Theory of Functional Connections applied to Nonlinear Programming subject to Equality Constraints

Tina Mai^{1,*}, Daniele Mortari²

¹Duy Tan University (DTU), Da Nang, Viet Nam ²Texas A&M University (TAMU), College Station, Texas, USA

The Fourth German–Russian Workshop on Numerical Methods and Mathematical Modelling in Geophysical and Biomedical Sciences

Far Eastern Federal University campus

Island Russky, Vladivostok

October 7-11, 2019

Outline

- Motivations and background on the TFC
 - Univariate and multivariate
 - Applications on ODEs
- QP subject to equality constraints
 - Approach #1
 - Equivalent reduced equality system
 - Approach #2
 - Accuracy and speed tests
- NLP subject to equality constraints
 - The 2nd order approach
 - Convergence analysis
 - Quadratic convergence
 - Bounded number of iterations
- Conclusions

Motivations: Optimal control

Indirect Method: Apply Pontryagin Minimum Principle (PMP) to derive the necessary conditions and solve a TPBVP (generally not well-posed)

Direct Method: Transform a continuous problem into a finite NLP problems and find the minimum (Convergence to a global minimum generally non-guaranteed)

Theory of functional connections

Formal constrained expression

$$y(x) = g(x) + \sum_{k=1}^{n} \eta_k p_k(x)$$

 $\begin{cases} p_k(x) \text{ are } n \text{ assigned functions} \\ \eta_k \text{ are coefficient functions} \\ g(x) \text{ is a free function} \end{cases}$

Four constraints example:

$$\frac{d^2 y}{dt^2}\Big|_{-1} = \ddot{y}_{-1}, \quad y(0) = y_0, \quad y(2) = y_2, \quad \text{and} \quad \frac{dy}{dt}\Big|_{2} = \dot{y}_2$$

$$y(x) = g(x) + \frac{-4x + 4x^2 - x^3}{14}(\ddot{y}_{-1} - \ddot{g}_{-1}) + \frac{28 - 24x + 3x^2 + x^3}{28}(y_0 - g_0) + \frac{24x - 3x^2 - x^3}{28}(y_2 - g_2) + \frac{-10x + 3x^2 + x^3}{14}(\dot{y}_2 - \dot{g}_2)$$

How to use TFC to solve ODEs

ODEs: features summary

- Approximate analytical solution → Analysis (e.g., derivative, integral, etc.)
- 2. Unification \rightarrow IVP, BVP, MVP
- 3. Robustness \rightarrow Very low condition number
- 4. Speed $\rightarrow \sim$ msec \rightarrow real-time applications
- 5. Accuracy \rightarrow machine error level
- 6. Constraints
 - 1. Constraint range and integration range are completely independent.
 - 2. Constraint types: absolute, relative, component, linear, and integral. (Coming: infinite and inequality)

$$F(\mathbf{x}) = \underbrace{\operatorname{M} (c(\mathbf{x}))_{i_{1}i_{2}...i_{n}} \mathbf{v}_{i_{1}} \mathbf{v}_{i_{2}} \dots \mathbf{v}_{i_{n}}}_{A(\mathbf{x})} + \underbrace{g(\mathbf{x}) - \operatorname{M} (g(\mathbf{x}))_{i_{1}i_{2}...i_{n}} \mathbf{v}_{i_{1}} \mathbf{v}_{i_{2}} \dots \mathbf{v}_{i_{n}}}_{B(\mathbf{x})}$$

$$\mathbf{v}_{k} = \left\{ 1, \quad \sum_{i=1}^{\ell_{k}} \alpha_{i1} h_{i}(x_{k}), \quad \sum_{i=1}^{\ell_{k}} \alpha_{i2} h_{i}(x_{k}), \quad \dots, \quad \sum_{i=1}^{\ell_{k}} \alpha_{i\ell_{k}} h_{i}(x_{k}) \right\}$$

where the ℓ_k functions $h_i(x_k)$ must be linearly independent

$$\begin{bmatrix} {}^{k}b_{p_{1}}^{d_{1}}[h_{1}] & {}^{k}b_{p_{1}}^{d_{1}}[h_{2}] & \dots & {}^{k}b_{p_{1}}^{d_{1}}[h_{\ell_{k}}] \\ {}^{k}b_{p_{2}}^{d_{2}}[h_{1}] & {}^{k}b_{p_{2}}^{d_{2}}[h_{2}] & \dots & {}^{k}b_{p_{2}}^{d_{2}}[h_{\ell_{k}}] \\ \vdots & \vdots & \ddots & \vdots \\ {}^{k}b_{p_{\ell_{k}}}^{d_{\ell_{k}}}[h_{1}] & {}^{k}b_{p_{\ell_{k}}}^{d_{\ell_{k}}}[h_{2}] & \dots & {}^{k}b_{p_{\ell_{k}}}^{d_{\ell_{k}}}[h_{\ell_{k}}] \end{bmatrix} \begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1\ell_{k}} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2\ell_{k}} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{\ell_{k}1} & \alpha_{\ell_{k}2} & \dots & \alpha_{\ell_{k}\ell_{k}} \end{bmatrix} = I_{\ell_{k} \times \ell_{k}}$$

$$\nabla^{2} z(x, y) = e^{-x} (x - 2 + y^{3} + 6y)$$

subject to:
$$\begin{cases} z(x, 0) = xe^{-x} \\ z(0, y) = y^{3} \\ z(x, 1) = e^{-x} (x + 1) \\ z(1, y) = (1 + y^{3})e^{-1} \end{cases}$$

$$\begin{aligned} \mathbf{QP} \ \mathbf{using} \ (\mathbf{classic TFC approach}) \\ \underset{\mathbf{x} \in \mathbb{R}^{n}}{\max} \ f(\mathbf{x}) &= \frac{1}{2} \mathbf{x}^{\mathrm{T}} Q \mathbf{x} + \mathbf{c}^{\mathrm{T}} \mathbf{x} : \quad A \mathbf{x} = \mathbf{b} \\ \text{Classic TFC approach:} \quad \mathbf{x} &= \mathbf{g} + \underset{n \times m}{H} \mathbf{\eta} \\ A(\mathbf{g} + H\mathbf{\eta}) &= \mathbf{b} \quad \rightarrow \quad \mathbf{\eta} = (AH)^{-1}(\mathbf{b} - A\mathbf{g}) \\ \mathbf{x} &= \underbrace{H(AH)^{-1}\mathbf{b}}_{\mathbf{x}_{0}} + \underbrace{[I_{n \times n} - H(AH)^{-1}A]}_{D} \mathbf{g} = \mathbf{x}_{0} + D\mathbf{g} \\ f(\mathbf{g}) &= \frac{1}{2} (\mathbf{x}_{0} + D\mathbf{g})^{\mathrm{T}} Q(\mathbf{x}_{0} + D\mathbf{g}) + \mathbf{c}^{\mathrm{T}} (\mathbf{x}_{0} + D\mathbf{g}) \\ \frac{\mathrm{d}f(\mathbf{g})}{\mathrm{d}\mathbf{g}} &= \mathbf{0} \quad \rightarrow \quad \mathcal{A}\mathbf{g} + \mathbf{d} = \mathbf{0} \quad \rightarrow \quad \begin{cases} \mathcal{A} = D^{\mathrm{T}} QD \\ \mathbf{d} = D^{\mathrm{T}} (Q\mathbf{x}_{0} + \mathbf{c}) \\ \mathbf{d} = D^{\mathrm{T}} (Q\mathbf{x}_{0} + \mathbf{c}) \end{cases} \\ \mathcal{A} = U\Sigma V^{\mathrm{T}} \quad \rightarrow \mathcal{A}^{+} = U\Sigma^{+} V^{\mathrm{T}} \quad \rightarrow \quad \mathbf{x} = \mathbf{x}_{0} - DV\Sigma^{+} U^{\mathrm{T}} \mathbf{d} \end{aligned}$$

Equivalent equality constraints

(... what if rank(A) = p < m)

 $\underbrace{A}_{n \times n} \mathbf{x} = \mathbf{b} \quad \rightarrow \quad AP = \underbrace{Q}_{m \times m} \underbrace{R}_{m \times n} \quad \rightarrow \quad Q^{\mathrm{T}}A\mathbf{x} = RP^{\mathrm{T}}\mathbf{x} = Q^{\mathrm{T}}\mathbf{b}$ $m \times n$ (Rank Revealing QR decomposition) $QQ^{\mathrm{T}} = I_{m \times m}$ and $R \equiv$ upper trapezoidal $\mathbf{e} = \operatorname{diag}(R)$ $|\mathbf{e}_1| \ge |\mathbf{e}_2| \ge ...,$ rank(A) = p where $|\mathbf{e}_n| > \varepsilon \max\{m, n\} |\mathbf{e}_1|$ $RP^{\mathrm{T}}\mathbf{x} = Q^{\mathrm{T}}\mathbf{b} \rightarrow \widetilde{A} \mathbf{x} = \widetilde{\mathbf{b}} \rightarrow \mathbf{x}_{0} = \widetilde{H}(\widetilde{A}\widetilde{H})^{-1}\widetilde{\mathbf{b}}$ $n \times n$

$$\begin{aligned} \mathbf{QP} \ \mathbf{using} \ (\mathbf{approach} \ \#2) \\ \max_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) &= \frac{1}{2} \mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x}, \text{ subject to } A \mathbf{x} = \mathbf{b} \\ AN &= 0 \quad \rightarrow \quad \mathbf{x} = \mathbf{x}_0 + \underset{n \times r}{N} \mathbf{g} \text{ where } r = n - m \\ \mathbf{x}_0 &= H(AH)^{-1} \mathbf{b} \text{ or } \mathbf{x}_0 = A^T (AA^T)^{-1} \mathbf{b} \\ f(\mathbf{g}) &= \frac{1}{2} (\mathbf{x}_0 + N \mathbf{g})^T Q (\mathbf{x}_0 + N \mathbf{g}) + \mathbf{c}^T (\mathbf{x}_0 + N \mathbf{g}) \\ \frac{\mathrm{d}f(\mathbf{g})}{\mathrm{d}\mathbf{g}} &= \mathbf{0} \quad \rightarrow \quad \mathcal{B}\mathbf{g} + \mathbf{e} = \mathbf{0} \quad \rightarrow \quad \begin{cases} \mathcal{B} = N^T Q N \\ \mathbf{e} = N^T (Q \mathbf{x}_0 + \mathbf{c}) \\ \mathbf{e} = N^T (Q \mathbf{x}_0 + \mathbf{c}) \end{cases} \end{aligned}$$

R2016b quadprog requires

the reduced Hessian $N^{T}QN$ must be positive definite.

Accuracy tests with R2016b quadprog $|A\mathbf{x} - \mathbf{b}|_2$ $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x}$

Speed tests with R2019a quadprog

\overline{n}	m	TFC	quadprog	time ratio
10	2	0.027746	0.87057	31.3759
10	4	0.029558	0.92745	31.3768
10	8	0.032127	0.92885	28.9121
20	4	0.044136	0.77945	17.6601
20	8	0.051081	0.94080	18.418
20	16	0.085394	0.94296	11.0425
40	8	0.088137	0.84634	9.6026
40	16	0.131900	0.81007	6.1415
40	32	0.198200	0.82851	4.1802
80	16	0.273250	0.96279	3.5235
80	32	0.394500	1.11990	2.8388
80	64	0.677070	1.32050	1.9502

NLP using TFC

$$\begin{split} \min_{\mathbf{x}\in\mathbb{R}^{n}} f(\mathbf{x}) &: A\mathbf{x} = \mathbf{b} \\ \left\{ f(\mathbf{x})\in\mathbb{R}^{n}\to\mathbb{R}^{1}, A\in\mathbb{R}^{m\times n}, \operatorname{rank}(A) = m < n, \mathbf{b}\in\mathbb{R}^{m} \right\} \\ \mathbf{x} &= \mathbf{x}_{0} + N\mathbf{g} \text{ where } \left\{ r = n - m, N\in\mathbb{R}^{n\times r}, \mathbf{g}\in\mathbb{R}^{r} \right\} \\ f(\mathbf{x}) &= f(\mathbf{x}_{0}) + \mathbf{J}^{\mathrm{T}}(\mathbf{x}_{0})(\mathbf{x}-\mathbf{x}_{0}) + \frac{1}{2}(\mathbf{x}-\mathbf{x}_{0})^{\mathrm{T}}H(\mathbf{x}_{0})H(\mathbf{x}-\mathbf{x}_{0}) + \mathbf{0}(\mathbf{x}^{3}) \\ h(\mathbf{g}) &= \hat{h}(\mathbf{g}) + \operatorname{HOT} = f(\mathbf{x}_{0}) + \mathbf{J}_{0}^{\mathrm{T}}N\mathbf{g} + \frac{1}{2}\mathbf{g}^{\mathrm{T}}N^{\mathrm{T}}H_{0}N\mathbf{g} + \mathbf{0}(\mathbf{g}^{3}) \\ H(\mathbf{g}) &= \left\{ \frac{\partial f}{\partial x_{1}} \right\} \\ and H_{k} &= \nabla^{2}f(\mathbf{x}^{(k)}) = \left\{ \frac{\partial^{2}f}{\partial x_{1}^{2}} - \frac{\partial^{2}f}{\partial x_{1}x_{n}} \right\} \\ \vdots &\vdots \\ \frac{\partial f}{\partial x_{n}} \right\}_{\mathbf{x}^{(k)}} \end{split}$$

NLP using TFC

$$\hat{h}(\mathbf{g}) \approx f(\mathbf{x}_{0}) + \mathbf{J}_{0}^{\mathrm{T}} N \mathbf{g} + \frac{1}{2} \mathbf{g}^{\mathrm{T}} N^{\mathrm{T}} H_{0} N \mathbf{g}$$

$$\frac{\partial \hat{h}(\mathbf{g})}{\partial \mathbf{g}} = \mathbf{0} \quad \rightarrow \quad \mathbf{g}^{(1)} = -(N^{\mathrm{T}} H_{0} N)^{-1} N^{\mathrm{T}} \mathbf{J}_{0}$$

$$\mathbf{x}^{(1)} = \mathbf{x}_{0} + N \mathbf{g}^{(1)} = \mathbf{x}_{0} - N(N^{\mathrm{T}} H_{0} N)^{-1} N^{\mathrm{T}} \mathbf{J}_{0}$$
and the iterative process is
$$\mathbf{x}^{(k+1)} = \mathbf{x}_{0} + N \mathbf{g}^{(k+1)}$$

$$= \mathbf{x}_{0} - \sum_{j=0}^{k} N(N^{\mathrm{T}} H_{j} N)^{-1} N^{\mathrm{T}} \mathbf{J}_{j}$$

NLP using TFC (Full nonlinear)

1,

$$\mathcal{L}(\mathbf{g}) := \frac{\partial \hat{h}(\mathbf{g})}{\partial \mathbf{g}} = \mathbf{0}$$

and the iterative process is

$$\mathbf{g}^{(k+1)} = \mathbf{g}^{(k)} - (F_k)^{-1} \mathbf{E}_k = -\sum_{j=0}^{\kappa} (F_j)^{-1} \mathbf{E}_j$$
where
$$\begin{cases} \mathbf{E}_j = \nabla h(\mathbf{g}) \Big|_{\mathbf{g}^{(j)}} = N^{\mathrm{T}} \mathbf{J}_j \\ F_j = \nabla^2 h(\mathbf{g}) \Big|_{\mathbf{g}^{(j)}} = N^{\mathrm{T}} H_j N \end{cases}$$
Convergence occurs when

 $\left\| \mathbf{g}^{(k+1)} - \mathbf{g}^{(k)} \right\|_{2} < \varepsilon_{\mathbf{g}} \quad \text{or} \quad \left\| \mathcal{L} \left(\mathbf{g}^{(k)} \right) \right\|_{2} < \varepsilon_{\mathcal{L}}$ $\mathbf{x}^{(k+1)} = \mathbf{x}_{0} + N \mathbf{g}^{(k+1)}$

Convergence Analysis

1) quadratic convergence rate

$$\|\mathbf{E}_{k+1}\|_{2} \leq \left(\frac{L \|N\|_{2}^{3}}{2m^{2}}\right) \|\mathbf{E}_{k}\|_{2}^{2}$$
where
$$\begin{cases} \mathbf{E}_{k} = \nabla h(\mathbf{g}) \Big|_{\mathbf{g}^{(k)}} = N^{\mathrm{T}} \mathbf{J}_{k} \\ \|\nabla^{2} f(\mathbf{x}) - \nabla^{2} f(\mathbf{y})\|_{2} \leq L \|\mathbf{x} - \mathbf{y}\|_{2} \end{cases}$$

2) bounded number of iterations

$$\frac{M^{2}L^{2} \|N\|_{2}^{6}}{\alpha\beta \ m^{5} \min\{1, \ 9(1-2\alpha)^{2}\}} \left[h(\mathbf{g}^{(0)}) - q^{*}\right]_{\max}$$

$$\alpha \in (0,0.5), \quad \beta \in (0,1), \quad \text{and}$$

$$MI \geq \nabla^{2}h(\mathbf{g}) \geq mI$$

Conclusions

- Motivation and background on the TFC
 - Univariate and multivariate
 - Applications on ODEs
- QP subject to equality constraints
 - Approach #1
 - Equivalent reduced equality system
 - Approach #2
 - Accuracy and speed tests
- NLP subject to equality constraints
 - The 2nd order approach
 - Convergence analysis
 - Quadratic convergence
 - Bounded number of iterations
- Inequality constraints

MATLAB iterative approaches

- Interior-point-convex. This algorithm attempts to follow a path that is strictly inside the constraints.
- **Trust-region-reflective**. This algorithm is a subspace trust-region method based on the interior-reflective Newton method described in quadprog.

