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Virtual blunt injury of human thorax:
age-dependent response of vascular system
Abstract: This work is the numerical study of the age-dependent responses of the vascular system under low-
mass high-speed impact scenario. The grid-characteristic method on the adaptive mesh model of the human
thorax is the numerical tool of the study. Due to the lack of valid vascular injury criteria, the numerical model
only provides information on injury risk. The numerical simulation demonstrates that an older age changes
signi�cantly the vascular response and increases the risk of aorta injury. We focused on the aorta because its
rupture is the general consequence of vehicle accidents (great mass impacts at relatively low velocity). Our
numerical results are in good agreement with previous studies of great-mass low-speed blunt thorax impact.
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The study of human thoracic impact responses has attracted considerable interest. The most of the works on
blunt thoracic impact describe its biomechanics in automotive areawhere greatmass impacts at relatively low
velocity. The di�erent impact scenario occurs in several sports (hockey, solid sports ball) or with special type
of non-lethal munition used as a means of individual or crowd control. This scenario implies impacts of low-
mass at high-velocity. Biomechanics of such impact and injury criteria di�er from those seen in automotive
research [1, 3]. For example, according to Bir [3], the same skeletal injuries are caused by a lower rate of
compression in the case of blunt ballistic impacts than in automotive case. Thus, direct relationship between
two scenarios for injury mechanisms is not clear and injury assessment criteria for blunt ballistic impact
should be elaborated in its own right. In particular this is important for the design of chest protectors.

Blunt injuries of great blood vessels are general consequences of vehicle accidents: traumatic aorta rup-
ture is the second cause of death after brain injuries [2]. In case of low-mass high-velocity impact scenario,
vascular injuries is uncommon phenomenon. Vascular injuries can be asymptomatic, however, this kind of
injury leads to a signi�cant increase in mortality [9]. Rapid identi�cation of traumatic vascular injuries is
required for mortality reduction.

This study investigates age-dependent responses of great blood vessels in case of blunt ballistic impact.
For such type of scenario, limited data on physiologically acceptable response are available [1, 3, 4]. There-
fore, amathematical model can provide information on injury risks rather than injury forecast. Moreover, the
model allows us to obtain a probable region of vessel damage after blunt ballistic impact.

The dynamic responses and injuries of thoracic viscera and vessels have been studied using human ca-
davers, mechanical dummies and mathematical models. Many studies simulate thorax compression to pre-
dict injury risk by �nite element method [21]. We use a grid-characteristic numerical method to solve the
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dynamic impact problem [16]. This approach takes into account speci�c features of hyperbolic equations and
allows to achieve high accuracy for wave solutions in heterogeneous media.

The outline of the remainder of the paper is the following. In Section 2 we recall the governing equations
for dynamic processes in solids and introduce the grid-characteristic method. The results of numerical ex-
periments for dynamic problems are presented and discussed in Section 3. Section 4 collects a few closing
remarks.

1 Mathematical model of dynamic processes in solids
General dynamic equations for deformable body in the Cartesian coordinate system (x1, x2, x3) have the fol-
lowing form:

ρv̇i =
3∑
j=1

∇jσij + f (b)i in Ω (motion equations)

σ̇ij =
3∑

k,l=1
qijkl ε̇kl + Fij in Ω (rheological equations)

where Ω is the domain occupied by solid, ρ is the density, vi is the ith component of the velocity v, σij and εij
are the components of the stress tensor σ and deformation tensor ε, respectively, ∇j = ∂/∂xj is the jth com-
ponent of the gradient, f (b)i is the component of the body force f(b), tensor with components qijkl determines
the rheology of the medium, Fij is a right-hand side that can be used to account viscoelasticity.

The initial conditions correspond to the unstressed state of rest

v|t=0 = 0, σ|t=0 = 0 in Ω.

The boundary conditions are balancing the given exterior pressure p(t) imposed to a boundary patch ω:

(σn, n) = −p(t) on ω (1.1)

and traction-free on the rest of the boundary

σn = 0 on ∂Ω \ ω (1.2)

where n is the unit exterior normal vector to ∂Ω.
Almost all living tissues have nonlinear- and anisotropic mechanical properties. Moreover, these prop-

erties of most living tissues of an individual vary signi�cantly with age, gender, physical conditions. Exper-
imental studies of postmortem materials only approximate properties of most human living tissues. In vivo
characterization of thoracic viscera and vessels lacks for static and dynamic experiments; this being so, fol-
lowing other researchers we choose the basic linear material laws (1.1).

For small strains, tensor eij = ε̇ij can be expressed in the following form:

eij =
1
2(∇jvi +∇ivj). (1.3)

Equations of motion and rheological relations (1.1) can be rewritten in a simple matrix form:

∂u
∂t +Ax1

∂u
∂x1

+Ax2
∂u
∂x2

+Ax3
∂u
∂x3

= f (1.4)

where u = (v1, v2, v3, σ11, σ12, σ13, σ22, σ23, σ33)T is the vector of variables, f is the right-hand side vector
of the same dimension, Ax1 , Ax2 , Ax3 are matrices of the ninth order.

For linear elasticity, tensor components qijkl and right-hand side components Fij in (1.1) have the follow-
ing form:

qijkl = λδijδkl + µ(δikδjl + δilδjk), Fij = 0 (1.5)
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where λ and µ are Lame parameters, and δij is Kronecker symbol. In this case, since we neglect the body force
components, the right-hand side of (1.4) becomes zero.

The system of hyperbolic equations (1.4) is solved numerically by the grid-characteristic method. The
main idea of themethod is the following. The three-dimensional system (1.4) is split by space variables. More
precisely, (1.4) is replaced with three systems of one-dimensional hyperbolic equations

∂u
∂t +Axi

∂u
∂xi

= 0. (1.6)

These systems are solved sequentially by fractional time steps, the solution of the previous system is
used as the initial state to solve the next one. This approach allows us to simplify numerical implementation
and obtain better computation performance. The approximate solution of each system of one-dimensional
hyperbolic equations at the nth time step is sought as a grid functionwith valuesunm collocated inmeshnodes
andmeshmid-edges. The computational mesh is assumed to be conformal tetrahedral, and the grid function
is extrapolated quadratically in each tetrahedral cell.

Matrices Ax1 , Ax2 , Ax3 are diagonalizable and can be represented as:

A = B−1DB.

Here indices xi are omitted for simplicity, B is a matrix composed from left eigenvectors bTj of matrix A:

bTj A = λjbTj , or ATbj = λjbj (1.7)

while D = diag{λj} is the diagonal matrix of corresponding eigenvalues.
Premultiplying (1.6) by B, we get the system

∂Bu
∂t +D∂Bu∂xi

= 0

which in the Riemann invariants r = Bu becomes
∂r
∂t +D ∂r

∂xi
= 0.

Thus, the original system of equations (1.6) is split into n separate equations:

∂rj
∂t + λj

∂rj
∂xi

= 0 (1.8)

and the solution for (1.6) can be composed of independent waves with propagation speeds λj.
Let characteristic curves Γ be de�ned by

dxi
dt = λj . (1.9)

Equations (1.8) along Γ take the form
drj
dt = 0 (1.10)

and the Riemann invariants are constant along curves Γ. Therefore, their values at the (n + 1)th time layer
and at the nth time layer are the same along these curves.

The grid-characteristic method for computing un+1m at point xnm performs sequentially the steps for i =
1, 2, 3:
1. Compute eigenvalues λj for thematrixA = Axi and corresponding characteristic curve Γj using (1.7)–(1.9).
2. For each characteristic curve Γj �nd the point xnj* on intersection of Γj with time layer tn.
3. De�ne unj* in x

n
j* by quadratic interpolation in mesh tetrahedron containing xnj* and slope limiting as de-

scribed in [16].
4. Compute the jth Riemann invariant rnj* in the point xnj* using the values unj*. This invariant is extrapolated

along Γj to the point xnm: rn+1jm = rnj*. De�ne r
n+1
m from components rn+1jm .

5. Find the values un+1m
un+1m = B−1rn+1m .
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Importantly, di�erent components of vector rn+1m are computed in di�erent points xnj*.
Once the vector un+1m is computed, the grid-characteristic method updates the mesh nodes:

xn+1m = xnm + ∆tvn+1m (1.11)

and the computational mesh is Lagrangian. The positions of mesh mid-edges are recalculated by averaging
the positions of the edge endpoints rather than by (1.11).

Modelling of bodies composed ofmaterialswith substantially di�erent rheological andmechanical prop-
erties requires the accurate solution of the contact problem: wave interactions and re�ections from mate-
rial boundaries a�ect the deformations and stresses. The grid-characteristic method allows us to set contact
boundary conditions explicitly. This approach gives higher precision compared to approaches with implicit
treatment of contact boundaries. The conditions on a contact boundary are set in the form of relations be-
tween variables at two adjacent points on the contacting boundaries. In this paper full-adhesive conditions
are used:

v = v′, σn = σ′n. (1.12)

The variables with and without primes correspond to the opposite contacting surfaces.
The grid-characteristic method o�ers the following advantages. Impact loads cause wave process in the

medium, and high accuracy methods are required for the solution of dynamic problems. The method is de-
signed to simulate physically correct propagation of waves with high accuracy. The accurate solution of con-
tact problems for tissues with signi�cantly di�erent mechanical properties allows to recover wave propaga-
tion across multiple contacts in human thorax.

2 Numerical results
We used Visible Human Project (VHP) [22] data to construct the discrete thorax model. The initial segmenta-
tion was performed for the torso region of a human body [7, 8]. The torso model was truncated to the thorax
region, and Table 1 presents themain organs and tissues of the thoraxmodel. The resolution of the segmented
model is 1 mm and does not resolve vessel walls. The vasculature includes the inner domain occupied by
blood and is marked with the same material.

Accounting blood in the vasculature and the heart is important for the impact simulation; however, reso-
lution of all great vessel walls brings about excessive mesh re�nement and computational time. This work is
the preliminary numerical study of vascular response, and we focus on the aorta as the most injured vessels
in vehicle accidents. We consider two models of aorta: aorta is a solid structure and aorta is a vessel �lled
with blood. The �rst model extends mechanical properties of the aorta wall to the entire structure. The sec-
ondmodel distinguishes aorta walls and blood inside aorta. The blood region in aorta is generated arti�cially
so that the wall thickness is 2 mm. The walls were reconstructed only in the part of aorta with diameter larger
than 12 mm. The other vessels are assumed homogeneous in this study.

The computational mesh is generated by the Delaunay triangulation algorithm from the CGAL-Mesh li-
brary [18]. This algorithm enables de�ning a speci�c mesh size for each model material. In order to preserve
geometric features of the segmented model while keeping the number of cells feasible, we assign a smaller
mesh size to blood vessels and a larger mesh size to fat and muscle tissues. An example of tetrahedral mesh
adapted to blood vessels is presented in Fig. 1. The computational mesh contains 1 019 029 tetrahedra and
169 255 nodes. The mesh size ranges from 1 mm in vessels to 6 mm in fat and muscles.

All tissues and organs are considered to be elastic. Static and dynamic moduli of the soft tissue may
di�er signi�cantly. Experimental studies for soft tissues are mostly performed for static loadings. In our com-
putations, we use static moduli presented in previous blunt thoracic impact studies [11, 14, 19]. Mechanical
properties of tissues and organs are presented in Table 1. Age-dependent vessel sti�ness is based on data
from [5].

We simulate the direct impact to thorax as boundary condition (1.1) imposed on a small square patch ω
on the thorax surface ∂Ω (see Fig. 2). The impact energy is 8.0 kJ that corresponds to the energy distributed
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Figure 1. Anatomical thorax model: the segmented model and the saggital cross-section of the computational mesh.

Figure 2. Thorax view, green box and arrow shows impact area and direction: coronal, saggital and transverse planes.

by a bulletproof vest after a ri�e shot. The rest of the thorax surface is assumed to be traction-free (1.2). We
treat the external force as pressure imposed on the impact area for 134 microseconds.

In failuremechanics two stress-based criteria are conventional: the vonMises criterion and themaximum
principal stress criterion. The von Mises stress σmises is de�ned by

σmises =
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2
2 (2.1)

where σ1 ≥ σ2 ≥ σ3 are the principal stresses.
According to the vonMises criterion, the failure occurs when vonMises stress exceeds the ultimate stress

σu,m > 0:
σmises > σu,m . (2.2)

According to themaximumprincipal stress theory, failure occurswhen themaximumprincipal stress exceeds
the value of the ultimate stress σu,1 > 0 in simple tension:

σ1 > σu,1. (2.3)

The ultimate stresses σu,m, σu,1 are material constants and should be properly determined. Unfortunately, in
soft tissue mechanics these constants are not well established and both failure criteria can not be used.

Using grid-characteristic method we obtain distributions of stress and velocity at the nodes of the com-
putationalmesh for di�erent age groups. The results allow us to �ndmaximumvonMises stresses,maximum
tensions and maximum velocities over the simulation time:

max
t>0

σmises, max
t>0

σ1, max
t>0

|v|
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Table 1.Mechanical properties of tissues and organs [11, 14, 19].

ρ, kg/m3 λ, MPa µ, MPa

Fat 1000 1.0e+00 7.5e−01
Muscles 1000 3.1e+00 2.1e+00
Bones 1000 7.7e+02 1.1e+03
Lungs 600 2.9e−02 7.1e−04
Diaphragm 1000 5.8e+00 3.6e+00
Liver 1200 2.4e−01 6.1e−02
Trachea 2000 1.4e+01 3.6e+00
Oesophagus 1200 7.1e+00 1.8e+00
Heart 1000 2.4e−01 6.0e−02
Blood 1000 2.4e−01 5.0e−04
Arteries (20-year-old) 1000 6.0e+00 1.6e−01
Veins (20-year-old) 1000 1.6e+01 3.5e−01
Arteries (40-year-old) 1000 9.2e+00 1.9e−01
Veins (40-year-old) 1000 3.3e+01 6.7e−01
Arteries (60-year-old) 1000 1.9e+01 3.9e−01
Veins (60-year-old) 1000 5.6e+01 1.1e+00

and analyze them as functions of x.
Figure 3 presents characteristic wave patterns at di�erent time moments. As one can see, elastic waves

propagate in lungs much slower than in other organs and tissues: everywhere waves already dissipated by
the time when the primary wave sweeps across the lung. The result can be related to the fact that pulmonary
contusion is one of the main injuries caused by a blunt ballistic impact [3].

We compare velocity and stress distributions for di�erent aorta elastic models (see Fig. 4). According to
the simulation results, blood incorporation distresses signi�cantly the aortic wall and changes the velocity
�eld. In the case of the tubular aorta model, the maximum values of the von Mises stress reduce by 25% and
the maximum values of the velocity magnitude increase by 20%. At the same time, the velocity and stress
distributions donot di�er signi�cantly in the threemajor aorta branches. Such similarity is conditionedby the
non-tubular representation of the branches in both aorta models because of numerical di�culties discussed
above. In the following analysis we will focus on the aortic wall within the tubular aorta model.

Figure 5 presents age-dependent responses of the aortic wall. As one can see, aging leads to the increase
of the maximum von Mises stress. To the best of our knowledge, no studies on the age-dependent ultimate
stress σu,m are available in the literature; however, similar research on the age-dependent dynamic tension
strength [15] allows us to assume that the ultimate stress σu,m decreases with aging. Therefore, the increase
of the maximum von Mises stress with age implies increasing risk to injury. The maximum von Mises stress
for 40 years age group is in average 50% higher than that for 20 years age group; the maximum von Mises
stress for 60 year-old group is in average 30%higher than that for 40 year-old group. If we assume that σu,m is
not age-dependent (conservative assumption), the factor of safety decreases each twenty years in average by
28%. This conclusion on age dependency of the safety factor correlates with high mortality in elderly group
(age above 55 years) caused by blunt traumatic thoracic aortic lacerations [6].

The regions of high von Mises stresses are in a good agreement with previous numerical results on blunt
traumatic aorta rupture [17]. We can highlight three main aortic wall areas with maximum (over simulation
time) value of the vonMises stress (see Fig. 5): peri-isthmus region, region of contact with bones and ascend-
ing aorta. The regions of high von Mises stresses occur for two reasons. The �rst one is a surface wave of
high amplitude that propagates along traction-free bottom boundary of the thorax (see upper row of Fig. 3).
The second reason is the full-adhesive contact of aorta with the vertebral column condition (1.12). According
to clinico-pathological studies, the primary site of the aortic ruptures caused by vehicle accidents is peri-
isthmus region [10, 12, 20], although any portion of the thoracic aorta is at risk. Therefore, the computed
von Mises stress is in accordance with the numerical results and clinico-pathological studies for great-mass
low-velocity impacts.
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Figure 3. Velocity modulus for 8 kJ strike at di�erent time points (18 mcs, 3.6 ms, 7.2 ms, 10.8 ms, 14.4 ms, 18 ms). On the top -
a slice in the saggital plane, at the bottom - in the transverse plane; 40 years age group. The velocity unit is cm/sec.
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Figure 4. Comparison of aorta models for 60 years age group: maximum von Mises and maximum velocity modulus observed in
simulation; two-sides views. On the left: homogeneous model (wall material occupies entire vessel); on the right: aorta �lled
with blood. Stress and velocity units are Pa and cm/sec, respectively.

Ahigh aortic wall tension is one of possible reasons of traumatic aortic rupture. According to our numeri-
cal results, themaximum value of tension among all ages (about 116 kPa) is far less than the failure threshold
for aorta (2800 kPa [15]). Thus, in the considered impact scenario, the wall tension does not cause aortic
rupture.

Non-tubular solidmodels of entire vasculature can be used for qualitative analysis of the thoracic impact
response aswell. For instance,within thismodel age plays the similar role and facilitates the injury.Moreover,
distribution of stress for vena cava is similar to that for the aorta (see Fig. 6). Therefore, in the scope of the
considered impact scenario, vena cava, similarly to aorta, is at risk of injury. This is in agreementwith �ndings
[13].
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Figure 5. Aorta age-dependent response. Two-sides views for distribution of maximum von Mises stress observed in simula-
tion: 20 years age group (left), 40 years age group (middle), 60 years age group (right). Stress unit is Pa.
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Figure 6. Distribution of the maximum von Mises stress observed in simulation (upper row) and the maximum tension observed
in simulation (bottom row) for the non-tubular model of the vasculature, 60 years age group. Stress unit is Pa.
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3 Conclusions
We studied numerically the age-dependent responses of the vascular system under low-mass high-speed im-
pact scenario. Our tool is the grid-characteristic method on the adaptive mesh model of the human thorax.
This work is the preliminary study of the vascular system response for such type of impact. Due to the lack of
valid vascular injury criteria the mathematical model provides only information on injury risk. We focused
on the aorta because its rupture is the general consequence of vehicle accidents. Our numerical results are
in good agreement with previous studies of great-mass low-speed blunt thorax impact. The risk of injury for
the other vessels will be considered in the future work.

In our study we considered passive mechanical properties of soft tissues. It is well-known that elastic
moduli of cardiovascular system vary during the cardiac cycle. At present stage of our research we did not
take into account such variability of mechanical properties. Also, in future studies we will treat soft tissues
as viscoelastic material, that is more physiologically correct.

According to our numerical model, older age changes signi�cantly the vascular response and increases
the risk of injury. Apart of traumatic vascular rupture, possible blood vessel subfailures (e.g. pseudo-
aneurysm, dissection) should be examined. Severe vascular injuries may occur without vivid clinical mani-
festations, and the outcome of injuries is unpredictable and unfavorable. Our results indicate that the older
is the person, the more demanding is early diagnosis.

Funding: This work was supported by the Russian Scienti�c Fund (grant 14-31-00024).
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