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SUMMARY

We present a new nonlinear monotone finite volume method for diffusion and convection-diffusion
equations and its application to two-phase black oil models. We consider full anisotropic discontinuous
diffusion/permeability tensors and discontinuous velocity fields on conformal polyhedral meshes. The
approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional
7-point stencil for cubic meshes and diagonal tensors. The approximation of the advective flux is based on
the second-order upwind method with the specially designed minimal nonlinear correction. We show that
the quality of the discrete flux in a reservoir simulator has great effect on the front behavior and the water-
breakthrough time. We compare the new nonlinear two-point flux discretization with the conventional
linear two-point scheme. The new nonlinear scheme has a number of important advantages over the
traditional linear discretization. First, it demonstrates low sensitivity to grid distortions. Second, it
provides appropriate approximation in the case of full anisotropic permeability tensor. For non-orthogonal
grids or full anisotropic permeability tensors the conventional linear scheme provides no approximation,
while the nonlinear flux is still first-order accurate. The computational work for the new method is higher
than the one for the conventional dicretization, yet it is rather competitive.
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Applications in reservoir simulation use different typdésmeshes such as tetrahedral, hexahedral, pris-
matic, octree, etc. All of them fall in the class of conformatshes with polyhedral cells. The demand
from the engineering community for a simple and accuratsemative method applicable to general
conformal meshes and anisotropic tensor diffusion coefiisi, is very distinct.

I ntroduction

The conservative linear methods on unstructured meshesaré&nown: the multipoint flux approx-
imation, MPFA (Aavatsmark et al. 2008), the mixed finite edg) MFE (Brezzi and Fortin 1991) and
the mimetic finite difference, MFD (Lipnikov and Gyrya 2008gthods. They are second-order accu-
rate and are not monotone even when the diffusion coefficsemtoderately (1:100) anisotropic. The
cell-centered finite volume (FV) method with a linear twasdlux approximation is monotone but not
even first-order accurate for anisotropic problems or uctiired meshes. Nevertheless, this method is
conventional in modeling flows in porous media due to teabgichl simplicity and monotonicity.

In this paper we present a new cell-centered finite volumehatkethat preserves solution positiv-
ity and its application for multiphase flows. The method bgk to the class of methods with non-
linear flux discretizations (LePotier 2005; Kapyrin 2007pmikov et al. 2007; Yuan and Sheng 2008;
Vassilevski and Kapyrin 2008; Danilov and Vassilevski 2008nikov et al. 2009; Lipnikov et al. 2010;
Nikitin and Vassilevski 2010). The method is applicableh® 3D conformal polyhedral meshes and dif-
fusion equations with heterogeneous full diffusion ter{8@milov and Vassilevski 2009). The method is
applicable also to the convection-diffusion equationg(ikov et al. 2010; Nikitin and Vassilevski 2010).
The approximation of advective fluxes is based on the upwidpproach along with a piecewise linear
reconstruction of the FV solution and a slope limiting tege. In all cases of model equations, the
method is exact for linear and piecewise linear solutiortsthns has the second order truncation error.
We note that the latest modification of the method (Lipnikbale2012) provides the discrete maximum
principle (DMP) and preserves the minimal compact sterfdihe discretization.

The new nonlinear two-point flux discretization has a numifeimportant advantages over conven-
tional linear two-point flux discretization. First, it demsirates very low sensitivity to grid distortions.
Second, it provides appropriate approximations in the ohsell anisotropic permeability (diffusion)
tensor. Third, being combined with the cell-centered FVhudt it preserves solution positivity and
thus provides a monotone discretization.

The two-point support flux discretization methods are tetdgically appealing due to the compact
stencil even on polygonal or polyhedral meshes. For cubshe®and a diagonal diffusion tensor this
stencil reduces to the conventional 7-point stencil. Th@maomputational overhead in the nonlinear
FV method is related to two nested iterations in the solubiom nonlinear algebraic problem. The outer
iteration is the Picard method which guarantees solutiaitigity on each iteration. The inner iteration

is the Krylov subspace method for solving linearized protse

We consider applications of the new finite volume method ®dblution of the black oil equations
(Nikitin 2010). The two-phase black oil model concerns theamidary stage of oil recovery which is
called water flooding. At this stage, water is injected imj@ction wells while oil is produced through
production wells. We simulate the two-phase flow of immikeitbuids using the IMPES and fully
implicit methods. The IMPES method presumes the discr&izand solution of the diffusion equation
for pressure. The implicit method presumes the straigivdiodl discretization of the system of black oil
equations. We show that the quality of the discrete flux insemeir simulator has a great effect on the
front behavior and the water breakthrough time. We compaoeriethods of the discrete flux definition:
the conventional linear two-point flux discretization anat aonlinear two-point flux discretization.

We emphasize that in special cases of orthogonal grid wadtindpic or grid-aligned anisotropic perme-
ability tensor the linear and nonlinear discretizatiors identical. On the other hand, if the grid is not
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orthogonal or the permeability tensor is anisotropic andteal, the linear flux provides no approxima-
tion, while the nonlinear flux is still first-order accurat€he comparison study presented here shows
several numerical experiments with two-phase black oil @hditat demonstrate significant loss of ac-
curacy due to the conventional linear two-point flux diseegton and justify the use of the nonlinear
alternative.

The paper outline is as follows. In the first section we intreglthe finite volumes method and different
aproaches for the diffusive and advective flux discretizeti In the second section we remind the black
oil model formulation and two time discretization schem®dPES and fully implicit method. In the
third section we present the numerical results for the iplise flows modeling using the conventional
linear and new nonlinear flux discretization schemes.

Finite volumes method

First of all we remind the finite volumes method and introdfice discretization schemes. L&
be a three-dimensional polyhedral domain with boundarysisting of two parts:I' = 'y UT'p and
MoNfy=0.

We consider a model convection-diffusion problem for unknaoncentratiort:

divive—KOc) = ¢ in Q,
C = O on b, (1)
—(KOc)-n = gy on N

whereK(x) = KT (x) > 0 is a symmetric positive definite discontinuous (possildlisatropic) full dif-
fusion tensory(x) is a velocity field, diw > 0, g is a source term, andlis the exterior normal vector.

Let .7 be a conformal polyhedral mesh composedNgf shape-regular cells with planar faces angd
boundary faces. We assume that each e a star-shaped 3D domain with respect to its barycenter
xt, and each face is a star-shaped 2D domain with respect ts fzaxgcenter. We also assume tiiat

is face-connected, i.e. it cannot be split into two mesh&gbano common faces.

Let g denote the total flux of a conservative unknoewvhich satisfies the mass balance equation for a
source terng:
dvg=g in Q. (2

We derive a FV scheme with a two-point flux approximationegmating equation (2) over a polyhedron
T and using the Green’s formula we get:

/ﬁTq-anS=/ngx, (3)

wherent denotes the outer unit normaldd . Let f denote a face of cell andn; be the corresponding
normal vector. For a single cell, we always assume that is the outward normal vector. In all other
cases, we specify orientation of. It will be convenient to assume tha; | = | f| where|f| denotes the
area of facef. The equation (3) becomes

> arni— [ gax @
fedT T

whereq; is the average flux density for fade

For each celll', we assign one degree of freeddtk, for the conservative unknowm For simplicity,
we shall refer tac as concentration. Le be the vector of all discrete concentrations. If two célls
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andT_ have a common facg, our flux approximation with the two-point support, or theotwoint flux
approximation, is as follows:
df -n =M{Cr, —MCr, (5)

whereM;” andM; are some coefficients. Inlmear FV method, these coefficients are equal and fixed.
In the nonlinear FV method, they may be different and depend on concentsatiosurrounding cells.
On facef € I'p, the flux has a form similar to (5) with an explicit value foreoaf the concentrations.
For the Dirichlet boundary value probleiinp = 0Q, substituting (5) into (4), we obtain a systemNf
equations wittN s unknownsCr.

Therefore, the cornerstone of the cell-centered FV metkdtie definition of discrete flux (5). We
combine the definition of the diffusive flux (Lipnikov et al0@9; Danilov and Vassilevski 2009) and
approximation of the advective flux based on the secondrang&ind FV scheme (Lipnikov et al. 2010;
Nikitin and Vassilevski 2010) and use them to construct gor@giate discretization for a black oil
model.

Linear flux discretization

We consider non-orthogonal grid with anisotropic diffustensor: neither co-normal vectdi&¢, nor
the vectords connecting collocation points are orthogonal to faces.(Eig

Kng

Figure 1 Notations for the linear flux discretization.
We assume thah¢| = |f| and letC. = ¢c(x..). For the flux through the interior facewe have:

KOc-n¢ =Oc- (Kng). (6)

The linear two-point discretization of thg-component of the concentration gradient is:

(o= = ™
157
Having Oc- (Kn¢) as(0c)! (Kng)- ‘:—:| and substituting (7) into (6) we get
—C_ t Kng-t
KOO -ng = == kng- L BN e o) _r(c,—c) ®)

nfr — = ———
|ts] |te] te]2
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Kn¢-ts
[te]2

The flux through the boundary edge is defined by the Dirichiéleumann data.

with the transmissibilityT =

In the case oK-orthogonal mesh, wheli n; andt; are collinear, the expression (8) takes the form of
the central finite difference and approximates the flux witlkeast first order accuracy. But in general,
the linear scheme may not provide approximation at all.

Nonlinear flux discretization
We consider the diffusive flugq = —K[c.

Let ., %g be the disjoint sets of interior and boundary faces, regmdygt The subset#; of %
collects faces with jumping diffusion tensor. The séts and&t denote the sets of faces and edges of
polyhedronT, respectively. For every cell in .7, we define the collocation point: at the barycenter
of T. Finally, we denote by the set of nearby collocation points of the cElland byZ  the set of
nearby collocation points of the fadebelonging to the cell .

We assume that for every cell-face p&ir— f, T € .7, f € Z7, there exist three points; 1, X 2, and
Xf 3 in setZy such that the following condition is held (see Fig. 2): Thencomal vectors = K (Xt )N+
started fromxt belongs to the trihedral corner formed by vectors

tri=Xf1—XT, tro=Xf2—X1, tf3=Xf3—XT, )
and 1 8,
V4
— tra+ tro+ tf 3, (10)
Mf| ’t 1’ It 2| tt 3]

whereas >0, Bf > 0, y; > 0.
The coefficientsxrs, B¢, ys are computed as follows:

_ D _Dr2 _ Drs

ap = —t , — 13 11
=D, Bt D, 1% D, (11)
where Itratsoty sl |05t ot 5|
fatfotss fteotf3
Di=—" ">, D= 7"—""—
[teallte2llts sl 45 [ts 2]]tt 3]
Do — tralets s o |teate ol
fo=—""""- Dfg=_—"—"—-
Iteal|Cfl[te 3] It allte2f|¢f]

andlabc|=|(axb)-c|.

Similarly, we assume that for every face-cell p&ir> T, f € FgU.Z;, T : f € %7 there exist three
pointsxt 1, Xt 2, andxs 3 in set>¢ 1 such that the vectadf; 1 = —Ky(X¢)n¢ started fronxs belongs to
the trihedral corner formed by vectors

tr1=Xf1—Xf, tra=Xf2—Xf, tf3=Xs3—Xr, (12)
and (10)-(11) hold true.

Let f be an interior face. We denote By andT_ the cells that sharé and assume that; is outward
for T,.. Letxy (or xt.) be the collocation points df.. LetC,. (or Cr,) be the discrete concentrations in
T,
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Figure 2 Co-normal vector and vector triplet.

We begin with the casé ¢ .%; and introducek; = K(x¢). LetT = T,. Using the above notations,
definition of the directional derivative,

dc
——|¢¢| = Oc- (K
MJ&! c-(K¢ng),
and assumption (10), we write
|l¢| [ dc |€f/ Jc dc dc
‘NfxR—— | —ds=— + + ds. 13
Ara-Nt~ =17 | 57, A R T Vfatfg) (13)

Replacing directional derivatives by finite differences get

Jc Cfi
d pu—
f Oty Xti— XT\

T f|l+0(nd), =123, (14)

wherehy is the diameter of cell. Using the finite difference approximations (14), we transf formula
(13) to

a
qrf],d'nf—_wf’(—fl(cfl Cr) 47— (Cra— CT)+—f(Cf.,3—CT)>- (15)

Vi
ts 2| [t 3]

At the moment, this flux involves four rather than two concatibns. To derive a two-point flux approx-
imation, we consider the cell. and derive another approximation of flux through fdcdo distinguish
betweenT, andT_, we add subscripts and omit subscripf. Sincen; is the internal normal vector
for T_, we have to change sign of the right-hand side:

g =70l () Caa=Co)+

(Cip—Cy)+ (Ciz— C:I:)> ; (16)

B+
[te 2]

wherea., B+ andy, are given by (11) an@. ; denote concentrations at points; from Zr, .

|ti 3]

We define a new discrete diffusive flux as a linear combinaﬁbqi 4 - N¢ with non-negative weights
(28

qtg-ne = pedl-ne+poqghong
B+ Vi ) < Bf v)
— | 4 C ¢ T C_
”*’”(mr o e S I e T T
17
- H+|€f|< Cia+t i T Cr2t A C+3> an
|ty 1] Ity 2] Ity

- w( CoatPc it c,3>.
[ R o
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The obvious requirement for the weights is to cancel the gemthe last two rows of (17) which results
in a two-point flux formula. The second requirement is to agpnate the true flux. These requirements
lead us to the following system

_I'l+d+ + I'l—d— = 07 (18)
l’l+ + I«L = 17

where

a
dy = |¢5] (—ici,l-l- B—ici,ﬁ- LCLS) :
|t 1] |t ol |t 3]

Since coefficientsl. depend on both geometry and concentration, the wejghtdo as well. Thus, the
resulting two-point flux approximation isonlinear.

Remark 1. It may happen that concentration, ¢, (C_;) i = 1,2,3, is defined at the same collocation
point as C (C.). In this case the terms to be cancelled are changed so tlegtdb not incorporate
C.. By doing so, for the Laplace operator we recover the clasdicear scheme with the 6-1-1-1-1-1-1
stencil on uniform cubic meshes.

The solution of (18) can be written explicitly. In all cagks>0ifC>0. Ifd. =0, wesefu, =u_= %

Otherwise,
d_ d,

T d_+d, and H=drd
This implies that the weightg.. are non-negative. Substituting this into (17), we get the-pwint flux
formula (5) with non-negative coefficients

H+

q%4-nf =DfCr, —D{Cr, (19)

Df = pe|s|(as/|tea| + Be/|te 2| + v/ |t+ 3])- (20)

Now we consider the casec .7; whenK . (x) andK_ (x¢) differ, where

Ki(x¢)= lim K(x).

XE Ty, X—X¢

We derive two-point flux approximations in cells andT_ independently:
(qrf],d ‘nf)y =NTCL —N;{Cy, (22)

_(qrf],d'nf)f =N"C_ —N;{Cs. (22)

Non-negative coefficientsd ™, N;", N~, N; are derived similarly to coefficients (20) on the basis of dis
crete concentrations at collocation points fram, > 1, and/; = K, (X¢)ns, the co-normal vectors
to face f outward with respect t@.. Continuity of the normal component of the total flux and the
advection field implies continuity of the normal componehthe diffusive flux. This assertion allows
us to eliminateCs from (21)-(22)

Cr = (N*C; +N"C_)/(Nf +N;) (23)
and derive the two-point flux approximation (19) with coeéfiads
DY = N=NF/(N{ +Ny). (24)

If both Ni* = 0, we seM;” = N*/2 andC; = (C, +C_)/2.
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We consider the nonlinear upwind approximation for the eovetive unknowre by the fluxv:

Ci — %—H(Xf), V¢ >0,
T % (x),  else

Nonlinear second-order upwind stabilization

(25)

where
1
Vi :—/v-nfds,
[f] /1

Z+ is alinear reconstruction of the concentration over Telthich depends on the concentration values
from neighboring cells.

On each celll we define the linear reconstruction

Cr+%40or-(x—xt1), XeT,
‘%T(X):{OT+ TOT - (X —XT) ot (26)

with a gradient vectogr. SinceCr is collocated at the barycenter ©f this reconstruction preserves
the mean value of the concentration for any choicgrof

Conventional reconstructions of the gradient target stablproximations of the second order. &t
be the set of admissible gradie@swhich will be defined below. The gradient vectpr is the solution
to the following constrained minimization problem:

=arg min g 27
or ggTe% A1(0r), (27)

where the functional 1
Sr@r) =5 3y [Cr+8r (x—xr) -G
XkEZT

measures deviation of the reconstructed function from aingeted value€y collocated at pointy
from a sett. The setst is built as follows. First, the sér is defined by eliminating the secondary
collocation pointx;, f € ﬁg”‘, from 1. Second, we sé&t = 51 and extend it by elements froby,
forall T #T s.t.xp € 51, if the least-square system is degenerate or ill-condition

The set of admissible gradieri is defined via three constraints suppressing non-physszéllations.
These constraints (as well as the E¢) were designed to be practical and at the same time as weak
as possible. First, a linear reconstruction defined by tieisgible gradienfir must be bounded at the
collocation points¢ € S+

min {cl,cz, . ,CN@T)} <Cr+8r-(x—x7) < max{Cl,Cz, . ,CN@T)} . (28)
Due to (28), we get thdt = 0 in local minima and maxima.

Second, for the sake of the correct sign of the advective ¥igequire that the reconstructed function
must be non-negative at pointg on facesf € .1 wherev; > 0:

CT—|—C}|"(Xf —XT) >0. (29)

We note that when the face centerlies outside the convex hull of poinkg € iT, the reconstructed
function may be negative at even if (28) is satisfied.

Third, the reconstructed function must be bounded fromwbelbthe secondary collocation points on
Iout (they do not belong tar):

min{Cl,Cz, . ,cN(iT)} <Cr+@r-(xi—xr), feFrnazeH (30)

ECMOR XlII — 13" European Conference on the Mathematics of Oil Recovery
Biarritz, France, 10-13 September 2012



ECMOR XIJ

Ignoring constraint (30) can involve difficulties in the stibn of resulting nonlinear algebraic system.

It can be proved (Nikitin and Vassilevski 2010; Lipnikov €2010) that minimization problem (27)
with constraints (28), (29), (30) has a unigue solution.

The resulting reconstruction (26) can be used for the atheediux discretization as well as for the
second order nonlinear upwind approximation of the coradme unknowrc.

Nonlinear discrete system and its solution

For everyT in .7, the cell equation (4) is
X(T. ) ne = [ fox (31)
fegr T

where x (T, f) = sign(n¢ - nT(x¢)). Substituting two-point flux formula (5) with non-negaticeeffi-
cients given by (20) and (24) into (31), we get a nonlineatesysfN g equations

M (C)C = G(C). (32)

The matrixM (C) may be represented by assembling of 2 matrices

Mf(C) —M-(C)
o= ( M) Mf(©) )

for the interior faces and 1 1 matricesM ¢(C) = M{"(C) for Dirichlet faces. The right-hand side vector
G(C) is generated by the source and the boundary data.

(33)

We use the Picard iterations to solve the nonlinear syst@n Each Picard iteration produce the linear
system with the non-symmetric matri (CK) can be solved by, for example, the preconditioned Bi-
Conjugate Gradient Stabilized (BiCGStab) method. The E3@B iterations are terminated when the
relative norm of the residual becomes smaller than

The next two theorems (Lipnikov et al. 2010) show that theitsmh to (32) is non-negative provided
that it exists and that the soluti@f for eachk!" Picard iteration is a non-negative vector provided that
&in =0.

Theorem 1. Letl'y=0,9g>0in Q, go > 00onlp = dQ and the solution C t¢32) exist. Then C 0.
Theorem 2. Letg>0,gp0 > 0,gy <Oandlp #0. If C% > 0and linear systems in the Picard method
are solved exactly, the@X > 0 for k > 1.

Remark 2. The presented FV method is exact for piecewise linear caratems and has the second
order truncation error. Therefore, we may expect the seaoddr of convergence for the scalar variable
C and at least the first order of convergence for the flux degoédéreedom.

Two-phase black oil model

For the sake of simplicity we consider a two-phase flow in aopsrmedium (Aziz and Settari 1979;

Chen et al. 2006), as for the three-phase flow the effect nfusiear or nonlinear discretization scheme
is the same. The phase, that wets the medium more than theisttedled wetting phase and is indicated
by subscriptv. The other phase is the nonwetting phase and indicated by

The basic equations for the two-phase flow are the following:

e Mass conservation for each phase:

0 _
5t (#PaSe) = —div(Pala) + 0o, O =W,0 (34)
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w=—54&Dm—mmm,a=wo (35)
a
o Two fluids fill the voids:

Svt+S=1 (36)

e Pressure difference between phases is given by capillagspre:

Po — Pw = Pc(Sw) (37)

wherepg is unknown phase pressuee S, is unknown saturationj, is unknown Darcy’s velocityK
is an absolute permeability tens@y = pq0/Bq is @ phase density, witpy o being a density under
standard conditiond®8, = B, (p) is a formation volume factoy = Ly (P) is a viscosityk g = krq (S)
is a relative phase permeability, = @(p) is a porosity,g is a gravity term,z is a depth andy, is a
source/sink well term.

Boundary conditions consist of two parts:

1. No-flow (homogeneous Neumann) condition on the resebmindary;

2. Wells with a given bottom pressupgh.
Each well is assumed to be vertical and connected to therogindecell. The formula for the well term
was suggested by Peaceman (Peaceman 1978):

_ Pakra

a

Qa WI(poh— P— Pa(Zoh— 2)), (38)

whereW | is a well index, which doesn’t depend on the properties ofifiubut depends on properties of
the media.

In the discrete counterpart of (43), (44), (45) the mobiligy= ﬁg((aj’)) on facefj; is taken upwinded:

Aa(9) = Aa(S) if flow is directed from celi to cell j,
T Aa(S) if flow is directed from cellj to celli.

The phase mobilities for well-producer are taken upwindethfthe cell. For well-injector we have only
water injected and thus take the downstream mobility froencill with the well:

Kew Ko>
Ainiector = | — + — )
miecter ( Hw  Ho / cell

It is assumed that there is no capillary pressure in wellbosio water and oil fluxes depend on the same
(oil) pressure.

IMPES time stepping

In this section we derive the IMPES (Implicit Pressure — ExpSaturation) time stepping for two-phase
black oil model. The oil pressure and water saturation aos@h as independent variables:

p: pOa S:SN

The total velocity isu = ug + Uy

ECMOR XlII — 13" European Conference on the Mathematics of Oil Recovery
Biarritz, France, 10-13 September 2012



ECMOR XIJ

If the rock porosity and liquid densities are fixed during tinee step, we have

2(0S) | 9(pSw)

o a0
and then
Dou=M, % (39)
Pw  Po
Applying (37) to (35) gives
u= _K(/\ (§Up—Aw(S0pc — (Awpw + )\opo)gDZ)a (40)

whereA = Ay, + Aq is the total mobility.

Substituting (40) into (39) gives the pressure equation

_0.(KAOp) = % + & 0 K (AwDpe+ (A + Aopo)gl2)]. (41)

(0]
The phase velocities,, andu, can be expressed through the total veloaityy

A
U = 5 (U4 KAoOpe + Ko P — Po)9L12)

A
Uo = 70 (U — KAwOpe + KAw(po — pw)gDz) .

Similarly, (37) and (40) applied to (34) and (35) (for= w) yield the saturation equation

IS A dp G
95 +0-5(S) [KAO(S) (EDS‘F (o — PW)QDZ> + U} = (42)

Finally, the IMPES method can be formalized:

1. Solveimplicitly (41) to obtain current pressup? from current saturatio™:

—0- (KA"Dp") = f';“ + % — O [K(AZDpe+ (Aol + ATo0)al0z) |, (43)

pL P8
whereAl = Aq(S", p") andpl} = pu (P")-
2. Use (40) to find current Darcy’s velocity' using currenS' and p":

u" = —K(A"0p" — Ay0pc — (Anpi + Agp5)g0z). (44)

3. Solveexplicitly (42) to get next time step saturati§f* using currens’, p" andu™™

1 [/eS\"™™ (eS\"| aw — Ad[.n(dR " n
AT [(B_w> —<B—W> _p—&—D‘ﬁ[K/\O(EDSJr(pO—pW)gDz)Jru]. (45)

Note that the equation (43) is a stationary diffusion equmetvith diffusion tensoKA" and the nonlinear
right-hand side. While forming diffusion fluxes on the leftdaright sides of the equation (43), as well
as the right-hand sides of (44) and (45) we use a linear olimeani discretization scheme, which were
introduced in the first section, substituting pressuresgdtof concentration.
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Another time discretization technique widely used in resersimulation is the fully implicit scheme.
First we apply the implicit scheme to the mass conservatipagons (34):

(%)Ml_ <%)n — _div (u_a)n+l_|_ (q_O’)m_l, a =w,o. (46)

Atn+1

Fully implicit scheme

Now we can write down the nonlinear residual equations felftepproximation to a quantity evaluated
at time stem+ 1 inside grid cellT;:

| O I_ ¢S \" nl( gy, Yo Oa | B
Ra’,_/TiK B, )i (Ba >i+At <d|VB_a Pa,0>i dx, a=w,o. (47)

The discrete counterpart of (46) can be written as:

Rai=0, a=wo (48)
for all grid cells at every time step.
We suggest to use Newton’s method to solve nonlinear syst8mth Darcy velocities (35):
J(X)ox = —R(X), (49)

X+t =x +oX, (50)

wherel is thel™ Newton stepx is a vector of primary unknowns in all grid cells,

“(2)

Ris the vector of nonlinear residuals in all grid cells,

andJ is the Jacobian matrix:

IRy IRy
J<x>=< B R )
9Po E

We terminate Newton’s method when the norm of the resiductiovelrops beloveny.

Below we consider the construction of Jacobian matrix. Weddithe residuals into two parts: accumu-
lation (including well terms) and transpoRy ; = RE*°+ Ry3"™, where:

0%\ (0S\" niaf Ga ) B
(B)f(sa)ﬁ“ <pT,o>i L amme

. Ug B
(dIVB—) dx, a =w,o.

[of

Rai =V

Rt(;a}ns:Athrl/

T

We take advantage of the following dependencies:
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e §=1-S,, (rf. (36)),

® Pw=Po— Pc(Sw),
o ka=ka(Sy),
® Ha = Ha(Po),
e By =Ba(po),

@ = @(1+Cr(Po— PY)).

Accumulation term.

First we consider the variation of the accumulation term:

ARG =V, {A (c’;—s’> — A"IA

(o]

where
oSy @cr @ dBy

P _ @ @R ¢ 0Bw

S\ @ @wcr @ dB,
o(5) ~aesr s (57 g o

For the production well we have:
Ja WI%,) dk o kg W I ( < 1dy, 1 dBa>)
Al — ) = ASy — 1+ % ——+<5—=— ] | Apo,
<pa,0> ( HaBa /) dSy S Ua Ba a u Po
and for the injection well:

Ow 1 dkw , 1 dko Kew Kro
Al 2 ) =WI g, AS, —WI
(Pw,o) 7 (uwa dva+uoBodva) S [uWBW+uoBO+

Knw dpw Kw dBw ko dHo Kro dBo)jl
+ 9 = —— )| Apo, 51
W(uv%depo B2 dpo ' pZ2Bodpo | HoB2 dpo ° (1)
5(2) o
Po,0
whereZy = Poh— Po— Pa(Zoh— 2).
Transport term.
Now we consider the transport term composed of Darcy fluxes
R”anszAt”“/ (u_a'n) dsm ot 5 dat g 52
a i oT B, eraTi By f ( )
Consider we have a two-point discretization for a flux. Irstthse
h
Uy, f ( Krw ) + _
—— nNf=—|——] |D - pw9z) —D —pwiz); | =
5 M ==y ), [OF (Pu— g2y —Di (Pu—pugdy |
kr _
— () [f (po= Pe(S)~ Py D (po— Pe(S) - pugd); | (59)
HwBw / ¢ *
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up ¢ Kr _
BLO'nf =— <Ilo;o> [D;r(po_pogz)-r+ — Dt (po—PogZ)Tf} . (54)

Herek g = kra( ) Sis the upwinded value of saturation on faiceOn the other handyy = s (p) and
Ba = Ba(p), wherep = 2=3P= s the average pressure on the face.

Using (53) and (54) we get the following representation far flux variation for each of two phases:

uh -
A(ﬂ-nf> @WfMASN_

Bw HwBw Sy
Krw dpc > <d|0c >
IJwa[ (dSN Sw| ds, Sw +
kw [(Dwt Aty ZwsdBy\ , — . )
" By K L dPo | Bu dpo>Apo—(Dpro.,T+—Dpro’T)}, (55)
AU ) - Zor dko e
Bo f HoBo Sw B

n Kro [<@o,f%+90,fdi'o
HoBo Ho dpp  Bo dpo

) APo— (D} Apor, — D?Apo:)] . (6)

where
Dt = Df+(p0 — Pc(Sw) — p\NgZ)T+ - Dy (po — Pc(Sw) — ngz)TJ

0.1 = D7 (Po— Po92)T, — D7 (Po— Po92) 1

We assume that coefficienBs- are frozen at each Newton iteration. In this case the diffezebetween

the linear and nonlinear flux discretizations is only in theywve calculateDfi for (55) and (56), but not
in sparsity of Jacobian matrix.

For the fluxes in (43)-(45) and (52) we consider two flux diszetion schemes. The upwinded satura-
tion is obtained by using the nonlinear second-order upwtabilization, presented in the first section.

Numerical experiments

The numerical experiments for steady-state diffusion ahdeetion-diffusion problems in 3D can be
found in (Danilov and Vassilevski 2009) and (Nikitin and $#avski 2010) respectively.

Here we present a few numerical results obtained with thefhewdiscretization and upwind approx-
imation for the two-phase black oil model. The accuracy d&eddomputational cost of the method are
compared with the ones for the conventional linear two-pfbirx discretization.

In all test cases we considered pseudo-two-dimensionalers onN x N x 1 hexahedral meshes and
used the following rock and fluid properties. Relative peahilities of fluidsk;, are shown in Fig. 3
left. Capillary pressurg; dependence 08, is presented in Fig. 3 right. Viscositigg, and volume
factorsB, are set by Table 1 and densities @g ~ 4.331- 10 1psi/ft and p o =~ 3.898- 10~ 1psi/ft.
The rock is assumed to be incompressible.

Both wells are incorporated through the bottom hole pressufor injector it igopninj = 4100 psia and

for producerpphpr = 3900 psia. Well indexes are assumed to be fikbd= 105’%.
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1F ) Oil relative p'ermeabilit)'/ — 1 Capilla{ry pressuré
Water relative permeability —— 60
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02F o
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0 . n . 0 . . . .
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Water saturation Water saturation

Figure 3 Left: Oil and water relative permeabilities. Right: Capity pressure dependence op.S

P (psia) | Bo (bbl/STB) | By (bbl/STB) | ko (cp) | Hw (CP)
3900 | 1.0030 1.01317 90.6 |0.515
4000 | 1.0020 1.01291 96.0 |0.518
4100 | 1.0009 1.01264 101.7 | 0.521

Table 1 Fluid compressibility properties.

Non-orthogonal grid

The main idea of the first experiment is the following. Takéam N x N x 1 mesh. Fix the first and
last two lines in order to leave well-connected cells inteRbtate the central lines towards the wells
(anglea = —30°) or away from themd = 30°) and interpolate the other lines linearly between central
lines and the boundary (see Fig. 4). Run simulation withdinend nonlinear flux discretization on
modified mesh and compare the results with the ones on ontlabguesh.

Permeability tensor is chosen to Ke= {100,100, 10}.

Producer Producer Producer
K / /][] L K
- PN —
L I ™~
’ " [// / ol | AL
Injector Injector Injector
Grid M1 Grid M2 Grid M3
(a=0°) (a=-30) (a=30)

Figure 4 Orthogonal and non-orthogonal sample grids.

Figure 6 shows distribution of water saturation on the aytmal grid (Fig. 6 left) and on grid M2 for
linear (Fig. 6 center) and nonlinear (Fig. 6 right) flux diszations. It can be easily seen that for linear
discretization the form of the water front is different fralre one on the orthogonal grid, while for
nonlinear discretization the fronts are almost equal.
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Sl

Grid M1 Grid M2 Grid M2
linear = nonlinear linear nonlinear

Figure 5 Water saturation for grids M1 and M2 for the linear and nolar scheme at = 250days.

Grid M1 Grid M3 Grid M3
linear = nonlinear linear nonlinear

Figure 6 Water saturation for grids M1 and M3 for the linear and noelar scheme at = 250days.

Similarly the Figure 6 shows water saturations on the ohag grid (Fig. 6 left) and on grid M3 for
linear (Fig. 6 center) and nonlinear (Fig. 6 right) flux diszations. Again, nonlinear discretization
provides the front which is very close to the front on the ogibnal grid, while linear one doeshat
preserve the behavior of the water front, that becomes flat.

The water breakthrough times are also noticeably diffefgag Table 2). Oil production rates are shown
in Fig. 7, and water production rates are shown in Fig. 8. Fior g2 both linear and nonlinear fluxes
break earlier than for grid M1, while for grid M3 both lineandanonlinear fluxes alternatively break
later than for grid M1. Meanwhile the nonlinear discreti@aton the modified grids is very close to the
one on the orthogonal grid.

Grid1l| Grid2 | Grid 3
linear 372.2 | 224.1 | 564.2
nonlinear| 372.2 | 362.2 | 388.5

Table 2 Water breakthrough times. Non-orthogonal grid.
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linear = nonlinear, grid M1
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linear, grid M3 ———
08 F nonlinear, grid M3 —— 1

Oil production rate (STB/day)
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Time (days)
Figure 7 Oil production rates for grids M1, M2 and M3.
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Figure 8 Water production rates for grids M1, M2 and M3.

Discontinuous tensor with high anisotropy

In the next experiment we use the uniform>684 x 1 grid M1, but with a discontinuous full anisotropic
permeability tensor (see Fig. 9).

1000 O 0 cosb sinB O
K=R,(-6) 0 10 0 |Ry(H), R(8)=| —sin@ cos6 O
0 0 10 0 0 1
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The computational domain is 100t 100 ft, and rotation angle is the following:

o° if 50ft <x+y<100ft
6(S) =< 9O if 100 ft <x+y< 150 ft
45° if x+y<50ft, orx+y> 150 ft

Fig. 10 shows the water saturation field at the momiesat55 days and Fig. 11 presents the oil pressure
field at the moment = 10. The front propagations are completely different evelisiéretizations differ
only near wells, wher@ = 45°. Oil and water production rates are shown in Fig. 12.

Produce

/

1000

\

Injector

Figure 9 Left: discontinuous anisotropic tensor. Right: sample imes

N

Figure 10 Water saturation at 7= 55 days. Discontinuous tensor with high anisotropy.

linear nonlinear
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nonlinear, oil
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nonlinear, water

Water / oil production rate (STB/day)

0 20 40 60 80 100 120 140
Time (days)

Figure 12 Oil / water production rates. Discontinuous tensor withtinisotropy.

Fully implicit scheme

We proceed to the numerical comparison of the impact of thdimear and linear flux discretizations
to the convergence of the Newton method for the fully impkciheme presented in the second section.
We confine ourselves by nonlinearities coming from the redapermeabilities, viscosities and flux
coefficients (for nonlinear discretizations). In the comgan we neglect nonlinearity generated by the
rock and fluids compressibilities and the capillary pressur

We consider the simulation of water injection and oil prashrcon grid M3 from the first experiment.
Table 3 presents CPU times and numbers of Newton iteraton2d0 day simulation with different
time steps (from 1 to 20 days) and stopping critergaf; = 10-3. We observe that both the compu-

ECMOR XlII — 13" European Conference on the Mathematics of Oil Recovery
Biarritz, France, 10-13 September 2012



ECMOR XIJ

Linear Nonlinear

At (N) | time #it #t/N | time #it #it/N
1.0(200)| 111s 369 1.8| 120s 422 2.1
20(100)| 69s 211 21| 99s 328 33
40(50) | 51s 140 28| 76s 233 57
8.0(25) | 35s 86 34| 59s 168 6.7
200(10)| 25s 49 49| 46s 122 12.2

Table 3 Time step, (N — number of steps), CPU time (sec) and the tataber of Newton iterations
(#it.), Eant = 1073,

tational work (time) and the total number of Newton iteratiq#it) are higher for the nonlinear flux
discretization than those produced by the conventionahlifluxes. The increase of the time step re-
duces the computation time, but the average number ofidesaper time step grows. For the smaller
time steps the total CPU time and total number of iteratiorsoaly 20% higher for the nonlinear flux
discretization than for the linear one. For the bigger stepaiever, the difference is larger - 2.5 times.

Linear Nonlinear

At (N) | time #it  #it/N | time  #it  #it/N
1.0(200) | 122s 412 2.1| 206s 738 3.7
20(100)| 79s 247 25|159s 558 5.6
40(50) | 54s 158 3.1|123s 420 8.4
80(25) | 38s 94 38| 97s 304 122
200(10)| 26s 53 53| 65s 182 18.2

Table 4 Time step, (N — number of steps), CPU time (sec) and the tataber of Newton iterations
(#it.), Enwt = 1074

Table 4 presents CPU times and numbers of Newton iteration2d0 day simulation with different
time steps (from 1 to 20 days) and stopping criterigg = 10~*. One can see the use of the nonlinear
discretization makes the residual of the Newtom method tp dtower, and the difference between
linear and nonlinear discretizations becomes more ndtieeaxtra 75% for small time steps and up to
3.5 times for the big ones.

The time measurements presented in tables 3, 4 indicateéhtaaiomputational cost of each Newton
iteration is the same for both linear and nonlinear diszatitons.

Conclusions

We presented here the new monotone cell-centered finiteneoinethod. Its monotonicity is understood
as non-negative approximations of non-negative solutiormrtial differential equations, but it can be
easily modified to provide the discrete maximum principle.

The cornerstones of the method are the nonlinear two-pairtdiscretization and the second order
upwind approximation. Numerical experiments with the twase black oil model demonstrate its
superiority to the conventional linear two-point flux distization.

For orthogonal grids with isotropic or grid-aligned anrepic permeability tensor, the nonlinear two-
point flux discretization is identical to the conventionialelar two-point flux discretization. However,

in case of non-orthogonal grid or full anisotropic permé&gbiensor, the nonlinear two-point flux dis-

cretization provides more accurate and physically refeframt propagation and water breakthrough
time than the conventional linear two-point flux discretiga. The computational work for the new
method is noticeably higher for IMPES due to the use of Pidmtions, yet just slightly higher for

fully implicit method due to the larger number of Newton #gons.
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