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Abstra
t

The 
onvergen
e and a

ura
y estimates for an abstra
t evolutionary inequality

with a linear bounded operator and a 
onvex and Lips
hitz-
ontinuous

fun
tional are investigated.

Four types of approximations are 
onsidered:

1 regularization method,

2 Galerkin semi-dis
rete s
heme,

3 Rothe s
heme

4 fully dis
rete s
heme.

Approximate problems are studied under rather weak assumptions about

the smoothness of the input data.

As an example of applying general theoreti
al results, we study the �nite

element approximation of a se
ond order paraboli
 variational inequality.
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ORIGINAL DIFFERENTIAL PROBLEM

Fun
tion spa
es

V , H are separable real Hilbert spa
es, V ⊂ H = H∗ ⊂ V ∗
,

embeddings are 
ontinuous and dense.

(·, ·) means both the inner produ
t in H and the duality pairing

between V ∗
and V ;

W = L2(0, T ;V ) ∩H1(0, T ;V ∗), E = L∞(0, T ;H) ∩ L2(0, T, V )
By the de�nition W ⊂ E 
ontinuously. E is 
alled the energy spa
e,

and the norm of the graph in it is 
alled the energy norm.

Problem (P).
Given u0 ∈ H and f ∈ L2(0, T ;V

∗), �nd u ∈ W su
h that u(0) = u0 and

(u′(t) +A(t)u(t)− f(t), v − u(t)) + φ(v) − φ(u(t)) ≥ 0 (1)

for all v ∈ V and a.e. t ∈ (0, T ).

Note that we are 
onsidering so-
alled strong solution (u ∈ W ) of the

variational inequality.
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Assumptions for input data

Fun
tional φ : H → R is 
onvex and Lips
hitz-
ontinuous:

|φ(v) − φ(u)| ≤ L‖v − u‖H ∀ v, u ∈ H. (2)

Linear operators operators A(t) : V → V ∗, t ∈ [0, T ], satisfy



















‖A(t)v‖V ∗ ≤ M ‖v‖V ∀ v ∈ V ;

(A(t)v, v) ≥ µ ‖v‖2V − λ ‖v‖2H ∀ v ∈ V, µ > 0;

(G�arding inequality)

fun
tion t → (A(t)v, w) is measurable on (0, T ) ∀v, w ∈ V.

(3)
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Theorem 1.

Suppose that assumptions for input data (3), (2) are true. Then

1 there exists a unique solution u of the problem (P);

2 a priori estimates hold:

‖u‖2E +

∫ T

0

φ(u(t)) dt ≤ C (‖u0‖
2
H + ‖f‖2L2(0,T ;V ∗)) ;

‖u′‖L2(0,T ;V ∗) ≤ C (‖u0‖H + ‖f‖L2(0,T ;V ∗) + L) ;

3 stability takes pla
e:

‖u1 − u2‖E ≤ C (‖u10 − u20‖H + ‖f1 − f2‖L2(0,T ;V ∗)) ,

where uk are the solutions of problem (P) with data uk0 and fk, k = 0, 1,
respe
tively.

Remark

Theorem states the existen
e of a strong solution to problem (P) under

assumptions (3), (2). A similar result even for the equation is not trivial and

proved by A. Bensoussan and J.-L. Lions. For variational inequalities, in our

opinion, it is new. In the proof we used the regularization method, whi
h is


onsidered below.
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Regularized problem

We use Moreau�Yosida regularization of the fun
tional φ:

φε(u) = min
v∈H

( 1

2ε
‖v − u‖2H + φ(v)

)

, ε > 0

and formulate the regularized problem:

Problem (Pε).
Given u0 ∈ H and f ∈ L2(0, T ;V

∗), �nd uε ∈ W su
h that uε(0) = u0

and

(

u′

ε(t) +A(t)uε(t)− f(t), v − uε(t)
)

+ φε(v)− φε(uε(t)) ≥ 0 (4)

for all v ∈ V and a.e. t ∈ (0, T ).

Remark

The regularization method is among other things one of the approximate

methods for solving problem (P), whi
h redu
es it to the solving an

equation. In fa
t, the fun
tional φε is 
onvex and Fr�eshet di�erentiable

on H , let ∇φε be its di�erential. So, variational inequality (4) is

equivalent to the equation

u′

ε(t) +A(t)uε(t) +∇φε(uε(t)) = f(t) a.e. t ∈ (0, T ).
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Theorem 2.

Suppose that assumptions for input data (2), (3) are true. Then

1 there exists a unique solution uε of the problem (Pε);

2 {uε} 
onverges to u:

uε → u in E, u′

ε ⇀ u′
weakly in L2(0, T ;V

∗) as ε → 0 ;

3 error estimate holds:

‖u− uε‖E ≤ C L ε1/2 ;
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Semidi
rete Galerkin s
heme

Spa
es of approximate solutions

{Vh}h>0 is a family of �nite-dimensional subspa
es of V ;

Hh is the same as Vh linear spa
e equipped with topology of H .

The embeddings Vh ⊂ Hh = H∗

h ⊂ V ∗

h are 
ontinuous and dense, and the


onstants in the embedding inequalities don't depend on h. We identify V ∗

h

with a subspa
e of V ∗
and keep the notation (·, ·) for the duality pairing

between V ∗

h and Vh.

Proje
tion operator Ph : V ∗ → Vh:

(Phv − v, vh) = 0 ∀ vh ∈ Vh.

The restri
tion of Ph to the spa
eH 
oin
ides with the orthogonal proje
tor

H → Vh, so,

‖Phv‖H ≤ ‖v‖H ∀ v ∈ H.
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Semidis
retå Galerkin s
heme for the problem (P):

Problem (Ph).
Given u0 ∈ H and f ∈ L2(0, T ;V

∗), �nd uh ∈ L2(0, T ;Vh) su
h that

u′

h ∈ L2(0, T ;V
∗), uh(0) = Phu0 and

(u′

h(t) +A(t)uh(t)− f(t), v − uh(t)) + φ(v) − φ(uh(t)) ≥ 0 (5)

for all v ∈ Vh and a.e. t ∈ (0, T ).

Theorem 3.

Suppose that assumptions for input data (2), (3) are true. Then

1 there exists a unique solution uh of the problem (Ph);

2 it satis�es a priory estimate

‖uh‖
2
E +

∫ T

0

φ(uh(t)) dt ≤ C (‖u0‖
2
H + ‖f‖2L2(0,T ;V ∗) + L2);

3 stability estimate holds:

‖uh,1 − uh,2‖E ≤ C (‖u10 − u20‖H + ‖f1 − f2‖L2(0,T ;V ∗)) ,

where uh,k are the solutions of the problem (Ph) with input data

u0,k and fk, k = 0, 1.
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Convergen
e and a

ura
y

Approximation assumptions:

lim
h→0

inf
vh∈Vh

‖u− vh‖V = 0 for any u ∈ V. (6)

‖Phv‖V ≤ CV ‖v‖V ∀ v ∈ V. (7)

By de�nition and due to (7) the following inequalities hold for all vh ∈ Vh:

‖u− Phu‖H ≤ ‖u− vh‖H ,

‖u− Phu‖V ≤ (1 + CV ) ‖u− vh‖V .

Remark.

The use of proje
tor from V ∗
onto Vh, whi
h restri
tion to the spa
e V is supposed to

be uniformly in h bounded operator (assumption (7)) is a key point in proving the

error estimate. The above assumption is satis�ed for a wide 
lass of approximations of

Sobolev spa
es by �nite element method (see [J. H. Bramble, J. E. Pas
iak and O.

Steinba
h (2002)℄

a

, [R. E. Bank and H. Yserentant (2014)℄)

b

.

The proje
tion operator Ph : V ∗ → Vh plays an important role in the estimating the

approximation errors of time derivative. Its usefulness in studying the Galerkin s
heme

for paraboli
 equations was demonstrated in [K. Chrysa�nos and L.S. Hou (2002)℄




.

a

J. H. Bramble, J. E. Pas
iak, and O. Steinba
h, On the stability of the

proje
tion in , Math. Comp., 71, 147�156

b

R. E. Bank and H. Yserentant, On the -stability of the -proje
tion onto �nite

element spa
es, Numer. Math., 126, 361�381




K. Chrysa�nos and L.S. Hou Error estimates for semidis
rete �nite element

approximations of linear and semilinear paraboli
 equations under minimal regularity

assumptions, SIAM. J. Numer. Anal., 40, 282�306
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Theorem 4.

Let assumptions for input data (2), (3) and approximation assumptions (6), (7) hold.

Then

1 a priory estimate takes pla
e:

‖uh‖2W +

∫ T

0
φ(uh(t)) dt ≤ C (‖u0‖2H + ‖f‖2L2(0,T ;V ∗) + L2);

2 the sequen
e of solutions {uh}h of the problem (Ph) 
onverges to the exa
t

solution of the problem (P):

uh → u in E, u′h ⇀ u′ weakly in L2(0, T ;V
∗) as h → 0 ; ;

3 the a

ura
y estimate holds:

‖u− uh‖E ≤ C εh(u), (8)

where

εh(u) = inf
vh∈L∞(0,T ;Vh)

‖u− vh‖E + inf
vh∈L2(0,T ;Vh)

‖u− vh‖1/2L2(0,T ;H)
.

Remark

Estimate (8) is obtained under the minimal smoothness assumptions for input data.

No requirements for the regularity of the solutions u and/or uh with respe
t to t are

assumed.
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Rothe s
heme (semidis
rete ba
kward Euler s
heme)

1. Dis
retization in time variable

We �x a time step τ = T/N and a subdivision of [−τ, T ] given by

the intervals In = [tn−1, tn), n = 0, 1, . . . , N , where tj = jτ for j =
−1, 0, . . . , N .

Time step restri
tion is ful�lled hereafter:

2λτ < 1, where λ is a 
onstant from G�arding inequality (3).

The approximations of the operator and the right-hand side

(Anv, w) =
1

τ

∫ tn

tn−1

(A(t)v, w)dt, fn =
1

τ

∫ tn

tn−1

f(t)dt, n = 1, . . . , N,

u−1 = u0, f0 = f1, A0 = A1.
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Rothe s
heme approximated problem (P):

Problem (Pτ )
Given u0 ∈ H and f ∈ L2(0, T ;V

∗),
�nd un ∈ V for all n = 0, . . . , N su
h that

(un − un−1

τ
+Anun − fn, v − un

)

+ φ(v) − φ(un) ≥ 0 ∀ v ∈ V. (9)

Remark.

Initial 
ondition u0
is not assumed to be equal to u0, but it is a solution to the

inequality

(

(u0 − u0)/τ + A1u0 − f1, v − u0)+ φ(v)− φ(u0) ≥ 0 ∀ v ∈ V.

We used this 
hoi
e of the initial 
ondition following [G. Savar�e, 1996℄

a

, sin
e it

is more 
onvenient for studying the a

ura
y of the s
heme. For a s
heme with

the usual 
hoi
e of u0 = u0, all results remain valid.

a

G. Savar�e, Weak solutions and maximal regularity for abstra
t evolution

inequalities, Adv. Math. S
i. Appl. 6, 377-418
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Existen
e and 
onvergen
e results

Theorem 5.

Under the assumptions for input data (2), (3) the problem (Pτ ) has a
unique solution.

For a given un ∈ V , n = 0, 1, . . . , N , we denote by ûτ the 
ontinuous

pie
ewise-linear fun
tion that equals un
at the points tn. If {u

n}Nn=0 is a

solution of inequality (9), then we 
all the ûτ as the solution of the problem

(Pτ ) as well.

Theorem 6.

Let the assumptions for input data (2), (3) hold. Then

1 Rothe s
heme (Pτ ) has a unique solution.

2 if u and ûτ are the solutions of the problems (P) and (Pτ ), then

ûτ → u in E, û′

τ ⇀ u′
weakly in L2(0, T ;V

∗) as τ → 0 .

This theorem establishes only the 
onvergen
e of approximate solutions.

The assumptions for input data (2), (3) are not enough to obtain error

estimates.
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Error estimate for Rothe s
heme

To obtain the error estimates, we impose stri
ter assumptions on the

data, than (2), (3):



















‖A(t)v‖V ∗ ≤ M ‖v‖V ∀ v ∈ V ;

(A(t)v, v) ≥ µ ‖v‖2V − λ ‖v‖2H ∀ v ∈ V, µ > 0;

‖(A(t1)−A(t2))v‖V ∗ ≤ Mα|t1 − t2|
α ‖v‖V , 0 < α ≤ 1,

∀ v ∈ V, ∀t1, t2 ∈ (0, T );

(10)

(H�older-
ontinuity of A(t) with respe
t to t is an additional assumption);

{

f ∈ Bβ
2∞(0, T ;V ∗) with 0 < β ≤ 1;

∃T0 ∈ (0, T ) : f |(0,T0) ∈ L∞(0, T0;V
∗).

(11)

Used interpolation spa
es

For the arbitrary Hilbert spa
es H1, H2 and the parameters s ∈ [0, 1],
p ∈ [1,∞] we denote by (H1,H2)s,p the interpolation spa
e 
onstru
ted

through real method (see books of J. Bergh, J. L�ofstr�om [1976℄ and P.L.

Butzer, H. Berens [1967℄ for more details). In parti
ular, for a Hilbert spa
e

H we set

Bs
2p(0, T ;H) = (L2(0, T ;H), H1(0, T ;H))s,p .
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Theorem 7.

Let u and ûτ be the solutions of the problems (P) and (Pτ ), respe
tively and

assumptions (10), (11) be ful�lled, and u0 ∈ V . Then

‖u− ûτ‖E ≤ C ετ , (12)

where

ετ = τ 1/2 (‖u0‖V + ‖f‖L∞(0,T0;V ∗) + L) + τβ ‖f‖
B

β
2∞

(0,T ;V ∗)
+

+τα Mα

(

‖u0‖H + ‖f‖L2(0,T ;V ∗)

)

.

Remark.

Approximate s
heme (Pτ ) for problem (P) was studied by [Savar'e (1996)℄ in the 
ase

of general proper, 
onvex and lower semi
ontinuous fun
tional φ. The existen
e of a

unique solution from the spa
e H1(0, T ; V ) ∩W 1
∞
(0, T ;H) was proved under


orresponding regularity assumptions imposed on the data. The estimate

‖u− ûτ‖E ≤ C τ

was proved in the supposition of these regularity assumptions for the exa
t solution.

Our results for Rothe s
heme are proved under weaker assumptions for input data and


omplement these results.
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Fully dis
rete impli
it s
heme

The fully dis
rete impli
it approximation of the problem (P) is the 
ombination

of semidis
rete s
hemes (Ph) and (Pτ ):

Problem (Phτ ) Given u0 ∈ H and f ∈ L2(0, T ;V
∗), �nd un

hτ ∈ Vh su
h

that u−1
hτ = Phu0 ∈ Vh, and for n = 0, 1, . . . , N the following variational

inequalities hold:

((un
hτ −un−1

hτ )/τ +Anun
hτ − fn, v−un

hτ)+φ(v)−φ(un
hτ ) ≥ 0 ∀ v ∈ Vh.

Above we use the previous notations for the operator An
and fun
tion fn

.

Theorem 8.

Suppose the assumptions for input data (2), (3) hold. Then

1 problem (Phτ ) has a unique solution un
h ∈ Vh, n = 0, 1, . . .N.

2 the following stability estimate takes pla
e:

‖ûhτ,1 − ûhτ,2‖E ≤ C (‖u10 − u20‖H + ‖f1 − f2‖L2(0,T ;V ∗)) (13)

where uhτ,k are the pie
ewise linear interpolation (with respe
t to t)
of two solutions of the problem (Phτ ) with data u0,k and fk
(k=1,2).
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Convergen
e and the a

ura
y estimates

Theorem 9.

Suppose the assumptions for input data (2), (3) and approximation assumptions

(6),(7) hold. Let u and ûhτ be the solutions of the problems (P) and (Phτ ),
respe
tively. Then

ûhτ → u in E, û′hτ ⇀ u′ in L2(0, T ;V
∗) as h→ 0, τ → 0 .

The result of the following theorem is proved by appropriate 
ombination of the error

estimates for the Galerkin problem (Ph) and the error estimate of Rothe method applied

to Galerkin problem (Ph).

Theorem 10.

Let the assumptions for the data (10), (11) and the approximation assumptions (6),

(7) hold. Then

‖u− ûhτ‖E ≤ C
(

εh(u) + τγ/2 ‖u0‖(H,V )γ,∞
+ ε0τ

)

(14)

with

εh(u) = inf
vh∈L∞(0,T ;Vh)

‖u− vh‖E + inf
vh∈L2(0,T ;Vh)

‖u− vh‖1/2L2(0,T ;H)
.

ε0τ = τ1/2(‖f‖L∞(0,T0;V ∗)+L)+τ
β ‖f‖

B
β
2∞

(0,T ;V ∗)
+ταMα

(

‖u0‖H+‖f‖L2(0,T ;V ∗)

)

.
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Convergen
e and the a

ura
y estimates

For proving (14) we use error estimate for the solution of the Galerkin problem

(Ph) ((8) in Theorem 11):

‖u− uh‖E ≤ C εh(u) . (15)

Next, sin
e (Phτ ) is Rothe method applied to Galerkin problem (Ph), then we


an use the result of theorem 16, (
hanging the spa
es H and V by Hh and Vh,

and taking u0 = Phu0, u = uh and ûτ = ûhτ ) to obtain the estimate

‖uh − ûhτ‖E ≤ C εhτ , (16)

where

εhτ = τ 1/2 (‖Phu0‖V + ‖f‖L∞(0,T0 ;V
∗

h
) + L) + τβ ‖f‖

B
β
2∞

(0,T ;V ∗

h
)

+ τα Mα

(

‖Phu0‖Hh
+ ‖f‖L2(0,T ;V ∗

h
)

)

.

To estimate εhτ by a value whi
h depends only on τ , we use the inequalities

‖Phu0‖Hh
≤ ‖u0‖H , ‖Phu0‖V ≤ CV ‖u0‖V

and get the inequality

εhτ ≤ CV τ 1/2 ‖u0‖V + ε0τ . (17)

Combination of (15), (16) and (17) results in the estimate (14).
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Example

Consider an example of problem (P) with the following input data:

Ω ⊂ Rd
is a bounded polyhedral domain, d = 2 or 3, QT = Ω× (0, T ),

H = L2(Ω), V = H1
0 (Ω), V ∗ = H−1(Ω);

Ellipti
 operator

A(t)u = −
d

∑

i,j=1

∂

∂xi

(

aij(x, t)
∂u

∂xj

)

+
d

∑

i=1

ai(x, t)
∂u

∂xi
+ a0(x, t)u,

with the 
oe�
ients that satisfy the assumptions

aij(x, t), ai(x, t), a0 ∈ W 1
∞
(QT ), aij(x, t) = aji(x, t);

d
∑

i,j=1

aij(x, t)ξiξj ≥ c0|ξ|2 for all ξ ∈ Rd, a.e. (x, t) ∈ QT , c0 > 0.

Operator A(t) : H1
0 (Ω) → H−1(Ω) satis�es the assumptions (10): it is

bounded, satis�es G�arding inequality and Lips
hitz-
ontinuous with respe
t to t.

Fun
tional

φ(v) =

∫

Ω
g(x) (v − ψ(x))− dx, g ∈ L2(Ω), g ≥ 0, ψ ∈ L∞(Ω),

where v− = max{0,−v}, is 
onvex and Lips
hitz-
ontinuous.

Right hand side

f ∈ B
1/2
2∞ (0, T ;L2(Ω)) ∩ L∞(0, T ;H−1(Ω))

satis�es assumption (11) with β = 1/2.

Initial value u0 ∈ H1
0 (Ω).
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Let Th be a lo
ally quasi-uniform simpli
ial partition of Ω,

Vh = {v ∈ H1
0 (Ω) : v|T ∈ P1(T ) for all T ∈ Th}

the spa
e of pie
ewise linear 
ontinuous fun
tions that vanish on the boundary of Ω.
For these triangulation and �nite element spa
e the assumptions (6) and (7) for the

proje
tion operator Ph : H−1(Ω) → Vh are satis�ed

1

,

2

In more detail the results of the presentation 
an be found in

Dautov R. Z., Lapin A.V. Approximations of evolutionary inequality with Lips
hitz-


ontinuous fun
tional and minimally regular input data, Loba
hevskii J. Math., 40 (4)

425-438 (2019).

In parti
ular, for v ∈ H2(Ω) we have the error estimates:

‖v − Phv‖L2(Ω) ≤ c h ‖v‖H1(Ω), ‖v − Phv‖L2(Ω) ≤ c h2 ‖v‖H2(Ω),

‖v − Phv‖H1(Ω) ≤ c h ‖v‖H2(Ω).

We 
onstru
t fully dis
rete s
hemes (Phτ ), based on �nite element subspa
e Vh of V .
Its a

ura
y estimate is given by (14) in the theorem 18 with

εh(u) = inf
vh∈Vh

‖u− vh‖E + inf
vh∈Vh

‖u− vh‖1/2L2(QT )
≤

≤ C h (‖u0‖H1(Ω) + ‖f‖L2(0,T ;H1(Ω)) + L).

The a

ura
y estimate is

‖u− ûhτ‖E ≤ C (h+
√
τ).

1

J. H. Bramble, J. E. Pas
iak, and O. Steinba
h. On the stability of the L2

proje
tion in H1(Ω), Math. Comp., 71,147�156 (2002)

2

R. E. Bank and H. Yserentant, On the H1
-stability of the L2-proje
tion onto

�nite element spa
es, Numer. Math., 126 361�381 (2014)
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