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A monotone nonlinear finite volume method

for advection–diffusion equations
on unstructured polyhedral meshes in 3D

K. NIKITIN∗ and Yu. VASSILEVSKI∗

Abstract — We present a new monotone finite volume method for the advection–diffusion equation
with a full anisotropic discontinuous diffusion tensor and a discontinuous advection field on 3D con-
formal polyhedral meshes. The proposed method is based on a nonlinear flux approximation both for
diffusive and advective fluxes and guarantees solution non-negativity. The approximation of the dif-
fusive flux uses the nonlinear two-point stencil described in [9]. Approximation of the advective flux
is based on the second-order upwind method with a specially designed minimal nonlinear correction
[26]. The second-order convergence rate and monotonicity are verified with numerical experiments.

The discrete maximum principle (DMP) and local mass conservation are important
properties of a numerical scheme for the approximate solution of the steady state
advection–diffusion equation. An accurate discretization method satisfying DMP is
hard to develop. We address the monotonicity condition as the simplified version
of the DMP, which guarantees only solution non-negativity. A number of physical
quantities (concentration, temperature, etc.) are non-negative by their nature and
their approximations should be non-negative as well. We present a nonlinear finite
volume (FV) method on conformal polyhedral meshes that satisfies the monotonic-
ity condition for a wide range of problem coefficients. We admit a jumping diffusion
coefficient represented by full anisotropic tensors, a jumping advection coefficient,
which may be produced by the Darcy equation in multimaterial media, and both
diffusion-dominated and advection-dominated regimes. The presented method is
the extension of numerical schemes [9, 26] developed for the 3D diffusion equation
[9] and the 2D advection–diffusion equation with continuous coefficients [26].

The major difficulty encountered in the design of a monotone numerical scheme
is suppressing unwanted spurious (non-physical) oscillations in the numerical solu-
tion. These oscillations may appear in advection-dominated problems due to in-
ternal shocks and boundary layers, and in diffusion-dominated problems in highly
anisotropic media due to inappropriate approximations of the diffusive flux.

In the finite element (FE) context, efficient damping of spurious oscillations
in advection-dominated regimes has been developed within the streamline upwind
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Petrov–Galerkin (SUPG) method [5]. However, spurious oscillations around sharp
layers may still appear in the SUPG solution. Spurious oscillations at layers dimi-
nishing (SOLD) methods [11] are generalizations of SUPG, which satisfy the DMP
at least in some model cases. Spurious oscillations of FE solutions in diffusion-
dominated regimes are caused by approximation difficulties in the case of general
meshes and diffusion tensors. The theoretical analysis of DMP in the FE methods
[8, 15, 32] imposes severe restrictions on the coefficients and the computational
mesh. An algebraic flux correction [16, 17] is the alternative approach to the design
of monotone FE methods. We note, however, that many FE methods are formally
not locally conservative on the cells of the original computational mesh.

The finite volume (FV) methods, in contrast, guarantee the local mass conserva-
tion by their construction. The development of new FV methods for the advection–
diffusion equation has been a popular topic of research, (see [3, 4, 10, 20, 28, 36])
for the steady equation and [35] for the unsteady equation and references therein).
The advective fluxes can be approximated via the upwinding approach and con-
trolled with different slope-limiting techniques [4, 7, 23] or the introduction of
artificial viscosity [2, 28]. Many advanced second-order accurate linear methods
for the diffusion equation fail to satisfy the monotonicity condition [1, 24, 30].
Nonlinear methods have seemed to be the feasible approach towards monotone
and second-order accurate discretization [4, 11]. Nonlinear methods have been
developed for the Poisson equation [6] and for the general diffusion equation
[9, 14, 18, 21, 22, 24, 27, 29, 35, 37].

Our approximation of the advective flux is the 3D extension of the 2D nonli-
near method proposed in [26]. The method follows the idea of the MUSCL method
[34] and uses a piecewise linear discontinuous reconstruction of the FV solution
on polyhedral cells, whose slope is limited via a three-by-three matrix with nonlin-
ear entries. More precisely, we minimize the deviation of the reconstructed linear
function from the given values at selected points subject to some monotonicity con-
straints, which form a convex set in the space of the function gradient components.
The constraints are related to those considered in [12], but differ in the set of se-
lected points and in the norm of deviation.

For the discretization of the diffusive flux we adopt the nonlinear two-point
flux approximation on polyhedral meshes proposed in [9]. The original idea was
proposed by Le Potier in [21] for the explicit scheme for the unsteady diffusion
equation on triangular meshes. Further developments of the method [14, 24, 35, 37]
extend it to a wider class of meshes and equations, but inherit the interpolation from
primary unknowns defined at the mesh cells to secondary unknowns at the mesh
vertices. The use of interpolation affects the accuracy of the numerical scheme,
as well as the properties of nonlinear solvers. An interpolation-free nonlinear FV
method on 2D meshes with polygonal cells was developed in [25]. It was extended
to polyhedral meshes in [9] using physical interpolation for secondary unknowns at
boundary faces and faces where the diffusion tensor jumps.

The proposed FV method is exact for linear solutions. Therefore, for problems
with smooth solutions, one can expect the second-order asymptotic convergence
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rate, which is confirmed in our numerical experiments. The monotone properties of
the discrete solution are illustrated by the numerical experiments as well. The two-
point stencil for flux approximation results in sparse matrices even on polyhedral
meshes. For cubic meshes and a diagonal diffusion tensor these matrices reduce to
the conventional 7-point discretization. Although the method is not interpolation-
free, most of the interpolation operations are based on physical principles and thus
do not affect the numerical properties of the method.

The major computational overhead in nonlinear FV methods is related to two
nested iterations in the solution of a nonlinear algebraic problem. The outer iteration
is the Picard method, which guarantees the solution non-negativity on each iteration.
The set of admissible gradients in linear reconstruction used in the discretization of
the advective fluxes is chosen to guarantee the stability of Picard iterations. The
inner iteration is the Krylov subspace method for solving linearized problems.

The paper outline is as follows. In Section 1, we state the steady advection–
diffusion problem. In Section 2, we describe the construction of discrete fluxes
which form the basis of our method. In Section 3, we discuss the properties of the
resulting algebraic system and present our algorithm for the generation and solu-
tion of that system. In Section 4, we present the numerical properties of the scheme
using tetrahedral, hexahedral, and triangular prismatic meshes.

1. Steady-state advection–diffusion equation

Let Ω be a three-dimensional polyhedral domain with the boundary Γ = ΓN ∪
ΓD where ΓD ∩ ΓN = ∅ and ΓD has a non-zero measure. We consider a model
advection–diffusion problem for an unknown concentration c [see 19, 31]:

div (vc−K∇c) = g in Ω

c = gD on ΓD (1.1)

−(K∇c) ·n = gN on ΓN

where K(x) is a symmetric positive definite possibly anisotropic piecewise conti-
nuous diffusion tensor, v(x) is a piecewise continuous velocity field, g ∈ L2(Ω) is
a source term, n is the exterior normal vector, and gD, gN are given boundary data.
It is known [19] that under the above assumptions and appropriate restrictions on

gD, gN , equation (1.1) has a unique weak solution c ∈W 1
0 (Ω). We denote by Γout

the outflow part of Γ where v · n > 0, and define Γin = Γ \Γout. We assume that
ΓN ⊂ Γout.

The sufficient conditions for the non-negativity of the solution c(x) are g(x) >

0, gD > 0, and gN 6 0. We assume that these conditions hold. From a physical
viewpoint, the requirements g(x) > 0 and gN 6 0 mean that no mass can be taken
out of the system.

The Dirichlet boundary condition on Γout and the discontinuity in boundary data
on Γin may result in parabolic boundary layers. Exponential boundary layers may
appear at the part of Γout where v ·n > 0. An ideal discretization scheme must add
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a numerical diffusion, which is small enough to avoid excessive smearing of the
boundary layers, but sufficient to damp non-physical oscillations.

2. Monotone nonlinear FV scheme on polyhedral meshes

In this section, we derive a FV scheme with a nonlinear two-point flux approxi-
mation. Let q = −K∇c+ cv denote the total flux, which satisfies the mass balance
equation:

div q = g inΩ. (2.1)

Let T be a conformal polyhedral mesh composed of NT shape-regular cells
with planar faces. We assume that each cell is a star-shaped 3D domain with respect
to its barycenter, and each face is a star-shaped 2D domain with respect to the face’s
barycenter. We assume that T is face-connected, i.e. it cannot be split into two
meshes having no common faces. We also assume that the tensor function K(x) and
the velocity field v(x) vary slightly inside each cell and div v ∈ L2(Ω), div v > 0
for almost every x ∈ Ω; however K and v may jump across the mesh faces, as well
as may change the direction (the principal directions for K), although the normal
component of vmust be continuous on any mesh face. We denote by nT the exterior
unit normal vector to ∂T and by n f the normal vector to face f fixed once and for
all. On a boundary face, the vector n f is exterior. We assume that |n f | = | f | where
| f | denotes the area of face f .

Let NB be the number of boundary faces. By FI , FB we denote disjoint sets of
interior and boundary faces. The subset FJ of FI includes the faces where K(x) or
v(x) jump. The set FB is further split into subsets FD

B and FN
B where the Dirichlet

and Neumann boundary conditions, respectively, are imposed. Alternatively, the set
FB is split into subsets F out

B and F in
B of faces belonging to Γout and Γin, respec-

tively. Finally, FT and ET denote the sets of the faces and edges of the polyhedron
T respectively, whereas E f denotes the set of the edges of the face f .

Integrating equation (2.1) over a polyhedron T and using Green’s formula we
get:

∑
f∈∂T

χT, f q f ·n f =
∫

T
f dx, q f =

1

| f |

∫

f
qds (2.2)

where q f is the average flux density for the face f , and χT, f is either 1 or −1,
depending on the mutual orientation of the normal vectors n f and nT .

For each cell T , we assign one degree of freedom, CT , for the concentration
c. Let C be the vector of all discrete concentrations. If two cells T+ and T− have
a common face f and n f is exterior to T+, the two-point flux approximation is as
follows:

qhf ·n f = M+
f CT+ −M−

f CT− (2.3)

where M+
f and M−

f are some coefficients. In a linear FV method, these coefficients

are equal and fixed. In the nonlinear FV method, they may be different and depend
on the concentrations in the adjacent cells. On a face f ∈ ΓD, the flux has a form
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similar to (2.3) with an explicit value for one of the concentrations. For the Dirichlet
boundary value problem, ΓD = ∂Ω, substituting (2.3) into (2.2), we obtain a system
of NT equations with NT unknowns CT .

Therefore, the cornerstone of the cell–centered FV method is the definition of
discrete flux (2.3). Our method of the discrete flux definition generalizes the defini-
tion of the diffusive flux [9] to the case of an advective–diffusive flux on the basis
of the 2D method [26]. In order to present our method, we introduce the notations
borrowing them from [9].

For every cell T in T , we define the collocation point xT at the barycenter of
T . For every face f ∈ FB∪FI , we denote the face barycenter by x f and associate a
collocation point with x f for f ∈ FB∪FJ. We also define the collocation points at
the centers xe of the edges e ∈ E f , f ∈ FB∪FJ.

We shall refer to the collocation points on faces and edges as auxiliary collo-
cation points. They are introduced for mathematical convenience and will not enter
the final algebraic system, although may affect the system coefficients. In contrast,
we shall refer to the other collocation points as primary collocation points, whose
discrete concentrations form the unknown vector in the algebraic system.

For every cell T we define a set ΣT of nearby collocation points as follows. First,
we add to ΣT the collocation point xT . Then, for every face f ∈FT \(FJ ∪FB), we
add the collocation point xT ′

f
, where T ′

f is the cell, other than T , that has the face f .

Finally, for any other face f ∈ FT ∩ (FB ∪FJ), we add the collocation point x f .
Let N(ΣT ) denote the number of elements in the set ΣT .

Similarly, for every face f ∈ FB ∪FJ belonging to a cell T we define a set
Σ f ,T of nearby collocation points. We initialize Σ f ,T = {x f ,xT} and add to Σ f ,T the
points from ΣT , which are the barycenters of the cells or faces that have common
points with f . The cardinality of Σ f ,T is denoted by N(Σ f ,T ).

We assume that for every cell–face pair T → f , T ∈ T , f ∈ FT , there exist
three points x f ,1, x f ,2, and x f ,3 in the set ΣT such that the following condition holds
(see Fig. 1): The co-normal vector ℓℓℓ f = K(x f )n f starting from xT belongs to the
trihedral angle formed by the vectors

t f ,1 = x f ,1−xT , t f ,2 = x f ,2−xT , t f ,3 = x f ,3−xT (2.4)

and

1

|ℓℓℓ f |
ℓℓℓ f =

α f

|t f ,1|
t f ,1 +

β f

|t f ,2|
t f ,2 +

γ f
|t f ,3|

t f ,3 (2.5)

where α f > 0, β f > 0, γ f > 0.

The coefficients α f , β f , γ f are computed as follows:

α f =
D f ,1

D f

, β f =
D f ,2

D f

, γ f =
D f ,3

D f

(2.6)
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Figure 1. Co-normal vector and vector triplet.

where

D f =

∣

∣t f ,1 t f ,2 t f ,3
∣

∣

|t f ,1||t f ,2||t f ,3|
, D f ,1 =

∣

∣ℓℓℓ f t f ,2 t f ,3
∣

∣

|ℓℓℓ f ||t f ,2||t f ,3|

D f ,2 =

∣

∣t f ,1 ℓℓℓ f t f ,3
∣

∣

|t f ,1||ℓℓℓ f ||t f ,3|
, D f ,3 =

∣

∣t f ,1 t f ,2 ℓℓℓ f
∣

∣

|t f ,1||t f ,2||ℓℓℓ f |

and |a b c| = |(a×b) · c|.
Similarly, we assume that for every face–cell pair f → T , f ∈FB∪FJ , T : f ∈

FT there exist three points x f ,1, x f ,2, and x f ,3 in the set Σ f ,T such that the vector
ℓℓℓ f ,T = −KT (x f )n f starting from x f belongs to the trihedral angle formed by the
vectors

t f ,1 = x f ,1−x f , t f ,2 = x f ,2−x f , t f ,3 = x f ,3−x f (2.7)

and (2.5), (2.6) hold true.

A simple and efficient algorithm for searching triplets for the pairs T → f and
f → T is presented in [9]. For the sake of brevity we omit the description of the
algorithm and refer to [9].

The main idea of the proposed flux definition (2.3) is to define the diffusive and
advective fluxes separately.

2.1. Nonlinear two-point diffusion flux approximation for an interior face

The definition of the diffusive flux is taken from [9] and is just outlined here.

Let f be an interior face shared by the cells T+ and T−. We assume that n f is
outward for T+ and x± (or xT± ) is the collocation point of T± andC± (orCT±) is the
discrete concentration in T±.

We begin with the case f /∈ FJ and introduce K f = K(x f ). Let T = T+. Using
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the above notations, the definition of the directional derivative,

∂c

∂ℓℓℓ f
|ℓℓℓ f | = ∇c · (K f n f )

and assumption (2.5), we write

q f ,d ·n f = −
|ℓℓℓ f |

| f |

∫

f

∂c

∂ℓℓℓ f
ds = −

|ℓℓℓ f |

| f |

∫

f

(

α f

∂c

∂ t f ,1
+β f

∂c

∂ t f ,2
+ γ f

∂c

∂ t f ,3

)

ds. (2.8)

To derive a two-point flux approximation, we replace the partial derivatives with
the finite differences and derive another approximation of the flux through the face f
using T = T−. To distinguish between T+ and T−, we add subscripts ± and omit the
subscript f . Since n f is the internal normal vector for T−, we have to change the
sign of the right-hand side:

qh±,d ·n f = ∓|ℓℓℓ f |

(

α±

|t±,1|
(C±,1−C±)+

β±
|t±,2|

(C±,2−C±)+
γ±

|t±,3|
(C±,3−C±)

)

(2.9)
where α±, β± and γ± are given by (2.6) and C±,i denote the concentrations at the
points x±,i from ΣT± .

We define a new discrete flux as a linear combination of qh±,d · n f with non-

negative weights µ±:

qhf ,d ·n f = µ+qh+,d ·n f +µ−q
h
−,d ·n f . (2.10)

The weights are chosen so that qhf ,d · n f results in a two-point flux formula and

qhf ,d · n f approximates the true diffusive flux. These requirements lead us to the

following system

−µ+d+ +µ−d− = 0

(2.11)µ+ +µ− = 1

where

d± = |ℓℓℓ f |

(

α±

|t±,1|
C±,1 +

β±
|t±,2|

C±,2 +
γ±

|t±,3|
C±,3

)

. (2.12)

Since coefficients d± depend on both geometry and concentration, the weights µ±
do as well. Thus, the resulting two-point flux approximation is nonlinear.

If the collocation point of C+,i (C−,i), i = 1,2,3, coincides with the collocation
point ofC− (C+), the terms in (2.12) are changed so that they do not incorporateC±.

The solution of (2.11) can be written explicitly. In all cases d± > 0 if C > 0. If
d± = 0, we set µ+ = µ− = 1/2. Otherwise,

µ+ =
d−

d− +d+
, µ− =

d+

d− +d+
.
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Substituting this into (2.10), we get the two-point diffusive flux formula

qhf ,d ·n f = D+
f CT+ −D−

f CT− (2.13)

with non-negative coefficients

D±
f = µ±|ℓℓℓ f |(α±/|t±,1|+β±/|t±,2|+ γ±/|t±,3|). (2.14)

Now we consider the case f ∈ FJ when K+(x f ) and K−(x f ) differ, where

K±(x f ) = lim
x∈T±, x→x f

K(x).

We derive two-point flux approximations in the cells T+ and T− independently:

(qhf ,d ·n f )+ = N+C+−N+
f C f (2.15)

−(qhf ,d ·n f )− = N−C−−N−
f C f . (2.16)

Non-negative coefficients N+, N+
f , N

−, N−
f are derived similarly to coefficients

(2.14) on the basis of discrete concentrations at collocation points from ΣT± , Σ f ,T±
and ℓℓℓ± = ∓K±(x f )n f , the co-normal vectors to the face f outward with respect to
T±. The continuity of the normal component of the total flux and the advection field
implies the continuity of the normal component of the diffusive flux. This assertion
allows us to eliminate C f from (2.15), (2.16)

C f = (N+C+ +N−C−)/(N+
f +N−

f ) (2.17)

and derive the two-point flux approximation (2.3) with coefficients

D±
f = N±N∓

f /(N+
f +N−

f ). (2.18)

If both N±
f = 0, we set D±

f = N±/2 and C f = (C+ +C−)/2.

2.2. Nonlinear advection flux on interior faces

The method of the definition of the discrete advective flux is the generalization of
the 2D method [26]. For any interior face f ∈ FI the advective flux

q f ,a =
1

| f |

∫

f
cvds

is approximated via an upwinded linear reconstruction RT of the concentration over
cell T

qhf ,a ·n f = v+
f RT+(x f )+ v−f RT−(x f ) (2.19)
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where

v+
f =

1

2
(v f + |v f |), v−f =

1

2
(v f −|v f |), v f =

1

| f |

∫

f
v ·n f ds.

We define the reconstruction RT as a linear function

RT (x) =CT +gT · (x−xT ) ∀x ∈ T (2.20)

with a gradient vector gT . Since CT is collocated at the barycenter of T , this recon-
struction preserves the mean value of the concentration for any choice of gT .

The conventional reconstructions of the gradient target stable approximations of
the second order. Let GT be a set of admissible gradients g̃T , which will be defined
below. The gradient vector gT is the solution to the following constrained minimiza-
tion problem:

gT = arg min
g̃T∈GT

JT (g̃T ) (2.21)

where the functional

JT (g̃T ) =
1

2
∑

xk∈Σ̃T

[CT + g̃T · (xk−xT )−Ck]
2

measures the deviation of the reconstructed function from the targeted values Ck

collocated at points xk from a set Σ̃T . The set Σ̃T is built as follows. First, the auxil-
iary set Σ̂T is defined by eliminating the secondary collocation points x f , f ∈ F out

B ,

from the set ΣT . Second, the set Σ̂T is extended whenever it is either too small or

ill-conditioned. More precisely, if Σ̂T = {xT ,xT ′} or Σ̂T = {xT ,xT ′ ,xT ′′}, we add

to it the elements of Σ̂T ′ and Σ̂T ′′ other than xT . If Σ̂T = {xT ,xT ′ ,xT ′′ ,xT ′′′} and the

volume of the tetrahedron formed by these four points is less than 10−3|T |, we add
to it the elements of Σ̂T ′ , Σ̂T ′′ , and Σ̂T ′′′ other than xT . The resulting set forms the set
Σ̃T .

The set of admissible gradients GT is defined via three constraints suppressing
non-physical oscillations. These constraints (as well as the set Σ̃T ) have been de-
signed to be practical and at the same time as weak as possible. First, a linear recon-
struction defined by the admissible gradient g̃T must be bounded at the collocation
points xk ∈ Σ̂T :

min
{

C1,C2, . . . ,CN(Σ̂T )

}

6CT + g̃T · (xk−xT ) 6 max
{

C1,C2, . . . ,CN(Σ̂T )

}

. (2.22)

Due to (2.22), we get that g̃T ≡ 0 in local minima and maxima.

Second, for the sake of the correct sign of the advective flux, we require that the
reconstructed function must be non-negative at points x f on faces f ∈ FT where
v f > 0:

CT + g̃T · (x f −xT ) > 0. (2.23)
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gT

gLST

π+
k

π−
k

π f

ĝT

ĝLST

π̂+
k

π̂−
k

π̂ f

(a) Original problem (b) Scaled problem

Figure 2. Original and scaled constrained problems.

We note that when the face center x f lies outside the convex hull of points xk ∈ Σ̂T ,
the reconstructed function may be negative at x f even if (2.22) is satisfied.

Third, the reconstructed function must be bounded from below at the secondary
collocation points on Γout (they do not belong to Σ̂T ):

min
{

C1,C2, . . . ,CN(Σ̂T )

}

6CT + g̃T · (x f −xT ), f ∈ FT ∩F out
B . (2.24)

Ignoring constraint (2.24) may produce instability in the iterative solution of the
resulting nonlinear algebraic system.

It can be proved [26] that minimization problem (2.21) with constraints (2.22),
(2.23), (2.24) has a unique solution.

Constraint (2.22) describes the slice between two planes in 3D-space:

π−
k :CT + g̃T · (xk−xT ) = min

{

C1,C2, . . . ,CN(Σ̂T )

}

π+
k :CT + g̃T · (xk−xT ) = max

{

C1,C2, . . . ,CN(Σ̂T )

}

.

Constraints (2.23) and (2.24) define half-spaces bounded by planes π f :

π f =

{

CT + g̃T · (x f −xT ) = 0, f ∈ FT , v f > 0

CT + g̃T · (x f −xT ) = min
{

C1, . . . ,CN(Σ̂T )

}

, f ∈ FT ∩F out
B .

Let P denote the set of all such planes {π±
k : xk ∈ Σ̂T} and P f denote the set of

planes π f .
The deviation functional JT has ellipsoidal isosurfaces in the general case. The

scaling operator ST transforms the ellipsoids into spheres (see 2D case in Fig. 2), so
that minimization of the functional reduces to a simple projection. The same opera-
tor maps the planes π ∈ P ∪P f into planes π̂ , the solution of the non-constrained

minimization problem (2.21) point gLST into ĝLST and thus reduces problem (2.21) to
its scaled counterpart.

Algorithm 2.1 uses the scaled problem for searching the solution gT of the orig-
inal constrained minimization problem (2.21).
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Algorithm 2.1. Solution of constrained minimization problem (2.21).

Use the least squares method to find the solution gLST of the non-constrained coun-
terpart of (2.21);
if gLST satisfies (2.22), (2.23) and (2.24) then

gT = gLST .
Exit;

end if
Set gT = {0,0,0};
Apply the scaling operator ST to transform ellipsoidal isosurfaces into spheres
and define π̂ = ST (π), ĝLST = ST (gLST ) and ĝT = ST (gT );
for π ∈ P ∪P f do

if
π = π±

i ∈ P and gLST satisfies (2.22) for k = i, or

π = π f ′ ∈ P f and gLST satisfies (2.23) or (2.24) for f = f ′
then

Continue;
else

Project ĝLST onto the plane π̂ to the point ĝ′T ;

if S −1
T (ĝ′T ) satisfies (2.22)–(2.24) and |ĝLST − ĝ′T | < |ĝLST − ĝT | then

ĝT = ĝ′T ;
end if

end if
end for
for any pair π,π ′ ∈ P ∪P f do

Find intersection line g = π ∩π ′;
Find the segment s of g where all constrains are satisfied.
if the segment s is not empty then

Project ĝLST onto the segment ST (s) to get the point ĝ′′T ;
if |ĝLST − ĝ′′T | < |ĝLST − ĝT | then

ĝT = ĝ′′T ;
end if

end if
end for
Apply inverse mapping gT = S −1

T (ĝT ).

Using (2.19) and (2.20), we represent the advective flux as the sum of a linear
part (the first-order approximation) and a nonlinear part (the second-order correc-
tion):

qhf ,a ·n f = A+
f C+ −A−

f C− (2.25)

where

A±
f = ±v±f (1+g± · (x f −x±)C−1

± ) (2.26)

subscript ± stands for T± and g± = gT± .

The coefficients A±
f are non-negative for positive concentrations. If CT = 0 in a

cell T , then gT must be the zero vector and A±
f = ±v±f .



346 K. Nikitin and Yu. Vassilevski

2.3. Fluxes on boundary faces

Consider a Neumann boundary face f ∈FN
B and a cell T containing f . The diffusive

flux through this face is

qhf ,d ·n f = ḡN, f | f | (2.27)

where ḡN, f is the mean value of gN on the face f . We can think about f as a cell with
zero volume neighbouring T . Replacing C+ and C− by CT and C f , respectively, we
get from formula (2.25) the approximation of the advective flux:

qhf ,a ·n f = A+
f CT . (2.28)

Thus, the equation for the total flux is

(qhf ,d +qhf ,a) ·n f = ḡN, f |n f |+A+
f CT , f ∈ FN

B (2.29)

where coefficient A+
f is non-negative for non-negative concentrations.

Consider a Dirichlet boundary face f ∈ FD
B and the cell T containing this face.

For the face f we define

C f = ḡD, f =
1

| f |

∫

f
gD ds (2.30)

and for every edge e ∈ E f of the face f :

Ce = ḡD,e =
1

|e|

∫

e
gD dx. (2.31)

The approximation of the diffusive flux is given by the formula

qhf ,d ·n f = D+
f CT −D−

f C f (2.32)

where coefficients D±
f are given by (2.14). The approximation of the advective flux

depends on the velocity direction on the face f . If f ∈ F out
B , the approximation

adopts formulas (2.28) and (2.26). If f ∈ F in
B , we use

qhf ,a ·n f = −A−
f (2.33)

where
A−
f = −ḡD, f v f ≡−ḡD, f v

−
f > 0. (2.34)

2.4. Recovery of discrete solution at auxiliary collocation points

Coefficients D±
f in (2.14), (2.18) may depend on the discrete solution C f and Ce at

auxiliary collocation points x f , f ∈ FB ∪FJ , and xe, e ∈ E f . On the other hand,
the discrete FV system is formulated only for concentrations CT at the primary
collocation points. The values C f , Ce, f ∈ FD

B , e ∈ E f , are computed by (2.30),
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(2.31) from the Dirichlet data. The values C f , f ∈ FJ , are recovered from (2.17).

However, the values C f , Ce, f ∈ FN
B , e ∈ E f , e /∈ ΓD and the values Ce, e ∈ E f ,

e /∈ ΓD, f ∈ FJ have to be recovered from available data.
We recover the concentrations at Neumann faces from CT using (2.32) and

(2.27). The coefficients D±
f can depend on the values at primary collocation points

and C f , f ∈ FJ ∪FB, and Ce, e ∈ E f . Therefore, concentrations C f at mesh faces
f , f ∈ FJ ∪FB, are interpolated from the cell data on the basis of physical rela-
tionships, such as the diffusion flux continuity or the given diffusion flux. The coef-
ficients of interpolation can depend on concentrations Ce to be found at xe, e ∈ E f ,

f ∈FJ ∪FN
B , e /∈ ΓD. For every such edge, we suggest to computeCe by arithmetic

averaging of C f for all faces f ∈ FN
B ∪FJ sharing e. These are the only rare data

whose recovery is based on mathematical rather than physical arguments.

3. Discrete system and properties of discrete solution

Substituting two-point flux formula (2.3) with non-negative coefficients M±
f =

D±
f +A±

f given by (2.14), (2.18) and (2.26) into the mass balance equation (2.2) and

eliminating the boundary concentrations, we get a nonlinear system of NT equa-
tions with NT unknowns:

M(C)C = G(C) (3.1)

where C is the vector of discrete concentrations at the primary collocation points.
The matrix M(C) is assembled from 2×2 matrices

M f (C) =

(

M+
f (C) −M−

f (C)

−M+
f (C) M−

f (C)

)

(3.2)

for the interior faces and 1× 1 matrices M f (C) = M+
f (C) for the Dirichlet faces.

The right-hand side vector G(C) is generated by the source and the boundary data:

GT (C) =

∫

T
gdx + ∑

f∈FD
B ∩∂T

M−
f (C)ḡD, f − ∑

f∈FN
B ∩∂T

| f |ḡN, f ∀T ∈ T . (3.3)

For g(x) > 0, gD > 0, and gN 6 0 the components of vector G are non-negative.
We use the Picard iterations to solve nonlinear system (3.1). Our method of the
generation and the solution of the algebraic system is summarized in Algorithm 3.1.

Algorithm 3.1. Generation and solution of nonlinear system (3.1).

For each cell–face pair T → f , f ∈ FT , and each face–cell pair f → T , f ∈
FJ ∪FB find vectors t f ,1, t f ,2, t f ,3, satisfying conditions (2.4), (2.5) and (2.7),
(2.5), respectively;

Select initial vectors C0 ∈ ℜNT and C0
f ∈ ℜ

NFJ
+N

FN
B with non-negative entries

and a small value εnon > 0;
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Calculate concentrations C0
e at the auxiliary collocation points on edges using

(2.31) or arithmetic averaging of neighbouring data C0
f ;

for k = 0, . . . , do
Assemble the global matrix Mk = M(Ck) from the face-based matrices
M f (C

k). To form M f (C
k), use (2.14), (2.18), (2.26) and concentrations

Ck
f , C

k
e at auxiliary collocation points;

Calculate the right-hand side vector Gk = G(Ck) using (3.3) and concen-
trations Ck

f , C
k
e at auxiliary collocation points;

Stop if ‖MkC
k−Gk‖ 6 εnon ‖M0C

0−G0‖.
SolveMkC

k+1 = Gk;

Calculate concentrations Ck+1
f at the auxiliary collocation points on faces

f ∈ FJ ∪FB using (2.17), (2.27), (2.30), (2.32), and data Ck+1, Ck
f , C

k
e;

Calculate concentrations Ck+1
e at the auxiliary collocation points on edges

using (2.31) or arithmetic averaging of neighbouring data Ck+1
f .

end for

The linear system in Step 8 with the non-symmetric matrix M(Ck) can be
solved, for example, by the preconditioned Bi-Conjugate Gradient Stabilized
(BiCGStab) method [33]. The BiCGStab iterations are terminated when the rela-
tive norm of the residual becomes smaller than εlin.

We note that since our method is exact for linear functions, we can expect the
asymptotic second-order convergence rate on all sequences of meshes.

The next two theorems show that the solution to (3.1) is non-negative, provided
that it exists, and that the nonlinear iterates Ck are non-negative vectors, provided
that εlin = 0. The proofs of the theorems can be found in [26].

Theorem 3.1. Let ΓN = ∅, FD
B ≡ FB, g > 0, div v > 0 in Ω, gD > 0 on ΓD ≡

∂Ω and the solution C to (3.1) exist. Then C > 0.

Theorem 3.2. Let g > 0, gD > 0, gN 6 0 and ΓD 6= ∅ in (1.1). If C0 > 0 and

linear systems in the Picard method be solved exactly, then Ck > 0 for k > 1.

Remark 3.1. Theorems 3.1 and 3.2 hold true also for linear advective fluxes:

qhf ,a ·n f = A+
f C+−A−

f C−, A±
f = ±v±f .

The above assertions allow us to refer to the presented method as monotone,
although it may violate the discrete maximum principle, see Subsection 4.2.
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4. Numerical experiments

In all but one experiments, we set ΓN = ∅. For advection-dominated problems, this
helps to find more analytical solutions, such that the right-hand side vector is non-
negative, G(C) > 0, for any non-negative vector C.

We use the following discrete L2-norms to evaluate relative discretization errors
for the concentration c and the flux q:

εc2 =









∑
T∈T

(

c(xT )−CT

)2
|T |

∑
T∈T

(

c(xT )
)2
|T |









1/2

, ε
q
2 =









∑
f∈FI∪FB

(

(q f −qhf ) ·n f

)2
|Vf |

∑
f∈FI∪FB

(

q f ·n f

)2
|Vf |









1/2

where |Vf | is the arithmetic average of the volumes of mesh cells sharing the face
f . The nonlinear iterations are terminated when the reduction of the initial residual
norm becomes smaller then εnon = 10−7. The convergence tolerance for the linear
solver is set to εlin = 10−12. The linear regression algorithm has been used for cal-
culating the convergence rates.

We consider three classes of polyhedral meshes for the unit cube [0,1]3 intro-
duced in [9]. All meshes are considered to be quasiuniform.

Hexahedral meshes are constructed from uniform cubic meshes by the distortion
of the internal nodes. In each plane x = 0.5, y = 0.5, and z = 0.5 the nodes are
randomly shifted along the planes. The position of other nodes is determined by the
requirement of the face planarity. The distance and direction in which the nodes are
shifted from the original position, are chosen randomly. The shifts of all nodes do
not exceed 0.3h, where h is the cubic mesh size.

Prismatic meshes are constructed as a tensor product of a quasiuniform unstruc-
tured triangular xy-mesh and 1D z-mesh, both meshes having the size h. Addition-
ally, z-planes are slightly tilted in such a way, that they do not intersect each other
and the distance between them is at least 0.75h. The height of each cell in these
meshes lies between 0.75h and 1.25h.

Tetrahedral meshes are quasiuniform unstructured tetrahedral meshes with the
mesh size h. There is no hierarchical relation between a coarser and a finer meshes.

Representative examples of all three mesh classes are shown in Fig. 3.

4.1. Convergence study

At the first stage, the convergence study is performed for a smooth solution on
tetrahedral, prismatic and hexahedral mesh sequences. We recall that we consider
sequences of distorted meshes and thus perform the most challenging test for a
numerical scheme. Let the exact solution, the velocity field and the diffusion tensor
be as follows:

c(x,y,z) = xcos
(πy

2

)

+
πy

2
, v = (1,1,1)T , K =





K 0 0
0 K 0
0 0 K



 .
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(a) (b) (c)

Figure 3. Examples of hexahedral (a), triangular prismatic (b), and tetrahedral (c) meshes.

Table 1.

Convergence analysis for diffusion-dominated problems (K = 1).

Hexahedral Prismatic Tetrahedral

h εC2 ε
q
2 εC2 ε

q
2 εC2 ε

q
2

1/10 4.54e-4 3.64e-3 1.68e-4 2.01e-3 3.69e-4 8.59e-3
1/20 1.13e-4 1.24e-3 4.17e-5 8.09e-4 1.04e-4 3.88e-3
1/40 2.86e-5 4.15e-4 1.02e-5 2.51e-4 2.48e-5 1.89e-3

rate 1.99 1.57 2.02 1.50 1.95 1.09

Table 2.

Convergence analysis for advection-dominated problems (K = 0.01).

Hexahedral Prismatic Tetrahedral

h εC2 ε
q
2 εC2 ε

q
2 εC2 ε

q
2

1/10 8.14e-4 8.53e-4 7.76e-4 4.80e-4 2.04e-3 1.88e-3
1/20 1.90e-4 2.08e-4 1.24e-4 9.90e-5 3.65e-4 3.38e-4
1/40 4.50e-5 4.97e-5 2.00e-5 2.38e-5 7.02e-5 7.51e-5

rate 2.09 2.05 2.64 2.17 2.43 2.32

The forcing term f and the Dirichlet boundary data gD are set according to the
exact solution. Table 1 shows the relative L2-norms of the errors for a diffusion-
dominated problem (K = 1) and Table 2 shows the relative L2-norms of the errors
for an advection-dominated problem (K = 0.01).

The convergence rate for the concentration is close to the second order, while
the convergence rate for the flux is higher than the first order.

At the second stage, we consider the convergence towards the solution of the
problem with a jumping diffusion tensor and a jumping velocity field. Let Ω =
(0,1)3 be split into two non-overlapping subdomains Ω(1) = Ω∩{x< 0.5}, Ω(2) =
Ω∩{x > 0.5}, with the interface defined by the plane x = 0.5, the tensor K and the
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K
(2)K

(1)

2

4

10

0.1

v v
(2)

(1)

Figure 4. Tensor K and velocity v jumping across the interface x = 0.5.

Figure 5. The solution isolines in the xy-plane for the problem with a jumping diffusion tensor.

Table 3.

Convergence analysis for the problem with the jumping diffusion tensor

and velocity field.

h Hexahedral Prismatic Tetrahedral

εC2 ε
q
2 εC2 ε

q
2 εC2 ε

q
2

1/10 1.46e-3 2.70e-3 6.78e-4 2.38e-3 8.42e-4 5.65e-3
1/20 3.76e-4 9.23e-4 1.90e-4 7.93e-4 2.36e-4 2.72e-3
1/40 9.58e-5 3.16e-4 5.08e-5 3.05e-4 5.96e-5 1.35e-3

rate 1.96 1.55 1.87 1.48 1.91 1.03
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velocity v jump across the interface (see Fig. 4). Let K(x) = K
(i) for x∈Ω(i), where

K
(1) =





3 1 0
1 3 0
0 0 1



 , K
(2) =





10 3 0
3 1 0
0 0 1





and the velocity field is v(x) = v(i) for x ∈Ω(i), where

v(1) = (1,1,0) , v(2) = (1,0.3,0) .

The spectral decomposition K
(i) = (W (i))TΛ(i)W (i) demonstrates the strong

jump of the eigenvalues and the orientation of the eigenvectors of K(x):

Λ(1) = diag{4,2,1}, Λ(2) ≈ diag{10.908,0.092,1}

W (1) ≈





0.707 0.707 0
−0.707 0.707 0

0 0 1



 , W (2) ≈





0.957 0.290 0
−0.290 0.957 0

0 0 1



 .

We define the following exact solution of (1.1) with ΓD = ∂Ω:

c(x) =

{

9−4x2− y2−8xy−6x+4y, x ∈Ω(1)

6−2x2− y2−2xy− x+ y, x ∈Ω(2)

so that the right-hand side is

g(x) =

{

44.0−16x−10y, x ∈Ω(1)

53.3−4.6x−2.6y, x ∈Ω(2).

The numerical tests were performed on the hexahedral, prismatic and tetrahedral
meshes defined above. The meshes were generated so that the interface x = 0.5 is
approximated by the mesh faces exactly. The solution isolines in the xy-plane are
shown in Fig. 5. The convergence results presented in Table 3 demonstrate that the
discontinuity of the diffusion tensor does not affect the convergence rate for all the
considered meshes.

4.2. Monotonicity tests

At the first stage, we consider the advection-dominated problem with discontinuous
Dirichlet boundary data. The discontinuity produces an internal shock in the solu-
tion, in addition to exponential boundary layers. This is a popular test case for the
discretization schemes designed for advection-dominated problems (see [11, 13]).
Following [11], we set

v =
(

cos
π

3
,−sin

π

3
,0
)

, K = νI, ν = 10−8.
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(a) ‘North-west’ (b) ‘North-east’ (c) Unstructured

Figure 6. The numerical solutions for monotonicity test 1 (h = 1/32).

The Dirichlet boundary conditions are imposed as follows:

c(x,y,z) =

{

0 if x = 1 or y 6 0.7
1 otherwise.

In order to preserve the solution independence of z, the homogeneous Neumann
boundary conditions are set for z = 0 and z = 1.

The exact solution has a boundary layer next to two planes y = 0 and x = 1. It
also has an internal layer along the stream plane passing through the line (0, 0.7, z).

The numerical solution is non-negative in all cases that satisfy Theorems 3.1
and 3.2.

The computations were performed on prismatic meshes with structured (see
Figs. 6a and 6b) and unstructured (see Fig. 6c) triangular grids at the base. The
effective mesh resolution is set to h = 1/64 for measurements and h = 1/32 for
figures.

In order to measure the quality of the numerical solution, the authors of [11]
have proposed several estimates which quantify the solution oscillations and the
smearing effects caused by a discretization scheme. We extend 2D measurements to
3D by taking values from a single mesh layer 0.5−h 6 z 6 0.5. Let

Ω1 = {(x,y,z)h ∈Ω : x 6 0.5, y > 0.1, 0.5−h 6 z 6 0.5}

Ω2 = {(x,y,z)h ∈Ω : x > 0.7, 0.5−h 6 z 6 0.5}

and Ω3 denote a cell strip in the vicinity of the line y = 0.25,

Ω3 =
{

T ∈ T : xT = (xT ,yT ,zT ), |yT −0.25| 6 |T |1/3, 0.5−h 6 z 6 0.5
}

.

First we define estimate (4.1), which characterizes the total value of undershoots
and overshoots in Ω1:

oscint ≡

(

∑
(x,y,z)∈Ω1

(

min{0,ch(x,y,z)})
2 +(max{0,ch(x,y,z)−1}

)2

)1/2

. (4.1)
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Table 4.

‘North-west’ grid (see Fig. 6a), comparison of oscilla-

tions and smearing.

Name oscint oscexp smearint smearexp

SUPG 5.9e-1 2.1e-0 3.7e-2 5.6e-1
MH85 6.1e-13 0 5.8e-2 1.1e-5
FVMON 7.8e-8 1.6e-6 4.7e-2 1.7e-5

Table 5.

‘North-east’ grid (see Fig. 6b), comparison of oscilla-

tions and smearing.

Name oscint oscexp smearint smearexp

SUPG 6.9e-1 3.8e-0 6.2e-2 1.7e-0
MH85 0 0 1.0e-1 1.2e-5
FVMON 2.1e-11 1.7e-7 1.1e-1 1.8e-5

Table 6.

Unstructured grids (see Fig. 6c), comparison of oscilla-

tions and smearing.

Name oscint oscexp smearint smearexp

SUPG 5.9e-1 1.5e-0 5.5e-2 4.1e-1
MH85 4.9e-15 1.8e-14 9.7e-2 5.3e-2
FVMON 3.5e-6 5.0e-7 5.9e-2 2.2e-5

Second, we define estimate (4.2), which quantifies the oscillations near the boundary
layer in Ω2:

oscexp ≡

(

∑
(x,y,z)∈Ω2

(

max{0,ch(x,y,z)−1}
)2

)1/2

. (4.2)

Third, we define two estimates (4.3) and (4.4), which measure the thickness of the
boundary layer and the internal shock, respectively:

smearexp ≡

(

∑
(x,y,z)∈Ω2

(

min{0,ch(x,y,z)−1}
)2

)1/2

(4.3)

smearint ≡ x2− x1 (4.4)

where
x1 = min

xT∈Ω3,C(xT )>0.1
xT , x2 = max

xT∈Ω3,C(xT )60.9
xT .

For the continuous solution these estimates depend only on the diffusion process,
so they are much smaller than the considered mesh size. For the numerical solution,
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Figure 7. The solution isolines in the xy-plane for the problem with the no-flow outer boundary
conditions.

Table 7.

The maximum concentration values for the problem with

the no-flow outer boundary conditions.

h 1/11 1/22 1/44 1/88

maxC 1.882 1.219 1.041 1.020

small values of estimates (4.1)–(4.4) characterize an almost non-oscillatory and al-
most non-diffusive discrete solution. The smaller width of the internal shock and
the boundary layer in a numerical solution, the less smearing is introduced by the
discretization scheme.

The results obtained by the nonlinear FV, SUPG, and MH85 methods are shown
in Tables 4, 5, and 6. Our method is competitive with the best 2D results presented
in review [11]. The increase in the internal shock width on the ‘north-east’ prismatic
mesh is caused by the larger cell size in the direction normal to the ‘shock’.

At the second stage, we demonstrate that the FV discrete solution can violate
the DMP even on cubic meshes.

We extend the test case investigated in [1, 9] to the advection–diffusion equation
by introducing a velocity field. We consider a unit cube with two vertical holes P1,

P2, Ω= (0,1)3 \(P1∪P2), Pi = Si×(0,1), i= 1,2, S1 = [3/11,4/11]× [5/11,6/11],
S2 = [7/11,8/11]× [5/11,6/11]. The domain boundary is split into the outer part
ΓN where the homogeneous Neumann (no-flow) boundary condition is set, and two
inner parts ΓD,1, ΓD,2 where the Dirichlet boundary conditions are set: gD(x) = 0,
x ∈ ΓD,1, gD(x) = 1, x ∈ ΓD,2.
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The anisotropic diffusion tensor is

K = Rz(−θz)Ry(−θy)Rx(−θx)diag(k1,k2,k3)Rx(θx)Ry(θy)Rz(θz) (4.5)

where k1 = k3 = 1, k2 = 10−3, θx = θy = 0, θz = 67.5◦, and Ra(α) is the rotation
matrix in the plane orthogonal to oa with the angle α .

The velocity field is v = (10−2,10−2,0). According to the maximum principle
for elliptic PDEs the exact solution should be between 0 and 1 and have no extrema
on the no-flow boundary ΓN .

The FV discrete solution on the cubic mesh with h= 1/32 is shown in Fig. 7. It
is non-negative in agreement with Theorem 3.2, but demonstrates overshoots near
the no-flow boundary. These overshoots decrease rapidly as we refine the mesh, see
Table 7.

Conclusion

We have presented a new monotone finite volume method on polyhedral meshes for
the advection–diffusion equation with a piecewise continuous full anisotropic dif-
fusion tensor and a piecewise continuous advection field. The method is the natural
extension of the 3D scheme for the diffusion equation [9] and the 2D scheme for
the advection–diffusion equation [26]. The numerical solution is non-negative, pro-
vided that the source term and the Dirichlet boundary data are non-negative and the
flux on the Neuman boundary is non-positive. The method does not require to inter-
polate the solution to the mesh nodes and can be applied to unstructured polyhedral
meshes. The numerical experiments demonstrate the second-order convergence rate
for the concentration and the first-order convergence rate for the flux on randomly
distorted meshes in both advection-dominated and diffusion-dominated regimes.
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