Numerical solution of steady-state nonlinear groundwater flow equation

Denis Anuprienko

INM RAS

9th October 2019

Problem importance

GeRa (${\bf Ge} {\rm omigration}$ of ${\bf Ra} {\rm dionuclides})$ – software for hydrogeological modeling

Modeling in GeRa includes various models of groundwater flow, contaminant transport, DDF, chemical reactions, heat transfer, ...

Variably saturated flow

- important for near-surface objects
- medium pores are partially filled with water
- water content and medium permeability depend on hydraulic water head

Mathematical problem

Variably saturated flow is governed by Richards equation:

$$\frac{\partial \theta}{\partial t} + S \cdot s_{stor} \cdot \frac{\partial h}{\partial t} - \nabla \cdot (K_r(\theta) \mathbb{K} \nabla h)) = Q,$$

$$\blacktriangleright$$
 $heta$ – volumetric water content, [–]

- h water head, [L]
- ▶ S water saturation, [-]
- ► s_{stor} storage coefficient, [L⁻¹]
- Q specific sinks and sources, $[T^{-1}]$

Consitutive relationships

Relations between water head, water content and relative permeability are required

heta = heta(h) $K_r = K_r(h)$

- nonlinear functions (van Genuchten, Mualem) can model capillary effects
- simpler piecewise linear functions suitable for real problems

Numerical solution: spatial discretization

We use finite volume (FV) schemes on unstructured meshes:

- linear TPFA
- linear MPFA (O-scheme)
- nonlinear monotone TPFA

Numerical solution: time-stepping and nonlinear solvers

We use fully implicit scheme and need to solve a nonlinear system at each time step.

Solution at the previous time step is used as the initial estimateTime step size may vary to improve convergence

Picard method

The nonlinear system can be rewritten as

$$A(h)h = f$$

and solved with this method:

$$A(h^k)h^{k+1}=f.$$

Convergence rate of Picard method is determined by the time step size, we may need too small steps

Newton's method

The nonlinear system can be rewritten as

$$A(h)h-f\equiv F(h)=0.$$

At each iteration a linear system with Jacobian matrix has to be solved:

$$J(h^k)\delta h = -F(h^k).$$

- ▶ We can often take significantly larger time steps compared to Picard
- Linear systems are harder to solve due to their non-symmetry and supposedly larger condition numbers of J
- ► For nonlinear monotone TPFA J may be denser than A

Relaxation

Water head values h^* at iteration k+1 are changed to a convex linear combination with the values from the previous iteration:

$$h^{k+1}=\Omega h^*+(1-\Omega)h^k, \ \ 0<\Omega\leq 1.$$

For Newton method it is equivalent to changing the update δh :

$$h^{k+1} = h^k + \Omega \delta h.$$

Solution of steady-state problems

Numerical solution of steady-state equation

$$-\nabla\cdot(K_r(h)\mathbb{K}\nabla h)=Q$$

directly with Newton method is practically impossible due to difficulty of choosing good initial estimate, so we seek another ways.

We can try to solve original time-dependent equation until solution stops to change in time.

- Drawbacks: we don't know modeling time apriori and we can get stuck at small time steps
- **Example:** $T \approx 30000$ days with $\Delta t \approx 0.001$ days

Continuation method

Original equation:

$$-
abla \cdot (K_r(h)\mathbb{K}
abla h) = Q$$

A *continuation parameter* q is introduced to control "complexity" of the equation:

$$-
abla \cdot ({\mathcal K}^q_r(h)){\mathbb K}
abla h)=Q, \ \ 0\leq q\leq 1$$

or

$$-
abla \cdot ((1+q(\mathcal{K}_r(h)-1))\mathbb{K}
abla h)=Q, \ \ 0\leq q\leq 1$$

After solving equation with some q, we move to a greater q and use previous solution as initial estimate

2D water flow through a dam

14 / 23

Landfill problem

Heterogenous domain with anisotropic hydraulic conductivity tensor
 Rivers

Real-world problem

- Heterogenous domain with anisotropic hydraulic conductivity tensor
- Lakes, rivers
- Relaxation helps reduce number of steps in the continuation method
- Continuation method allows to use MPFA!

Solution time comparison

Problem	Time-stepping	Continuation	Speed-up
Dam, tri 900, TPFA	3.9	1.8	2
Dam, tri 900, MPFA	-	77	_
Dam, hex 10000, TPFA	115	36	3.2
Landfill, tri 5700, TPFA	401	58	6.9
RWP, tri 3900, TPFA	17.5	4.9	3.6
RWP, tri 3900, MPFA	-	46.2	-
RWP, tri 28500, TPFA	3126	33	94

Solution time, s

2D landfill problem

- Heterogenous anisotropic hydraulic conductivity tensor with jumps up to 5 orders of magnitude, different water retention curves for each material
- It is practically impossible to solve the problem using time-stepping even on coarse cubic meshes!
- The continuation method allows us to solve the problem even on fine meshes

2D landfill problem: meshes

- Mesh resolution in vertical direction is more important
- The domain is shrinked 10 times in horizontal direction
- Hydraulic conductivity is changed accordingly

2D landfill problem: water head

20/23

2D landfill problem: water content

21/23

Conclusions

- We considered numerical modeling of variably saturated flow in GeRa software
- We compared two methods for solution of the steady-state equation
- The continuation method can significantly reduce modeling time
- The continuation method allows for the use of complicated discretization schemes
- The continuation method gives principal possibility to solve some hard problems

Thank you for your attention!