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Abstrat

The onvergene and auray estimates for an abstrat evolutionary inequality

with a linear bounded operator and a onvex and Lipshitz-ontinuous

funtional are investigated.

Four types of approximations are onsidered:

1 regularization method,

2 Galerkin semi-disrete sheme,

3 Rothe sheme

4 fully disrete sheme.

Approximate problems are studied under rather weak assumptions about

the smoothness of the input data.

As an example of applying general theoretial results, we study the �nite

element approximation of a seond order paraboli variational inequality.
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ORIGINAL DIFFERENTIAL PROBLEM

Funtion spaes

V , H are separable real Hilbert spaes, V ⊂ H = H∗ ⊂ V ∗
,

embeddings are ontinuous and dense.

(·, ·) means both the inner produt in H and the duality pairing

between V ∗
and V ;

W = L2(0, T ;V ) ∩H1(0, T ;V ∗), E = L∞(0, T ;H) ∩ L2(0, T, V )
By the de�nition W ⊂ E ontinuously. E is alled the energy spae,

and the norm of the graph in it is alled the energy norm.

Problem (P).
Given u0 ∈ H and f ∈ L2(0, T ;V

∗), �nd u ∈ W suh that u(0) = u0 and

(u′(t) +A(t)u(t)− f(t), v − u(t)) + φ(v) − φ(u(t)) ≥ 0 (1)

for all v ∈ V and a.e. t ∈ (0, T ).

Note that we are onsidering so-alled strong solution (u ∈ W ) of the

variational inequality.
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Assumptions for input data

Funtional φ : H → R is onvex and Lipshitz-ontinuous:

|φ(v) − φ(u)| ≤ L‖v − u‖H ∀ v, u ∈ H. (2)

Linear operators operators A(t) : V → V ∗, t ∈ [0, T ], satisfy



















‖A(t)v‖V ∗ ≤ M ‖v‖V ∀ v ∈ V ;

(A(t)v, v) ≥ µ ‖v‖2V − λ ‖v‖2H ∀ v ∈ V, µ > 0;

(G�arding inequality)

funtion t → (A(t)v, w) is measurable on (0, T ) ∀v, w ∈ V.

(3)
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Theorem 1.

Suppose that assumptions for input data (3), (2) are true. Then

1 there exists a unique solution u of the problem (P);

2 a priori estimates hold:

‖u‖2E +

∫ T

0

φ(u(t)) dt ≤ C (‖u0‖
2
H + ‖f‖2L2(0,T ;V ∗)) ;

‖u′‖L2(0,T ;V ∗) ≤ C (‖u0‖H + ‖f‖L2(0,T ;V ∗) + L) ;

3 stability takes plae:

‖u1 − u2‖E ≤ C (‖u10 − u20‖H + ‖f1 − f2‖L2(0,T ;V ∗)) ,

where uk are the solutions of problem (P) with data uk0 and fk, k = 0, 1,
respetively.

Remark

Theorem states the existene of a strong solution to problem (P) under

assumptions (3), (2). A similar result even for the equation is not trivial and

proved by A. Bensoussan and J.-L. Lions. For variational inequalities, in our

opinion, it is new. In the proof we used the regularization method, whih is

onsidered below.
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Regularized problem

We use Moreau�Yosida regularization of the funtional φ:

φε(u) = min
v∈H

( 1

2ε
‖v − u‖2H + φ(v)

)

, ε > 0

and formulate the regularized problem:

Problem (Pε).
Given u0 ∈ H and f ∈ L2(0, T ;V

∗), �nd uε ∈ W suh that uε(0) = u0

and

(

u′

ε(t) +A(t)uε(t)− f(t), v − uε(t)
)

+ φε(v)− φε(uε(t)) ≥ 0 (4)

for all v ∈ V and a.e. t ∈ (0, T ).

Remark

The regularization method is among other things one of the approximate

methods for solving problem (P), whih redues it to the solving an

equation. In fat, the funtional φε is onvex and Fr�eshet di�erentiable

on H , let ∇φε be its di�erential. So, variational inequality (4) is

equivalent to the equation

u′

ε(t) +A(t)uε(t) +∇φε(uε(t)) = f(t) a.e. t ∈ (0, T ).
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Theorem 2.

Suppose that assumptions for input data (2), (3) are true. Then

1 there exists a unique solution uε of the problem (Pε);

2 {uε} onverges to u:

uε → u in E, u′

ε ⇀ u′
weakly in L2(0, T ;V

∗) as ε → 0 ;

3 error estimate holds:

‖u− uε‖E ≤ C L ε1/2 ;
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Semidirete Galerkin sheme

Spaes of approximate solutions

{Vh}h>0 is a family of �nite-dimensional subspaes of V ;

Hh is the same as Vh linear spae equipped with topology of H .

The embeddings Vh ⊂ Hh = H∗

h ⊂ V ∗

h are ontinuous and dense, and the

onstants in the embedding inequalities don't depend on h. We identify V ∗

h

with a subspae of V ∗
and keep the notation (·, ·) for the duality pairing

between V ∗

h and Vh.

Projetion operator Ph : V ∗ → Vh:

(Phv − v, vh) = 0 ∀ vh ∈ Vh.

The restrition of Ph to the spaeH oinides with the orthogonal projetor

H → Vh, so,

‖Phv‖H ≤ ‖v‖H ∀ v ∈ H.

8 /23



Semidisretå Galerkin sheme for the problem (P):

Problem (Ph).
Given u0 ∈ H and f ∈ L2(0, T ;V

∗), �nd uh ∈ L2(0, T ;Vh) suh that

u′

h ∈ L2(0, T ;V
∗), uh(0) = Phu0 and

(u′

h(t) +A(t)uh(t)− f(t), v − uh(t)) + φ(v) − φ(uh(t)) ≥ 0 (5)

for all v ∈ Vh and a.e. t ∈ (0, T ).

Theorem 3.

Suppose that assumptions for input data (2), (3) are true. Then

1 there exists a unique solution uh of the problem (Ph);

2 it satis�es a priory estimate

‖uh‖
2
E +

∫ T

0

φ(uh(t)) dt ≤ C (‖u0‖
2
H + ‖f‖2L2(0,T ;V ∗) + L2);

3 stability estimate holds:

‖uh,1 − uh,2‖E ≤ C (‖u10 − u20‖H + ‖f1 − f2‖L2(0,T ;V ∗)) ,

where uh,k are the solutions of the problem (Ph) with input data

u0,k and fk, k = 0, 1.
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Convergene and auray

Approximation assumptions:

lim
h→0

inf
vh∈Vh

‖u− vh‖V = 0 for any u ∈ V. (6)

‖Phv‖V ≤ CV ‖v‖V ∀ v ∈ V. (7)

By de�nition and due to (7) the following inequalities hold for all vh ∈ Vh:

‖u− Phu‖H ≤ ‖u− vh‖H ,

‖u− Phu‖V ≤ (1 + CV ) ‖u− vh‖V .

Remark.

The use of projetor from V ∗
onto Vh, whih restrition to the spae V is supposed to

be uniformly in h bounded operator (assumption (7)) is a key point in proving the

error estimate. The above assumption is satis�ed for a wide lass of approximations of

Sobolev spaes by �nite element method (see [J. H. Bramble, J. E. Pasiak and O.

Steinbah (2002)℄

a

, [R. E. Bank and H. Yserentant (2014)℄)

b

.

The projetion operator Ph : V ∗ → Vh plays an important role in the estimating the

approximation errors of time derivative. Its usefulness in studying the Galerkin sheme

for paraboli equations was demonstrated in [K. Chrysa�nos and L.S. Hou (2002)℄



.

a

J. H. Bramble, J. E. Pasiak, and O. Steinbah, On the stability of the

projetion in , Math. Comp., 71, 147�156

b

R. E. Bank and H. Yserentant, On the -stability of the -projetion onto �nite

element spaes, Numer. Math., 126, 361�381



K. Chrysa�nos and L.S. Hou Error estimates for semidisrete �nite element

approximations of linear and semilinear paraboli equations under minimal regularity

assumptions, SIAM. J. Numer. Anal., 40, 282�306
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Theorem 4.

Let assumptions for input data (2), (3) and approximation assumptions (6), (7) hold.

Then

1 a priory estimate takes plae:

‖uh‖2W +

∫ T

0
φ(uh(t)) dt ≤ C (‖u0‖2H + ‖f‖2L2(0,T ;V ∗) + L2);

2 the sequene of solutions {uh}h of the problem (Ph) onverges to the exat

solution of the problem (P):

uh → u in E, u′h ⇀ u′ weakly in L2(0, T ;V
∗) as h → 0 ; ;

3 the auray estimate holds:

‖u− uh‖E ≤ C εh(u), (8)

where

εh(u) = inf
vh∈L∞(0,T ;Vh)

‖u− vh‖E + inf
vh∈L2(0,T ;Vh)

‖u− vh‖1/2L2(0,T ;H)
.

Remark

Estimate (8) is obtained under the minimal smoothness assumptions for input data.

No requirements for the regularity of the solutions u and/or uh with respet to t are

assumed.
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Rothe sheme (semidisrete bakward Euler sheme)

1. Disretization in time variable

We �x a time step τ = T/N and a subdivision of [−τ, T ] given by

the intervals In = [tn−1, tn), n = 0, 1, . . . , N , where tj = jτ for j =
−1, 0, . . . , N .

Time step restrition is ful�lled hereafter:

2λτ < 1, where λ is a onstant from G�arding inequality (3).

The approximations of the operator and the right-hand side

(Anv, w) =
1

τ

∫ tn

tn−1

(A(t)v, w)dt, fn =
1

τ

∫ tn

tn−1

f(t)dt, n = 1, . . . , N,

u−1 = u0, f0 = f1, A0 = A1.
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Rothe sheme approximated problem (P):

Problem (Pτ )
Given u0 ∈ H and f ∈ L2(0, T ;V

∗),
�nd un ∈ V for all n = 0, . . . , N suh that

(un − un−1

τ
+Anun − fn, v − un

)

+ φ(v) − φ(un) ≥ 0 ∀ v ∈ V. (9)

Remark.

Initial ondition u0
is not assumed to be equal to u0, but it is a solution to the

inequality

(

(u0 − u0)/τ + A1u0 − f1, v − u0)+ φ(v)− φ(u0) ≥ 0 ∀ v ∈ V.

We used this hoie of the initial ondition following [G. Savar�e, 1996℄

a

, sine it

is more onvenient for studying the auray of the sheme. For a sheme with

the usual hoie of u0 = u0, all results remain valid.

a

G. Savar�e, Weak solutions and maximal regularity for abstrat evolution

inequalities, Adv. Math. Si. Appl. 6, 377-418
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Existene and onvergene results

Theorem 5.

Under the assumptions for input data (2), (3) the problem (Pτ ) has a
unique solution.

For a given un ∈ V , n = 0, 1, . . . , N , we denote by ûτ the ontinuous

pieewise-linear funtion that equals un
at the points tn. If {u

n}Nn=0 is a

solution of inequality (9), then we all the ûτ as the solution of the problem

(Pτ ) as well.

Theorem 6.

Let the assumptions for input data (2), (3) hold. Then

1 Rothe sheme (Pτ ) has a unique solution.

2 if u and ûτ are the solutions of the problems (P) and (Pτ ), then

ûτ → u in E, û′

τ ⇀ u′
weakly in L2(0, T ;V

∗) as τ → 0 .

This theorem establishes only the onvergene of approximate solutions.

The assumptions for input data (2), (3) are not enough to obtain error

estimates.
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Error estimate for Rothe sheme

To obtain the error estimates, we impose striter assumptions on the

data, than (2), (3):



















‖A(t)v‖V ∗ ≤ M ‖v‖V ∀ v ∈ V ;

(A(t)v, v) ≥ µ ‖v‖2V − λ ‖v‖2H ∀ v ∈ V, µ > 0;

‖(A(t1)−A(t2))v‖V ∗ ≤ Mα|t1 − t2|
α ‖v‖V , 0 < α ≤ 1,

∀ v ∈ V, ∀t1, t2 ∈ (0, T );

(10)

(H�older-ontinuity of A(t) with respet to t is an additional assumption);

{

f ∈ Bβ
2∞(0, T ;V ∗) with 0 < β ≤ 1;

∃T0 ∈ (0, T ) : f |(0,T0) ∈ L∞(0, T0;V
∗).

(11)

Used interpolation spaes

For the arbitrary Hilbert spaes H1, H2 and the parameters s ∈ [0, 1],
p ∈ [1,∞] we denote by (H1,H2)s,p the interpolation spae onstruted

through real method (see books of J. Bergh, J. L�ofstr�om [1976℄ and P.L.

Butzer, H. Berens [1967℄ for more details). In partiular, for a Hilbert spae

H we set

Bs
2p(0, T ;H) = (L2(0, T ;H), H1(0, T ;H))s,p .
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Theorem 7.

Let u and ûτ be the solutions of the problems (P) and (Pτ ), respetively and

assumptions (10), (11) be ful�lled, and u0 ∈ V . Then

‖u− ûτ‖E ≤ C ετ , (12)

where

ετ = τ 1/2 (‖u0‖V + ‖f‖L∞(0,T0;V ∗) + L) + τβ ‖f‖
B

β
2∞

(0,T ;V ∗)
+

+τα Mα

(

‖u0‖H + ‖f‖L2(0,T ;V ∗)

)

.

Remark.

Approximate sheme (Pτ ) for problem (P) was studied by [Savar'e (1996)℄ in the ase

of general proper, onvex and lower semiontinuous funtional φ. The existene of a

unique solution from the spae H1(0, T ; V ) ∩W 1
∞
(0, T ;H) was proved under

orresponding regularity assumptions imposed on the data. The estimate

‖u− ûτ‖E ≤ C τ

was proved in the supposition of these regularity assumptions for the exat solution.

Our results for Rothe sheme are proved under weaker assumptions for input data and

omplement these results.
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Fully disrete impliit sheme

The fully disrete impliit approximation of the problem (P) is the ombination

of semidisrete shemes (Ph) and (Pτ ):

Problem (Phτ ) Given u0 ∈ H and f ∈ L2(0, T ;V
∗), �nd un

hτ ∈ Vh suh

that u−1
hτ = Phu0 ∈ Vh, and for n = 0, 1, . . . , N the following variational

inequalities hold:

((un
hτ −un−1

hτ )/τ +Anun
hτ − fn, v−un

hτ)+φ(v)−φ(un
hτ ) ≥ 0 ∀ v ∈ Vh.

Above we use the previous notations for the operator An
and funtion fn

.

Theorem 8.

Suppose the assumptions for input data (2), (3) hold. Then

1 problem (Phτ ) has a unique solution un
h ∈ Vh, n = 0, 1, . . .N.

2 the following stability estimate takes plae:

‖ûhτ,1 − ûhτ,2‖E ≤ C (‖u10 − u20‖H + ‖f1 − f2‖L2(0,T ;V ∗)) (13)

where uhτ,k are the pieewise linear interpolation (with respet to t)
of two solutions of the problem (Phτ ) with data u0,k and fk
(k=1,2).
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Convergene and the auray estimates

Theorem 9.

Suppose the assumptions for input data (2), (3) and approximation assumptions

(6),(7) hold. Let u and ûhτ be the solutions of the problems (P) and (Phτ ),
respetively. Then

ûhτ → u in E, û′hτ ⇀ u′ in L2(0, T ;V
∗) as h→ 0, τ → 0 .

The result of the following theorem is proved by appropriate ombination of the error

estimates for the Galerkin problem (Ph) and the error estimate of Rothe method applied

to Galerkin problem (Ph).

Theorem 10.

Let the assumptions for the data (10), (11) and the approximation assumptions (6),

(7) hold. Then

‖u− ûhτ‖E ≤ C
(

εh(u) + τγ/2 ‖u0‖(H,V )γ,∞
+ ε0τ

)

(14)

with

εh(u) = inf
vh∈L∞(0,T ;Vh)

‖u− vh‖E + inf
vh∈L2(0,T ;Vh)

‖u− vh‖1/2L2(0,T ;H)
.

ε0τ = τ1/2(‖f‖L∞(0,T0;V ∗)+L)+τ
β ‖f‖

B
β
2∞

(0,T ;V ∗)
+ταMα

(

‖u0‖H+‖f‖L2(0,T ;V ∗)

)

.
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Convergene and the auray estimates

For proving (14) we use error estimate for the solution of the Galerkin problem

(Ph) ((8) in Theorem 11):

‖u− uh‖E ≤ C εh(u) . (15)

Next, sine (Phτ ) is Rothe method applied to Galerkin problem (Ph), then we

an use the result of theorem 16, (hanging the spaes H and V by Hh and Vh,

and taking u0 = Phu0, u = uh and ûτ = ûhτ ) to obtain the estimate

‖uh − ûhτ‖E ≤ C εhτ , (16)

where

εhτ = τ 1/2 (‖Phu0‖V + ‖f‖L∞(0,T0 ;V
∗

h
) + L) + τβ ‖f‖

B
β
2∞

(0,T ;V ∗

h
)

+ τα Mα

(

‖Phu0‖Hh
+ ‖f‖L2(0,T ;V ∗

h
)

)

.

To estimate εhτ by a value whih depends only on τ , we use the inequalities

‖Phu0‖Hh
≤ ‖u0‖H , ‖Phu0‖V ≤ CV ‖u0‖V

and get the inequality

εhτ ≤ CV τ 1/2 ‖u0‖V + ε0τ . (17)

Combination of (15), (16) and (17) results in the estimate (14).
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Example

Consider an example of problem (P) with the following input data:

Ω ⊂ Rd
is a bounded polyhedral domain, d = 2 or 3, QT = Ω× (0, T ),

H = L2(Ω), V = H1
0 (Ω), V ∗ = H−1(Ω);

Ellipti operator

A(t)u = −
d

∑

i,j=1

∂

∂xi

(

aij(x, t)
∂u

∂xj

)

+
d

∑

i=1

ai(x, t)
∂u

∂xi
+ a0(x, t)u,

with the oe�ients that satisfy the assumptions

aij(x, t), ai(x, t), a0 ∈ W 1
∞
(QT ), aij(x, t) = aji(x, t);

d
∑

i,j=1

aij(x, t)ξiξj ≥ c0|ξ|2 for all ξ ∈ Rd, a.e. (x, t) ∈ QT , c0 > 0.

Operator A(t) : H1
0 (Ω) → H−1(Ω) satis�es the assumptions (10): it is

bounded, satis�es G�arding inequality and Lipshitz-ontinuous with respet to t.

Funtional

φ(v) =

∫

Ω
g(x) (v − ψ(x))− dx, g ∈ L2(Ω), g ≥ 0, ψ ∈ L∞(Ω),

where v− = max{0,−v}, is onvex and Lipshitz-ontinuous.

Right hand side

f ∈ B
1/2
2∞ (0, T ;L2(Ω)) ∩ L∞(0, T ;H−1(Ω))

satis�es assumption (11) with β = 1/2.

Initial value u0 ∈ H1
0 (Ω).
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Let Th be a loally quasi-uniform simpliial partition of Ω,

Vh = {v ∈ H1
0 (Ω) : v|T ∈ P1(T ) for all T ∈ Th}

the spae of pieewise linear ontinuous funtions that vanish on the boundary of Ω.
For these triangulation and �nite element spae the assumptions (6) and (7) for the

projetion operator Ph : H−1(Ω) → Vh are satis�ed

1

,

2

In more detail the results of the presentation an be found in

Dautov R. Z., Lapin A.V. Approximations of evolutionary inequality with Lipshitz-

ontinuous funtional and minimally regular input data, Lobahevskii J. Math., 40 (4)

425-438 (2019).

In partiular, for v ∈ H2(Ω) we have the error estimates:

‖v − Phv‖L2(Ω) ≤ c h ‖v‖H1(Ω), ‖v − Phv‖L2(Ω) ≤ c h2 ‖v‖H2(Ω),

‖v − Phv‖H1(Ω) ≤ c h ‖v‖H2(Ω).

We onstrut fully disrete shemes (Phτ ), based on �nite element subspae Vh of V .
Its auray estimate is given by (14) in the theorem 18 with

εh(u) = inf
vh∈Vh

‖u− vh‖E + inf
vh∈Vh

‖u− vh‖1/2L2(QT )
≤

≤ C h (‖u0‖H1(Ω) + ‖f‖L2(0,T ;H1(Ω)) + L).

The auray estimate is

‖u− ûhτ‖E ≤ C (h+
√
τ).

1

J. H. Bramble, J. E. Pasiak, and O. Steinbah. On the stability of the L2

projetion in H1(Ω), Math. Comp., 71,147�156 (2002)

2

R. E. Bank and H. Yserentant, On the H1
-stability of the L2-projetion onto

�nite element spaes, Numer. Math., 126 361�381 (2014)
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