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Motivation

Direct Numerical Simulation (DNS)

based on solving the Navier-Stokes equations everywhere in the areas of interest
in aviation-industry oriented problems

is, unfortunately, unachievable neither today nor in the foreseeable future

If we want to provide the results required by the industry
we need to approach to DNS using different possible ways at different levels

Under different ways and levels we mean:

- modeling: multi-model and hybrid approaches

- numerical methods: efficient higher-accuracy schemes

- meshing: multi-mesh technologies, smartly generated meshes, adaptation, periodicity, sectors..
- parallelization: efficient hybrid parallel models for modern HPC architectures

- different other technologies, techniques, tricks,..

Nowadays we do not expect groundbreaking discoveries,
we need just high quality in each above direction
and the main gain as a result of their efficient synthesis
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4. Strategies of cost optimization. Methods

A proper choice of the method is always a compromise between accuracy and costs

As commonly recognized, the high-order methods on rather coarse meshes
are generally more efficient than the low-order methods on very fine meshes

However, the choice is not so evident .
The high-order methods may be not so good for discontinuous solutions,

may be not so efficiently parallelized, the implementations may be too complicated and costly,
especially for unstructured meshes

Moreover, on real meshes the higher order may not guarantee the lower error

Higher-accuracy higher-resolution methods may be an interesting candidate
to providing a good compromise between accuracy and costs

Our choice is the EBR (Edge-Based Reconstruction) schemes for unstructured meshes
(in more details - tomorrow, October 8t")
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High consistency with the problem. Boundary layers, separation regions, etc, ..
Different requirements on meshes for different models (RANS, LES, LEE, ..)

What do we want from meshes?
The good mesh is >50% of success ©

High consistency with the model.
For instance, the meshes better meeting the EBR schemes properties

are composite structured/Tl-unstructured meshes

High consistency with the numerical method.
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4. Strategies of cost optimization. Meshing

A series of refined meshes used in one computations.
For instance, we start from RANS on a rather coarse mesh

A series of refined meshes for the data treatment.
Post processing, visualization, ...

Topological consistency to provide the periodicity condition for unstructured meshes
In particular, for sectors:

Dynamic adaptation for simply connected domains '
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4. Strategies of cost optimization. Meshing @M

Dynamic adaptation for simply connected domains




Mesh deformation
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Strategies of cost optimization. Parallelization

Typical configuration of hybrid HPC cluster
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Strategies of cost optimization. Parallelization

Multilevel MPI+OpenMP parallelization 32
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Strategies of cost optimization. Parallelization

Multilevel decomposition for heterogeneous computing
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Efficient heterogeneous implementation

Heterogeneous execution scheme

DMA, overlap, workload-balancing, autotuning
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Strategies of cost optimization. Parallelization A

Overlap of communications and computations
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Strategies of cost optimization. Parallelization |

Heterogeneous computing: MPI+OpenMP+0OpenCL

Lomonosov-2 nodes:
14-core Xeon E5 v3 + GPU NVIDIA K40M
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Two examples of supercomputer simulations:

Aeroacoustics of swept wing




Aeroacoustics of swept wing

Airframe noise has become one of the dominated acoustic sources
generated by aircrafts at the stage of landing

The high lift devices present the main source of airframe noise.

The optimization of HLD configuration, first of all, slat-wing-flap configuration
with no aerodynamic penalties is one of the hot problems in aircraft design.




Aeroacoustics of swept wing DA

Validation: HLD case (Re=1.7-10°, M_=0.17, a.=5.5°)
IDDES model, two-component hybrid EBR5 scheme, FWH method for far field
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30P30N HLD case (Re_=1.7-10%, M _=0.17, a=5.5°)

Aeroacoustics of swept wing

IDDES model, two-component hybrid EBR5 scheme, FWH method for far field
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far field

Aeroacoustics of swept wing

Implementation of multi-model approach

H surface .
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Aeroacoustics of swept wing
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Aeroacoustics of swept wing

Whole-wing
with DES-mesh resoluti

too expensive
\ Small non-swept section
: with DES-mesh resolution

~- accurate
cheap

inaccurate

—-High-resolution zone, DES 1IN
-:;Transition zone
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—RANS zone | |
Whole wing with RANS-mesh resolution,

T
Small swept section with DES-mesh resolution
cheap

not so inaccurate




Aeroacoustics of swept wing

Research plan

Straight wing section, periodicity Straight wing section, sponge layers

30P30N: validation

—

Skew wing section, periodicity Skew wing section, sponge layers

—

Swept wing section, periodicity Swept wing section, sponge layers
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Aeroacoustics of swept wing

Vorticity magnitude in different cases

Case 1s Case 2s
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Aeroacoustics of swept wing

Spectra in control points and directivity diagram
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Aeroacoustics of swept wing

Diagram of acoustic-radiation directivity
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Two examples of supercomputer simulations:

Helicopter rotor noise




Helicopter rotor noise

Movie




Helicopter rotor noise
RANS vs DES
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Helicopter rotor noise

Basic FV scheme vs EBR scheme
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Helicopter rotor noise

Aeroacoustics
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Concluding remarks

Unsteady aerodynamics and aeroacoustics problems

become more and more important in modern aviation industries.

Simulations of unsteady aerodynaics and aeroacoustics problems for real configurations
are still very complicated and too computationally expensive.

However some good results can be obtained and to make the “DNS era” closer

by using different smart saving technologies.
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