u_{1} \cdot n - u_{0} \cdot n) n + K_{T} \sum_{i=1}^{2} \left(u_{1} \cdot \tau^{i} - u_{0} \cdot \tau^{i} \right) \tau^{i} \right) \cdot (v_{1} - v_{0}) \, \mathrm{d}S(y) \mathrm{d}x \\ &= \int_{\Omega} \int_{Y_{0}} f \, \mathrm{d}y \cdot v_{0} \, \mathrm{d}x + \int_{\Omega} \int_{Y_{1}} f \, \mathrm{d}y \cdot v_{1} \, \mathrm{d}x + \int_{\Gamma_{2}} g \cdot v_{1} \, \mathrm{d}S(x) \end{split}$$

for all
$$v_1 \in \left[H^1(\Omega, \Gamma_1)\right]^3$$
, $v_0 \in \left[L^2_{curl}(\Omega)\right]^3$.

Comparison

Although the test functions are curl-free, by using the unique decomposition of functions $v \in L^2(\Omega)$, namely $v = \nabla p + \nabla \times w$ for some functions p, w, we can show that u_0 can not include rigid body motions. The strong formulation of the differential equations is

$$\begin{split} & -\nabla \cdot \left(A_1^{\mathrm{hom}} \, e(u_1)\right) + \int_{\Sigma_Y} K_\mathrm{N}(u_1 - u_0) \cdot nn + K_\mathrm{T} \sum_{i=1}^2 \left(u_1 - u_0\right) \cdot \tau^i \tau^i \, \mathrm{d}S(y) = \int_{Y_1} f \, \mathrm{d}y, \\ & -\nabla \cdot \left(A_0^{\mathrm{hom}} \, e(u_0)\right) - \int_{\Sigma_Y} K_\mathrm{N}(u_1 - u_0) \cdot nn + K_\mathrm{T} \sum_{i=1}^2 \left(u_1 - u_0\right) \cdot \tau^i \tau^i \, \mathrm{d}S(y) = \int_{Y_0} f \, \mathrm{d}y \end{split}$$

Summary

- Periodic homogenization was used to upscale the problem of linear elasticity in a two-component solid with linear slip displacement coupling conditions.
- One component was connected while the other one was either connected or disconnected.
- The effective models for the connected and the disconnected case are qualitatively different.
- In passing, general compactness results in the context of periodic unfolding for sequences in curl-free spaces were derived.