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Abstract

The convergence and accuracy estimates for an abstract evolutionary inequality
with a linear bounded operator and a convex and Lipschitz-continuous
functional are investigated.

Four types of approximations are considered:

regularization method,
Galerkin semi-discrete scheme,
Rothe scheme

fully discrete scheme.

Approximate problems are studied under rather weak assumptions about
the smoothness of the input data.

As an example of applying general theoretical results, we study the finite
element approximation of a second order parabolic variational inequality.



ORIGINAL DIFFERENTIAL PROBLEM

Function spaces

m V', H are separable real Hilbert spaces, V C H=H* C V*,
embeddings are continuous and dense.

m (-,-) means both the inner product in H and the duality pairing
between V* and V;

m W = Ly(0,T; V)N HY0,T;V*), E = Loo(0,T; H) N Ly(0,T, V)
By the definition W C FE continuously. F is called the energy space,
and the norm of the graph in it is called the energy norm.

Problem (P).
Given ug € H and f € Ly(0,T; V™), find u € W such that u(0) = uo and

(W' (t) + A@u(t) — f(t),v —u(®) + ¢(v) = d(u(t)) 20 (1)
forallve Vandae te(0,7).

Note that we are considering so-called strong solution (u € W) of the
variational inequality.

3/23



Assumptions for input data

m Functional ¢ : H — R is convex and Lipschitz-continuous:
[¢(v) = p(w)| < Lllv—ullg Vov,ueH. (2)
m Linear operators operators A(t) : V — V* t € [0,T], satisfy

lA®)v||v- < M |lv|lv Vv eV,

(Alt)o,) = ol = Aoll3 Vv eV, p>0;

(Garding inequality)

function ¢ — (A(t)v,w) is measurable on (0,7) Yv,w € V.

(3)
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Theorem 1

Suppose that assumptions for input data (3), (2) are true. Then
there exists a unique solution u of the problem (P);

a priori estimates hold:
lull3 +/ u(®)) dt < C (Juolll + 1F12,0mm)

'l oo, zivey < C (ol + 1fllLoo.mve) + L)
stability takes place:
lur — u2l|e < C (|luto — w20z + ||.fr = f2llLo0,73v))

where uy, are the solutions of problem (P) with data uko and fx, k=0, 1,
respectively.

| \

Remark

Theorem states the existence of a strong solution to problem (P) under

assumptions (3), (2). A similar result even for the equation is not trivial and
proved by A. Bensoussan and J.-L. Lions. For variational inequalities, in our
opinion, it is new. In the proof we used the regularization method, which is

considered below.

5/23



Regularized problem
We use Moreau—Yosida regularization of the functional ¢:

1
¢-(w) = min (= v — ull}y +6(v)), >0
and formulate the regularized problem:

Problem (P.).
Given ug € H and f € Ly(0,T;V*), find u. € W such that u.(0) = ug
and

(u»/s(t) + A(t)us (t) - f(t)vv - ue(t)) + ¢ ('U) — ¢ (ue(t)) >0 (4)
forallve Vandae te(0,7).

Remark

The regularization method is among other things one of the approximate
methods for solving problem (P), which reduces it to the solving an
equation. In fact, the functional ¢. is convex and Fréshet differentiable
on H, let V¢. be its differential. So, variational inequality (4) is
equivalent to the equation

ul(t) + A@)ue(t) + Ve (ue(t)) = f(t) ae t€(0,T).
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Theorem 2.

Suppose that assumptions for input data (2), (3) are true. Then
there exists a unique solution u. of the problem (P:);
{uc} converges to u:

ue = u in B, ul—u weaklyin Ly(0,T;V*) as ¢ = 0;
error estimate holds:

lu—uellp < CLeY?;
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Semidicrete Galerkin scheme

Spaces of approximate solutions
m {Vj,}r>o is a family of finite-dimensional subspaces of V;
m Hj, is the same as V}, linear space equipped with topology of H.

The embeddings Vi, C H;, = Hj; C V} are continuous and dense, and the
constants in the embedding inequalities don’t depend on /. We identify V;*
with a subspace of V* and keep the notation (-,-) for the duality pairing
between V;* and V},.

Projection operator P, : V* — Vj,:
(th — U,Uh) =0 VYo, € V.

The restriction of P, to the space H coincides with the orthogonal projector
H — 'V, so,
|1Pyoller < |lvller Vv e H.
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Semidiscrete Galerkin scheme for the problem (P):

Problem (P).
Given ug € H and f € Lo(0,T;V*), find uj, € L2(0,T;V}) such that
u}, € La(0,T;V*), up(0) = Phug and

(up,(t) + A(t)un(t) = f(t),v — un(t)) + d(v) = d(un(t)) =20 (5)
forallve Vj andae t € (0,7).

Theorem 3.

Suppose that assumptions for input data (2), (3) are true. Then
there exists a unique solution wy, of the problem (Pp);

it satisfies a priory estimate

T
lunll3 + / S(un(®)) dt < C ([uol% + 1£112, 0. r + L)
stability estimate holds:

lun1 — unz2lle < C (lluro — weollm + 1f1 — fallLogo,m5v+)) 5

where uy, ; are the solutions of the problem (P,) with input data
Uo, k and fk, k= 0, 1.
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Convergence and accuracy

Approximation assumptions:

%%U:rg/h |lu — vp|ly =0 for any u € V. (6)
[Prolly < Cv [lofly - Yo eV (7)

By definition and due to (7) the following inequalities hold for all v;, € V},:
lu— Prullg < [lu—vnlla,

lu = Prullv < (1+Cv) [lu—wvnllv

Remark.

The use of projector from V* onto V},, which restriction to the space V is supposed to
be uniformly in h bounded operator (assumption (7)) is a key point in proving the
error estimate. The above assumption is satisfied for a wide class of approximations of
Sobolev spaces by finite element method (see [J. H. Bramble, J. E. Pasciak and O.
Steinbach (2002)]2, [R. E. Bank and H. Yserentant (2014)]) °.

The projection operator Py, : V* — V}, plays an important role in the estimating the
approximation errors of time derivative. Its usefulness in studying the Galerkin scheme

for parabolic equations was demonstrated in [K. Chrysafinos and L.S. Hou (2002)] €. fpo/23



Let assumptions for input data (2), (3) and approximation assumptions (6), (7) hold.
Then

a priory estimate takes place:
T
llun 3y +/O $(un(t)) dt < C (luolly + 1112, 0,7 +) + L?);

the sequence of solutions {up}p of the problem (Pp) converges to the exact
solution of the problem (P):

up, —u in B, uj —u' weaklyin Ly(0,T;V*) as h—0;;

the accuracy estimate holds:

lu —uplle < Cep(u), (8)
where
en(u) = inf lw —vpllE + inf lw— w32
0h €L oo (0,T5V3,) vp€Lo(0,T5V},) L2(0,T;H)

Remark

| \

Estimate (8) is obtained under the minimal smoothness assumptions for input data.
No requirements for the regularity of the solutions v and/or u;, with respect to ¢ are

assumed. )
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Rothe scheme (semidiscrete backward Euler scheme)

1. Discretization in time variable

We fix a time step 7 = T/N and a subdivision of [—7,T] given by
the intervals I, = [t,—1,t,), n = 0,1,..., N, where t; = j7 for j =
~1,0,...,N.

Time step restriction is fulfilled hereafter:
2A1 < 1, where X is a constant from Garding inequality (3).

The approximations of the operator and the right-hand side

(A™, w) = l/t" (Altyo, w)dt, [ = %/t F)dt, n=1,... N,

T Jtn

ut=ug, fO=f, AY=AL



Rothe scheme approximated problem (P):

Problem (P,)
Given ug € H and f € Ly(0,T;V*),
find u™ € V for all n =0,..., N such that

n __ un—l

(uf + A" — v — u") +o(v) —pu™) >0 YoveV. (9)

Initial condition «° is not assumed to be equal to ug, but it is a solution to the
inequality

((uo —uo)/T + A° —fl,v—uo) +¢(v)— () >0 VveV.

We used this choice of the initial condition following [G. Savaré, 1996]?, since it
is more convenient for studying the accuracy of the scheme. For a scheme with
the usual choice of u® = wo, all results remain valid.

2G. Savaré, Weak solutions and maximal regularity for abstract evolution
inequalities, Adv. Math. Sci. Appl. 6, 377-418
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Existence and convergence results

Under the assumptions for input data (2), (3) the problem (P, ) has a
unique solution.

For a given u” € V, n = 0,1,..., N, we denote by 4, the continuous
piecewise-linear function that equals u™ at the points t,,. If {u"}Y_, is a
solution of inequality (9), then we call the @ as the solution of the problem

(P;) as well.

Theorem 6.

Let the assumptions for input data (2), (3) hold. Then
Rothe scheme (P.) has a unique solution.
if u and 7., are the solutions of the problems (P) and (P,), then

U —u in E, 4, —u weaklyin Ly(0,7;V*) as 7—0.

This theorem establishes only the convergence of approximate solutions.
The assumptions for input data (2), (3) are not enough to obtain error

estimates.
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Error estimate for Rothe scheme

To obtain the error estimates, we impose stricter assumptions on the
data, than (2), (3):
[A#)vllve < Mjvlly Vv e V;
(A(t)v,v) > ullolZ = Aol3 Vo eV, p>0;
I(A(t) = Alt)ellv- < Malts = 2] lolly, 0<a <1,
VoveV, Vi, ta € (O,T);

(Holder-continuity of A(t) with respect to ¢ is an additional assumption);

(10)

(11)

feBY _(0,T;V*) with 0<g3<1;
1Ty € (O,T) : f|(O,T0) S LOO(O,TO;V*).

Used interpolation spaces

For the arbitrary Hilbert spaces H;, Ho and the parameters s € [0,1],
p € [1,00] we denote by (H1,H2)s,, the interpolation space constructed
through real method (see books of J. Bergh, J. Lofstrém [1976] and P.L.
Butzer, H. Berens [1967] for more details). In particular, for a Hilbert space
H we set

B3,(0,T;H) = (L2(0, T3 H), H (0, T; H)) s p
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Theorem 7.

Let w and @, be the solutions of the problems (P) and (P;), respectively and
assumptions (10), (11) be fulfilled, and up € V. Then

lu—iirllz < Cer, (12)
where

er =7 (luollv + 1z 010y + L) +7° 1l g5_ (o vy +

+7% Mo ([luoller + 1fllz2 0.73v+)) -

| A\

Remark.

Approximate scheme (Pr) for problem (P) was studied by [Savar’e (1996)] in the case
of general proper, convex and lower semicontinuous functional ¢. The existence of a
unique solution from the space H'(0,T; V)N WZL (0,T; H) was proved under
corresponding regularity assumptions imposed on the data. The estimate

lu—tr|p <CT

was proved in the supposition of these regularity assumptions for the exact solution.
Our results for Rothe scheme are proved under weaker assumptions for input data and

complement these results.
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Fully discrete implicit scheme

The fully discrete implicit approximation of the problem (P) is the combination
of semidiscrete schemes (Py) and (P;):

Problem (P};) Given ug € H and f € Ly(0,T;V*), find u}_ € V3 such
that u,;l = Prug € Vp, and for n = 0,1,..., N the following variational
inequalities hold:

((U’ZT - uz;l)/T_FAnu;LL‘r - fnv U= u;LLT) + ¢(U) - (b(u;LL‘r) >0 VoeV,.
Above we use the previous notations for the operator A™ and function f™.

Theorem 8.

Suppose the assumptions for input data (2), (3) hold. Then
problem (Py-) has a unique solution uj} € V,, n=0,1,... N.
the following stability estimate takes place:

lnr1 — tnr2lle < C (luro — w20l + 1f1 = f2llLo0,m5v+)) (13)

where uy, , are the piecewise linear interpolation (with respect to t)
of two solutions of the problem (P.) with data ug x and fx
(k=1,2).
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Convergence and the accuracy estimates

Theorem 9.

Suppose the assumptions for input data (2), (3) and approximation assumptions
(6),(7) hold. Let w and @y, be the solutions of the problems (P) and (Pp).
respectively. Then

Upr —u in B, 4, —u in L(0,T;V*) as h—0, 7 —0.

The result of the following theorem is proved by appropriate combination of the error
estimates for the Galerkin problem (P} ) and the error estimate of Rothe method applied
to Galerkin problem (Py,).

Theorem 10.

Let the assumptions for the data (10), (11) and the approximation assumptions (6),
(7) hold. Then

lu = dp-lle < C (en(u) +77/2 lwoll (£, 00 + €07) (14)
with

1/2
nf Nl = vn | 250 11y

ep(u) = i
n(w) v €L2(0,T5VA,)

inf lu —vnllE +
v €Loo (0,T5V4,)

Eor = 7'1/2(||f||Lo<>(O,To;V*)"’LH’Tﬁ ”f“RE’ o T<‘/*\+Ta Mo (||u0||H+||f||L2(O,T;V*aé/'ﬁ'



Convergence and the accuracy estimates

For proving (14) we use error estimate for the solution of the Galerkin problem
(Pr) ((8) in Theorem 11):

[u—unlle < Cenlu). (15)

Next, since (Pr-) is Rothe method applied to Galerkin problem (P), then we
can use the result of theorem 16, (changing the spaces H and V by Hj and V4,
and taking uo = Phruo, u = up and @ = Gn-) to obtain the estimate

lun — tnrlle < Cenr, (16)

where

enr = 72 (IPattol|v + | fl| e 00v;7) + L) +7° 1B 0mve)
+ 7% Mo (| Pruo ||, + 1 fllLo0,mv)) -
To estimate €5, by a value which depends only on 7, we use the inequalities
[ Pruolle, < lluolla, [[Pauollv < Cvlluollv
and get the inequality
enr < Oy 71/? |wollv + €or- (17)

Combination of (15), (16) and (17) results in the estimate (14).
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Consider an example of problem (P) with the following input data:
m Q C R is a bounded polyhedral domain, d =2 or 3, Qr = Q x (0,T),
H=1LyQ),V=H}Q), V=H1(Q);
m Elliptic operator
d

0

A(t)u:—”Z:la—xi (a”(x t) ) —i—ZaZ z, t -I—ao(:c t)u,

with the coefficients that satisfy the assumptions
aij(z,t), a;(z,t), a0 € Wi (Qr), aij(z,t) = aji(z,1);
d

D ai(@, t)6& > colé]® forall¢ € RY, ae. (z,t) € Qr, co > 0.

i,j=1
Operator A(t) : H}(Q) — H~1(Q) satisfies the assumptions (10): it is
bounded, satisfies Garding inequality and Lipschitz-continuous with respect to ¢t.

m Functional
¢<v>:ég<m><v—w(z>>—dm, € La(Q), 930, € Loo(Q),

where v~ = max{0, —v}, is convex and Lipschitz-continuous.
m Right hand side
f € By/2(0,T; Ly () N Leo (0, T3 H ()
satisfies assumption (11) with g =1/2.

m Initial value ug € H} ().
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Let T}, be a locally quasi-uniform simplicial partition of €2,

Vi, = {ve HY(Q): v|r € P(T) forall T € T}
the space of piecewise linear continuous functions that vanish on the boundary of 2.
For these triangulation and finite element space the assumptions (6) and (7) for the
projection operator P}, : H~1(Q) — V}, are satisfied!, 2

In more detail the results of the presentation can be found in

Dautov R. Z., Lapin A.V. Approximations of evolutionary inequality with Lipschitz-
continuous functional and minimally regular input data, Lobachevskii J. Math., 40 (4)
425-438 (2019).

In particular, for v € H2(Q2) we have the error estimates:

[v = ProllLy) < chllvllgia)y, v = ProllL,) < ch? [lvllgz(q),

lv = Provllpri o) < chllvllgz o)
We construct fully discrete schemes (Py,.), based on finite element subspace V}, of V.
Its accuracy estimate is given by (14) in the theorem 18 with
. B . B 1/2
en(w = inf fu—vile+ il u=val}ig,, <
< Ch(lluollgray + 1flyo,m5m1 ) + L)-
The accuracy estimate is
lu—an-lle < C(h+ V7).

1J. H. Bramble, J. E. Pasciak, and O. Steinbach. On the stability of the Lo
projection in H'(2), Math. Comp., 71,147-156 (2002)

2R. E. Bank and H. Yserentant, On the H!-stability of the Lo-projection onto
finite element spaces, Numer. Math., 126 361-381 (2014)
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