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SUMMARY
We present a new nonlinear monotone finite volume method for diffusion and convection-diffusion
equations and its application to two-phase black oil models. We consider full anisotropic discontinuous
diffusion/permeability tensors and discontinuous velocity fields on conformal polyhedral meshes. The
approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional
7-point stencil for cubic meshes and diagonal tensors. The approximation of the advective flux is based on
the second-order upwind method with the specially designed minimal nonlinear correction. We show that
the quality of the discrete flux in a reservoir simulator has great effect on the front behavior and the water-
breakthrough time. We compare the new nonlinear two-point flux discretization with the conventional
linear two-point scheme. The new nonlinear scheme has a number of important advantages over the
traditional linear discretization. First, it demonstrates low sensitivity to grid distortions. Second, it
provides appropriate approximation in the case of full anisotropic permeability tensor. For non-orthogonal
grids or full anisotropic permeability tensors the conventional linear scheme provides no approximation,
while the nonlinear flux is still first-order accurate. The computational work for the new method is higher
than the one for the conventional dicretization, yet it is rather competitive.



Introduction

Applications in reservoir simulation use different types of meshes such as tetrahedral, hexahedral, pris-
matic, octree, etc. All of them fall in the class of conformalmeshes with polyhedral cells. The demand
from the engineering community for a simple and accurate conservative method applicable to general
conformal meshes and anisotropic tensor diffusion coefficients, is very distinct.

The conservative linear methods on unstructured meshes arewell known: the multipoint flux approx-
imation, MPFA (Aavatsmark et al. 2008), the mixed finite element, MFE (Brezzi and Fortin 1991) and
the mimetic finite difference, MFD (Lipnikov and Gyrya 2008)methods. They are second-order accu-
rate and are not monotone even when the diffusion coefficientis moderately (1:100) anisotropic. The
cell-centered finite volume (FV) method with a linear two-point flux approximation is monotone but not
even first-order accurate for anisotropic problems or unstructured meshes. Nevertheless, this method is
conventional in modeling flows in porous media due to technological simplicity and monotonicity.

In this paper we present a new cell-centered finite volume method that preserves solution positiv-
ity and its application for multiphase flows. The method belongs to the class of methods with non-
linear flux discretizations (LePotier 2005; Kapyrin 2007; Lipnikov et al. 2007; Yuan and Sheng 2008;
Vassilevski and Kapyrin 2008; Danilov and Vassilevski 2009; Lipnikov et al. 2009; Lipnikov et al. 2010;
Nikitin and Vassilevski 2010). The method is applicable to the 3D conformal polyhedral meshes and dif-
fusion equations with heterogeneous full diffusion tensor(Danilov and Vassilevski 2009). The method is
applicable also to the convection-diffusion equations (Lipnikov et al. 2010; Nikitin and Vassilevski 2010).
The approximation of advective fluxes is based on the upwinding approach along with a piecewise linear
reconstruction of the FV solution and a slope limiting technique. In all cases of model equations, the
method is exact for linear and piecewise linear solutions and thus has the second order truncation error.
We note that the latest modification of the method (Lipnikov et al. 2012) provides the discrete maximum
principle (DMP) and preserves the minimal compact stencil of the discretization.

The new nonlinear two-point flux discretization has a numberof important advantages over conven-
tional linear two-point flux discretization. First, it demonstrates very low sensitivity to grid distortions.
Second, it provides appropriate approximations in the caseof full anisotropic permeability (diffusion)
tensor. Third, being combined with the cell-centered FV method, it preserves solution positivity and
thus provides a monotone discretization.

The two-point support flux discretization methods are technologically appealing due to the compact
stencil even on polygonal or polyhedral meshes. For cubic meshes and a diagonal diffusion tensor this
stencil reduces to the conventional 7-point stencil. The major computational overhead in the nonlinear
FV method is related to two nested iterations in the solutionof a nonlinear algebraic problem. The outer
iteration is the Picard method which guarantees solution positivity on each iteration. The inner iteration
is the Krylov subspace method for solving linearized problems.

We consider applications of the new finite volume method to the solution of the black oil equations
(Nikitin 2010). The two-phase black oil model concerns the secondary stage of oil recovery which is
called water flooding. At this stage, water is injected into injection wells while oil is produced through
production wells. We simulate the two-phase flow of immiscible fluids using the IMPES and fully
implicit methods. The IMPES method presumes the discretization and solution of the diffusion equation
for pressure. The implicit method presumes the straightforward discretization of the system of black oil
equations. We show that the quality of the discrete flux in a reservoir simulator has a great effect on the
front behavior and the water breakthrough time. We compare two methods of the discrete flux definition:
the conventional linear two-point flux discretization and our nonlinear two-point flux discretization.

We emphasize that in special cases of orthogonal grid with isotropic or grid-aligned anisotropic perme-
ability tensor the linear and nonlinear discretizations are identical. On the other hand, if the grid is not
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orthogonal or the permeability tensor is anisotropic and rotated, the linear flux provides no approxima-
tion, while the nonlinear flux is still first-order accurate.The comparison study presented here shows
several numerical experiments with two-phase black oil model that demonstrate significant loss of ac-
curacy due to the conventional linear two-point flux discretization and justify the use of the nonlinear
alternative.

The paper outline is as follows. In the first section we introduce the finite volumes method and different
aproaches for the diffusive and advective flux discretizations. In the second section we remind the black
oil model formulation and two time discretization schemes:IMPES and fully implicit method. In the
third section we present the numerical results for the multiphase flows modeling using the conventional
linear and new nonlinear flux discretization schemes.

Finite volumes method

First of all we remind the finite volumes method and introduceflux discretization schemes. LetΩ
be a three-dimensional polyhedral domain with boundary consisting of two parts:Γ = ΓN ∪ ΓD and
ΓD ∩ΓN = /0.

We consider a model convection-diffusion problem for unknown concentrationc:

div(vc−K∇c) = g in Ω,

c = gD on ΓD,

−(K∇c) ·n = gN on ΓN,

(1)

whereK(x) = K
T(x) > 0 is a symmetric positive definite discontinuous (possibly anisotropic) full dif-

fusion tensor,v(x) is a velocity field, divv ≥ 0, g is a source term, andn is the exterior normal vector.

Let T be a conformal polyhedral mesh composed ofNT shape-regular cells with planar faces andNB

boundary faces. We assume that each cellT is a star-shaped 3D domain with respect to its barycenter
xT , and each face is a star-shaped 2D domain with respect to face’s barycenter. We also assume thatT
is face-connected, i.e. it cannot be split into two meshes having no common faces.

Let q denote the total flux of a conservative unknownc which satisfies the mass balance equation for a
source termg:

div q = g in Ω. (2)

We derive a FV scheme with a two-point flux approximation. Integrating equation (2) over a polyhedron
T and using the Green’s formula we get:

∫

∂T
q ·nT ds=

∫

T
gdx, (3)

wherenT denotes the outer unit normal to∂T. Let f denote a face of cellT andn f be the corresponding
normal vector. For a single cellT, we always assume thatn f is the outward normal vector. In all other
cases, we specify orientation ofn f . It will be convenient to assume that|n f |= | f | where| f | denotes the
area of facef . The equation (3) becomes

∑
f∈∂T

q f ·n f =
∫

T
gdx, (4)

whereq f is the average flux density for facef .

For each cellT, we assign one degree of freedom,CT , for the conservative unknownc. For simplicity,
we shall refer toc as concentration. LetC be the vector of all discrete concentrations. If two cellsT+
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andT− have a common facef , our flux approximation with the two-point support, or the two-point flux
approximation, is as follows:

qh
f ·n f = M+

f CT+ −M−
f CT− , (5)

whereM+
f andM−

f are some coefficients. In alinear FV method, these coefficients are equal and fixed.
In thenonlinearFV method, they may be different and depend on concentrations in surrounding cells.
On face f ∈ ΓD, the flux has a form similar to (5) with an explicit value for one of the concentrations.
For the Dirichlet boundary value problem,ΓD = ∂Ω, substituting (5) into (4), we obtain a system ofNT

equations withNT unknownsCT .

Therefore, the cornerstone of the cell-centered FV method is the definition of discrete flux (5). We
combine the definition of the diffusive flux (Lipnikov et al. 2009; Danilov and Vassilevski 2009) and
approximation of the advective flux based on the second-order upwind FV scheme (Lipnikov et al. 2010;
Nikitin and Vassilevski 2010) and use them to construct an appropriate discretization for a black oil
model.

Linear flux discretization

We consider non-orthogonal grid with anisotropic diffusion tensor: neither co-normal vectorsKn f , nor
the vectorst f connecting collocation points are orthogonal to faces (Fig. 1).

x−

x+

Kn f

t f
f

Figure 1 Notations for the linear flux discretization.

We assume that|n f |= | f | and letC± = c(x±). For the flux through the interior facef we have:

K∇c·n f = ∇c· (Kn f ). (6)

The linear two-point discretization of thet f -component of the concentration gradient is:

(∇c)h
t =

P+−P−
|t f |

. (7)

Having∇c· (Kn f ) as(∇c)h
t (Kn f ) ·

t f

|t f |
and substituting (7) into (6) we get

(K∇c)h
f ·n f =

C+−C−

|t f |
Kn f ·

t f

|t f |
=

Kn f · t f

|t f |2
(C+−C−) = T (C+−C−) (8)
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with the transmissibilityT=
Kn f · t f

|t f |2
.

The flux through the boundary edge is defined by the Dirichlet or Neumann data.

In the case ofK-orthogonal mesh, whenKn f andt f are collinear, the expression (8) takes the form of
the central finite difference and approximates the flux with at least first order accuracy. But in general,
the linear scheme may not provide approximation at all.

Nonlinear flux discretization

We consider the diffusive fluxqd =−K∇c.

Let FI , FB be the disjoint sets of interior and boundary faces, respectively. The subsetFJ of FI

collects faces with jumping diffusion tensor. The setsFT andET denote the sets of faces and edges of
polyhedronT, respectively. For every cellT in T , we define the collocation pointxT at the barycenter
of T. Finally, we denote byΣT the set of nearby collocation points of the cellT, and byΣ f ,T the set of
nearby collocation points of the facef belonging to the cellT.

We assume that for every cell-face pairT → f , T ∈ T , f ∈ FT , there exist three pointsx f ,1, x f ,2, and
x f ,3 in setΣT such that the following condition is held (see Fig. 2): The co-normal vectorℓ f =K(x f )n f

started fromxT belongs to the trihedral corner formed by vectors

t f ,1 = x f ,1−xT , t f ,2 = x f ,2−xT , t f ,3 = x f ,3−xT , (9)

and
1
|ℓ f |

ℓ f =
α f

|t f ,1|
t f ,1+

β f

|t f ,2|
t f ,2+

γ f

|t f ,3|
t f ,3, (10)

whereα f ≥ 0, β f ≥ 0, γ f ≥ 0.

The coefficientsα f , β f , γ f are computed as follows:

α f =
D f ,1

D f
, β f =

D f ,2

D f
, γ f =

D f ,3

D f
, (11)

where

D f =
|t f ,1t f ,2t f ,3|

|t f ,1||t f ,2||t f ,3|
, D f ,1 =

|ℓ f t f ,2t f ,3|

|ℓ f ||t f ,2||t f ,3|

D f ,2 =
|t f ,1ℓ f t f ,3|

|t f ,1||ℓ f ||t f ,3|
, D f ,3 =

|t f ,1t f ,2ℓ f |

|t f ,1||t f ,2||ℓ f |

and|a b c|= |(a×b) · c|.

Similarly, we assume that for every face-cell pairf → T, f ∈ FB∪FJ, T : f ∈ FT there exist three
pointsx f ,1, x f ,2, andx f ,3 in setΣ f ,T such that the vectorℓ f ,T = −KT(x f )n f started fromx f belongs to
the trihedral corner formed by vectors

t f ,1 = x f ,1−x f , t f ,2 = x f ,2−x f , t f ,3 = x f ,3−x f , (12)

and (10)-(11) hold true.

Let f be an interior face. We denote byT+ andT− the cells that sharef and assume thatn f is outward
for T+. Let x± (or xT±) be the collocation points ofT±. LetC± (orCT±) be the discrete concentrations in
T±.
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Figure 2 Co-normal vector and vector triplet.

We begin with the casef /∈ FJ and introduceK f = K(x f ). Let T = T+. Using the above notations,
definition of the directional derivative,

∂c
∂ℓ f

|ℓ f |= ∇c· (K f n f ),

and assumption (10), we write

q f ,d ·n f ≈−
|ℓ f |

| f |

∫

f

∂c
∂ℓ f

ds=−
|ℓ f |

| f |

∫

f

(
α f

∂c
∂ t f ,1

+β f
∂c

∂ t f ,2
+ γ f

∂c
∂ t f ,3

)
ds. (13)

Replacing directional derivatives by finite differences, we get
∫

f

∂c
∂ t f ,i

ds=
Cf ,i −CT

|x f ,i −xT |
| f |+O(h3

T), i = 1,2,3, (14)

wherehT is the diameter of cellT. Using the finite difference approximations (14), we transform formula
(13) to

qh
f ,d ·n f =−|ℓ f |

(
α f

|t f ,1|
(Cf ,1−CT)+

β f

|t f ,2|
(Cf ,2−CT)+

γ f

|t f ,3|
(Cf ,3−CT)

)
. (15)

At the moment, this flux involves four rather than two concentrations. To derive a two-point flux approx-
imation, we consider the cellT− and derive another approximation of flux through facef . To distinguish
betweenT+ andT−, we add subscripts± and omit subscriptf . Sincen f is the internal normal vector
for T−, we have to change sign of the right-hand side:

qh
±,d ·n f =∓|ℓ f |

(
α±

|t±,1|
(C±,1−C±)+

β±

|t±,2|
(C±,2−C±)+

γ±
|t±,3|

(C±,3−C±)

)
, (16)

whereα±, β± andγ± are given by (11) andC±,i denote concentrations at pointsx±,i from ΣT± .

We define a new discrete diffusive flux as a linear combinationof qh
±,d ·n f with non-negative weights

µ±:

qh
f ,d ·n f = µ+ qh

+ ·n f +µ− qh
− ·n f

= µ+|ℓ f |

(
α+

|t+,1|
+

β+

|t+,2|
+

γ+
|t+,3|

)
C+−µ−|ℓ f |

(
α−

|t−,1|
+

β−

|t−,2|
+

γ−
|t−,3|

)
C−

− µ+|ℓ f |

(
α+

|t+,1|
C+,1+

β+

|t+,2|
C+,2+

γ+
|t+,3|

C+,3

)

+ µ−|ℓ f |

(
α−

|t−,1|
C−,1+

β−

|t−,2|
C−,2+

γ−
|t−,3|

C−,3

)
.

(17)
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The obvious requirement for the weights is to cancel the terms in the last two rows of (17) which results
in a two-point flux formula. The second requirement is to approximate the true flux. These requirements
lead us to the following system {

−µ+d++µ−d− = 0,
µ++µ− = 1,

(18)

where

d± = |ℓ f |

(
α±

|t±,1|
C±,1+

β±

|t±,2|
C±,2+

γ±
|t±,3|

C±,3

)
.

Since coefficientsd± depend on both geometry and concentration, the weightsµ± do as well. Thus, the
resulting two-point flux approximation isnonlinear.
Remark 1. It may happen that concentration C+,i, (C−,i) i = 1,2,3, is defined at the same collocation
point as C− (C+). In this case the terms to be cancelled are changed so that they do not incorporate
C±. By doing so, for the Laplace operator we recover the classical linear scheme with the 6-1-1-1-1-1-1
stencil on uniform cubic meshes.

The solution of (18) can be written explicitly. In all casesd± ≥ 0 if C≥ 0. If d± = 0, we setµ+ = µ− = 1
2.

Otherwise,

µ+ =
d−

d−+d+
and µ− =

d+
d−+d+

.

This implies that the weightsµ± are non-negative. Substituting this into (17), we get the two-point flux
formula (5) with non-negative coefficients

qh
f ,d ·n f = D+

f CT+ −D−
f CT− , (19)

D±
f = µ±|ℓ f |(α±/|t±,1|+β±/|t±,2|+ γ±/|t±,3|). (20)

Now we consider the casef ∈ FJ whenK+(x f ) andK−(x f ) differ, where

K±(x f ) = lim
x∈T±, x→x f

K(x).

We derive two-point flux approximations in cellsT+ andT− independently:

(qh
f ,d ·n f )+ = N+C+−N+

f Cf , (21)

−(qh
f ,d ·n f )− = N−C−−N−

f Cf . (22)

Non-negative coefficientsN+, N+
f , N−, N−

f are derived similarly to coefficients (20) on the basis of dis-
crete concentrations at collocation points fromΣT± , Σ f ,T± andℓ± =∓K±(x f )n f , the co-normal vectors
to face f outward with respect toT±. Continuity of the normal component of the total flux and the
advection field implies continuity of the normal component of the diffusive flux. This assertion allows
us to eliminateCf from (21)-(22)

Cf = (N+C++N−C−)/(N
+
f +N−

f ) (23)

and derive the two-point flux approximation (19) with coefficients

D±
f = N±N∓

f /(N
+
f +N−

f ). (24)

If both N±
f = 0, we setM±

f = N±/2 andCf = (C++C−)/2.

ECMOR XIII – 13th European Conference on the Mathematics of Oil Recovery
Biarritz, France, 10-13 September 2012



Nonlinear second-order upwind stabilization

We consider the nonlinear upwind approximation for the conservative unknownc by the fluxv:

Cf =

{
RT+(x f ), vf > 0,
RT−(x f ), else,

(25)

where

vf =
1
| f |

∫

f
v ·n f ds,

RT is a linear reconstruction of the concentration over cellT which depends on the concentration values
from neighboring cells.

On each cellT we define the linear reconstruction

RT(x) =
{

CT +LTgT · (x−xT), x ∈ T,
0, x /∈ T,

(26)

with a gradient vectorgT . SinceCT is collocated at the barycenter ofT, this reconstruction preserves
the mean value of the concentration for any choice ofgT .

Conventional reconstructions of the gradient target stable approximations of the second order. LetGT

be the set of admissible gradientsg̃T which will be defined below. The gradient vectorgT is the solution
to the following constrained minimization problem:

gT = arg min
g̃T∈GT

JT(g̃T), (27)

where the functional

JT(g̃T) =
1
2 ∑

xk∈Σ̃T

[CT + g̃T · (xk−xT)−Ck]
2

measures deviation of the reconstructed function from the targeted valuesCk collocated at pointsxk

from a setΣ̃T . The setΣ̃T is built as follows. First, the set̂ΣT is defined by eliminating the secondary
collocation pointsx f , f ∈ F out

B , from ΣT . Second, we set̃ΣT = Σ̂T and extend it by elements from̃ΣT ′ ,
for all T ′ 6= T s.t. xT ′ ∈ Σ̃T , if the least-square system is degenerate or ill-conditioned.

The set of admissible gradientsGT is defined via three constraints suppressing non-physical oscillations.
These constraints (as well as the setΣ̃T ) were designed to be practical and at the same time as weak
as possible. First, a linear reconstruction defined by the admissible gradient̃gT must be bounded at the
collocation pointsxk ∈ Σ̂T :

min
{

C1,C2, . . . ,CN(Σ̂T )

}
≤CT + g̃T · (xk−xT)≤ max

{
C1,C2, . . . ,CN(Σ̂T )

}
. (28)

Due to (28), we get that̃gT ≡ 0 in local minima and maxima.

Second, for the sake of the correct sign of the advective flux,we require that the reconstructed function
must be non-negative at pointsx f on facesf ∈ FT wherevf > 0:

CT + g̃T · (x f −xT)≥ 0. (29)

We note that when the face centerx f lies outside the convex hull of pointsxk ∈ Σ̂T , the reconstructed
function may be negative atx f even if (28) is satisfied.

Third, the reconstructed function must be bounded from below at the secondary collocation points on
Γout (they do not belong tôΣT):

min
{

C1,C2, . . . ,CN(Σ̂T )

}
≤CT + g̃T · (x f −xT), f ∈ FT ∩F out

B . (30)
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Ignoring constraint (30) can involve difficulties in the solution of resulting nonlinear algebraic system.

It can be proved (Nikitin and Vassilevski 2010; Lipnikov et al. 2010) that minimization problem (27)
with constraints (28), (29), (30) has a unique solution.

The resulting reconstruction (26) can be used for the advective flux discretization as well as for the
second order nonlinear upwind approximation of the conservative unknownc.

Nonlinear discrete system and its solution

For everyT in T , the cell equation (4) is

∑
f∈FT

χ(T, f )qh
f ·n f =

∫

T
f dx, (31)

whereχ(T, f ) = sign(n f · nT(x f )). Substituting two-point flux formula (5) with non-negativecoeffi-
cients given by (20) and (24) into (31), we get a nonlinear system ofNT equations

M(C)C = G(C). (32)

The matrixM(C) may be represented by assembling of 2×2 matrices

M f (C) =

(
M+

f (C) −M−
f (C)

−M+
f (C) M−

f (C)

)
(33)

for the interior faces and 1×1 matricesM f (C) = M+
f (C) for Dirichlet faces. The right-hand side vector

G(C) is generated by the source and the boundary data.

We use the Picard iterations to solve the nonlinear system (32). Each Picard iteration produce the linear
system with the non-symmetric matrixM(Ck) can be solved by, for example, the preconditioned Bi-
Conjugate Gradient Stabilized (BiCGStab) method. The BiCGStab iterations are terminated when the
relative norm of the residual becomes smaller thanεlin .

The next two theorems (Lipnikov et al. 2010) show that the solution to (32) is non-negative provided
that it exists and that the solutionCk for eachkth Picard iteration is a non-negative vector provided that
εlin = 0.
Theorem 1. Let ΓN = /0, g≥ 0 in Ω, gD ≥ 0 on ΓD ≡ ∂Ω and the solution C to(32) exist. Then C≥ 0.
Theorem 2. Let g≥ 0, gD ≥ 0, gN ≤ 0 andΓD 6= /0. If C0 ≥ 0 and linear systems in the Picard method
are solved exactly, thenCk ≥ 0 for k≥ 1.
Remark 2. The presented FV method is exact for piecewise linear concentrations and has the second
order truncation error. Therefore, we may expect the secondorder of convergence for the scalar variable
C and at least the first order of convergence for the flux degrees of freedom.

Two-phase black oil model

For the sake of simplicity we consider a two-phase flow in a porous medium (Aziz and Settari 1979;
Chen et al. 2006), as for the three-phase flow the effect of using linear or nonlinear discretization scheme
is the same. The phase, that wets the medium more than the other, is called wetting phase and is indicated
by subscriptw. The other phase is the nonwetting phase and indicated byo.

The basic equations for the two-phase flow are the following:

• Mass conservation for each phase:

∂
∂ t

(φραSα) =−div(ραuα)+qα , α = w,o (34)
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• Darcy’s law:

uα =−
krα

µα
K(∇pα −ραg∇z), α = w,o (35)

• Two fluids fill the voids:
Sw+So = 1 (36)

• Pressure difference between phases is given by capillary pressure:

po− pw = pc(Sw) (37)

wherepα is unknown phase pressureα , Sα is unknown saturation,uα is unknown Darcy’s velocity,K
is an absolute permeability tensor,ρα = ρα ,0/Bα is a phase density, withρα ,0 being a density under
standard conditions,Bα = Bα(p) is a formation volume factor,µα = µα(p) is a viscosity,krα = krα(S)
is a relative phase permeability,φ = φ(p) is a porosity,g is a gravity term,z is a depth andqα is a
source/sink well term.

Boundary conditions consist of two parts:

1. No-flow (homogeneous Neumann) condition on the reservoirboundary;

2. Wells with a given bottom pressurepbh.

Each well is assumed to be vertical and connected to the center of a cell. The formula for the well term
was suggested by Peaceman (Peaceman 1978):

qα =
ραkrα

µα
WI(pbh− p−ρα(zbh−z)), (38)

whereWI is a well index, which doesn’t depend on the properties of fluids, but depends on properties of
the media.

In the discrete counterpart of (43), (44), (45) the mobilityλα = krα (Sw)
µα(po)

on facefi j is taken upwinded:

λα(S) =

{
λα(Si) if flow is directed from celli to cell j,
λα(Sj) if flow is directed from cellj to cell i.

The phase mobilities for well-producer are taken upwinded from the cell. For well-injector we have only
water injected and thus take the downstream mobility from the cell with the well:

λinjector=

(
krw

µw
+

kro

µo

)

cell
.

It is assumed that there is no capillary pressure in wells, soboth water and oil fluxes depend on the same
(oil) pressure.

IMPES time stepping

In this section we derive the IMPES (Implicit Pressure – Explicit Saturation) time stepping for two-phase
black oil model. The oil pressure and water saturation are chosen as independent variables:

p= po, S= Sw.

The total velocity isu = uo+uw.
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If the rock porosity and liquid densities are fixed during thetime step, we have

∂ (φSo)

∂ t
+

∂ (φSw)

∂ t
= 0

and then
∇ ·u =

qw

ρw
+

qo

ρo
(39)

Applying (37) to (35) gives

u =−K
(
λ (S)∇p−λw(S)∇pc− (λwρw+λoρo)g∇z

)
, (40)

whereλ = λw+λo is the total mobility.

Substituting (40) into (39) gives the pressure equation

−∇ · (Kλ∇p) =
qw

ρw
+

qo

ρo
−∇ ·

[
K
(
λw∇pc+(λwρw+λoρo)g∇z

)]
. (41)

The phase velocitiesuw anduo can be expressed through the total velocityu by

uw =
λw

λ
(
u+Kλo∇pc+Kλo(ρw−ρo)g∇z

)
,

uo =
λo

λ
(
u−Kλw∇pc+Kλw(ρo−ρw)g∇z

)
.

Similarly, (37) and (40) applied to (34) and (35) (forα = w) yield the saturation equation

φ
∂S
∂ t

+∇ ·
λw

λ
(S)

[
Kλo(S)

(
dpc

dS
∇S+(ρo−ρw)g∇z

)
+u
]
=

qw

ρw
(42)

Finally, the IMPES method can be formalized:

1. Solveimplicitly (41) to obtain current pressurepn from current saturationSn:

−∇ · (Kλ n∇pn) =
qw

ρn
w
+

qo

ρn
o
−∇ ·

[
K
(
λ n

w∇pc+(λ n
wρn

w+λ n
o ρn

o)g∇z
)]
, (43)

whereλ n
α = λα(Sn, pn) andρn

α = ρα(pn).

2. Use (40) to find current Darcy’s velocityun using currentSn andpn:

un =−K
(
λ n∇pn−λ n

w∇pc− (λ n
wρn

w+λ n
o ρn

o)g∇z
)
. (44)

3. Solveexplicitly (42) to get next time step saturationSn+1 using currentSn, pn andun:

1
∆tn+1

[(
φS
Bw

)n+1

−

(
φS
Bw

)n
]
=

qw

ρn
w
−∇ ·

λ n
w

λ n

[
Kλ n

o

(
dpc

dS
∇S+(ρn

o −ρn
w)g∇z

)
+un

]
. (45)

Note that the equation (43) is a stationary diffusion equation with diffusion tensorKλ n and the nonlinear
right-hand side. While forming diffusion fluxes on the left and right sides of the equation (43), as well
as the right-hand sides of (44) and (45) we use a linear or nonlinear discretization scheme, which were
introduced in the first section, substituting pressure instead of concentration.
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Fully implicit scheme

Another time discretization technique widely used in reservoir simulation is the fully implicit scheme.
First we apply the implicit scheme to the mass conservation equations (34):

(
φSα
Bα

)n+1
−
(

φSα
Bα

)n

∆tn+1 =−div

(
uα

Bα

)n+1

+

(
qα

ρα ,0

)n+1

, α = w,o. (46)

Now we can write down the nonlinear residual equations for the l th approximation to a quantity evaluated
at time stepn+1 inside grid cellTi:

Rl
α ,i =

∫

Ti

[(
φSα

Bα

)l

i
−

(
φSα

Bα

)n

i
+∆tn+1

(
div

uα

Bα
−

qα

ρα ,0

)l

i

]
dx, α = w,o. (47)

The discrete counterpart of (46) can be written as:

Rα ,i = 0, α = w,o (48)

for all grid cells at every time step.

We suggest to use Newton’s method to solve nonlinear system (48) with Darcy velocities (35):

J(xl )δxl =−R(xl ), (49)

xl+1 = xl +δxl , (50)

wherel is thel th Newton step,x is a vector of primary unknowns in all grid cells,

x=

(
po

Sw

)
,

R is the vector of nonlinear residuals in all grid cells,

R(x) =

(
Rw(x)
Ro(x)

)
,

andJ is the Jacobian matrix:

J(x) =

(
∂Rw
∂ po

(x) ∂Rw
∂Sw

(x)
∂Ro
∂ po

(x) ∂Ro
∂Sw

(x)

)
.

We terminate Newton’s method when the norm of the residual vector drops belowεnwt.

Below we consider the construction of Jacobian matrix. We divide the residuals into two parts: accumu-
lation (including well terms) and transport,Rα ,i = Racc

α ,i +Rtrans
α ,i , where:

Racc
α ,i =Vi

[(
φSα

Bα

)l

i
−

(
φSα

Bα

)n

i
−∆tn+1

(
qα

ρα ,0

)l

i

]
, α = w,o,

Rtrans
α ,i = ∆tn+1

∫

Ti

(
div

uα

Bα

)
dx, α = w,o.

We take advantage of the following dependencies:
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• So = 1−Sw, (rf. (36)),

• pw = po− pc(Sw),

• krα = krα(Sw),

• µα = µα(po),

• Bα = Bα(po),

• φ = φ0(1+cR(po− p0
o)).

Accumulation term.

First we consider the variation of the accumulation term:

∆Racc
w,i =Vi

[
∆
(

φSw

Bw

)
−∆tn+1∆

(
qw

ρw,0

)]
,

∆Racc
o,i =Vi

[
∆
(

φSo

Bo

)
−∆tn+1∆

(
qo

ρo,0

)]
,

where

∆
(

φSw

Bw

)
=

φ
Bw

∆Sw+Sw

(
φ0cR

Bw
−

φ
B2

w

dBw

dpo

)
∆po,

∆
(

φSo

Bo

)
=−

φ
Bo

∆Sw+(1−Sw)

(
φ0cR

Bo
−

φ
B2

o

dBo

dpo

)
∆po.

For the production well we have:

∆
(

qα

ρα ,0

)
=

(
WI Dα

µαBα

)
dkrα

dSw
∆Sw−

krαWI
µαBα

(
1+Dα

(
1

µα

dµα

dpo
+

1
Bα

dBα

dpo

))
∆po,

and for the injection well:

∆
(

qw

ρw,0

)
=WI Dw

(
1

µwBw

dkrw

dSw
+

1
µoBo

dkro

dSw

)
∆Sw−WI

[
krw

µwBw
+

kro

µoBo
+

+ Dw

(
krw

µ2
wBw

dµw

dpo
+

krw

µwB2
w

dBw

dpo
+

kro

µ2
oBo

dµo

dpo
+

kro

µoB2
o

dBo

dpo

)]
∆po, (51)

∆
(

qo

ρo,0

)
= 0,

whereDα = pbh− po−ρα(zbh−z).

Transport term.

Now we consider the transport term composed of Darcy fluxes

Rtrans
α ,i = ∆tn+1

∫

∂Ti

(
uα

Bα
·n
)

ds≈ ∆tn+1 ∑
f∈∂Ti

uα , f

Bα
·n f . (52)

Consider we have a two-point discretization for a flux. In this case

uh
w, f

Bw
·n f =−

(
krw

µwBw

)

f

[
D+

f

(
pw−ρwgz

)
T+

−D−
f

(
pw−ρwgz

)
T−

]
=

=−

(
krw

µwBw

)

f

[
D+

f

(
po− pc(Sw)−ρwgz

)
T+

−D−
f

(
po− pc(Sw)−ρwgz

)
T−

]
, (53)
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uh
o, f

Bo
·n f =−

(
kro

µoBo

)

f

[
D+

f

(
po−ρogz

)
T+

−D−
f

(
po−ρogz

)
T−

]
. (54)

Herekrα = krα(S̃), S̃ is the upwinded value of saturation on facef . On the other hand,µα = µα(p̄) and
Bα = Bα(p̄), wherep̄= p−+p+

2 is the average pressure on the face.

Using (53) and (54) we get the following representation for the flux variation for each of two phases:

∆

(
uh

w, f

Bw
·n f

)
=

−Dw, f

µwBw

dkrw

Sw
∆S̃w−

−
krw

µwBw

[
−D+

f

(
dpc

dSw
∆Sw

)

T+

+D−
f

(
dpc

dSw
∆Sw

)

T−

]
+

+
krw

µwBw

[(
Dw, f

µw

dµw

dpo
+

Dw, f

Bw

dBw

dpo

)
∆p̄o− (D+

f ∆po,T+ −D−
f ∆po,T−)

]
, (55)

∆

(
uh

o, f

Bo
·n f

)
=

−Do, f

µoBo

dkro

Sw
∆S̃w−

+
kro

µoBo

[(
Do, f

µo

dµo

dpo
+

Do, f

Bo

dBo

dpo

)
∆p̄o− (D+

f ∆po,T+ −D−
f ∆po,T−)

]
, (56)

where
Dw, f = D+

f

(
po− pc(Sw)−ρwgz

)
T+

−D−
f

(
po− pc(Sw)−ρwgz

)
T−
,

Do, f = D+
f

(
po−ρogz)T+ −D−

f

(
po−ρogz

)
T−
.

We assume that coefficientsD±
f are frozen at each Newton iteration. In this case the difference between

the linear and nonlinear flux discretizations is only in the way we calculateD±
f for (55) and (56), but not

in sparsity of Jacobian matrix.

For the fluxes in (43)-(45) and (52) we consider two flux discretization schemes. The upwinded satura-
tion is obtained by using the nonlinear second-order upwindstabilization, presented in the first section.

Numerical experiments

The numerical experiments for steady-state diffusion and advection-diffusion problems in 3D can be
found in (Danilov and Vassilevski 2009) and (Nikitin and Vassilevski 2010) respectively.

Here we present a few numerical results obtained with the newflux discretization and upwind approx-
imation for the two-phase black oil model. The accuracy and the computational cost of the method are
compared with the ones for the conventional linear two-point flux discretization.

In all test cases we considered pseudo-two-dimensional problems onN×N×1 hexahedral meshes and
used the following rock and fluid properties. Relative permeabilities of fluidskrα are shown in Fig. 3
left. Capillary pressurepc dependence onSw is presented in Fig. 3 right. Viscositiesµα and volume
factorsBα are set by Table 1 and densities areρw,0 ≈ 4.331·10−1psi/ft and ρo,0 ≈ 3.898·10−1psi/ft.
The rock is assumed to be incompressible.

Both wells are incorporated through the bottom hole pressures. For injector it ispbh,inj = 4100 psia and

for producerpbh,pr = 3900 psia. Well indexes are assumed to be fixedWI = 10 bbl·cp
day·psi.
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Figure 3 Left: Oil and water relative permeabilities. Right: Capillary pressure dependence on Sw.

p (psia) Bo (bbl/STB) Bw (bbl/STB) µo (cp) µw (cp)
3900 1.0030 1.01317 90.6 0.515
4000 1.0020 1.01291 96.0 0.518
4100 1.0009 1.01264 101.7 0.521

Table 1 Fluid compressibility properties.

Non-orthogonal grid

The main idea of the first experiment is the following. Take uniform N×N×1 mesh. Fix the first and
last two lines in order to leave well-connected cells intact. Rotate the central lines towards the wells
(angleα =−30◦) or away from them (α = 30◦) and interpolate the other lines linearly between central
lines and the boundary (see Fig. 4). Run simulation with linear and nonlinear flux discretization on
modified mesh and compare the results with the ones on orthogonal mesh.

Permeability tensor is chosen to beK= {100,100,10}.

Injector

Producer

Injector

Producer

Injector

Producer

Grid M1 Grid M2 Grid M3
(α = 0◦) (α =−30◦) (α = 30◦)

Figure 4 Orthogonal and non-orthogonal sample grids.

Figure 6 shows distribution of water saturation on the orthogonal grid (Fig. 6 left) and on grid M2 for
linear (Fig. 6 center) and nonlinear (Fig. 6 right) flux disretizations. It can be easily seen that for linear
discretization the form of the water front is different fromthe one on the orthogonal grid, while for
nonlinear discretization the fronts are almost equal.
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Grid M1 Grid M2 Grid M2
linear = nonlinear linear nonlinear

Figure 5 Water saturation for grids M1 and M2 for the linear and nonlinear scheme at T= 250days.

Grid M1 Grid M3 Grid M3
linear = nonlinear linear nonlinear

Figure 6 Water saturation for grids M1 and M3 for the linear and nonlinear scheme at T= 250days.

Similarly the Figure 6 shows water saturations on the orthogonal grid (Fig. 6 left) and on grid M3 for
linear (Fig. 6 center) and nonlinear (Fig. 6 right) flux disretizations. Again, nonlinear discretization
provides the front which is very close to the front on the orthogonal grid, while linear one doesnâĂŹt
preserve the behavior of the water front, that becomes flat.

The water breakthrough times are also noticeably different(see Table 2). Oil production rates are shown
in Fig. 7, and water production rates are shown in Fig. 8. For grid M2 both linear and nonlinear fluxes
break earlier than for grid M1, while for grid M3 both linear and nonlinear fluxes alternatively break
later than for grid M1. Meanwhile the nonlinear discretization on the modified grids is very close to the
one on the orthogonal grid.

Grid 1 Grid 2 Grid 3
linear 372.2 224.1 564.2
nonlinear 372.2 362.2 388.5

Table 2 Water breakthrough times. Non-orthogonal grid.
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Figure 7 Oil production rates for grids M1, M2 and M3.
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Figure 8 Water production rates for grids M1, M2 and M3.

Discontinuous tensor with high anisotropy

In the next experiment we use the uniform 64×64×1 grid M1, but with a discontinuous full anisotropic
permeability tensor (see Fig. 9).

K= Rz(−θ)




1000 0 0
0 10 0
0 0 10


Rz(θ), Rz(θ) =




cosθ sinθ 0
−sinθ cosθ 0

0 0 1


 .
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The computational domain is 100 ft× 100 ft, and rotation angle is the following:

θ(S) =





0◦ if 50 ft ≤ x+y< 100 ft,
90◦ if 100 ft ≤ x+y< 150 ft,
45◦ if x+y< 50 ft, orx+y≥ 150 ft.

Fig. 10 shows the water saturation field at the momentT = 55 days and Fig. 11 presents the oil pressure
field at the momentT = 10. The front propagations are completely different even ifdiscretizations differ
only near wells, whereθ = 45◦. Oil and water production rates are shown in Fig. 12.

Injector

Producer

10
1000

10

1000

10

1000

1000
10

Figure 9 Left: discontinuous anisotropic tensor. Right: sample mesh.

linear nonlinear

Figure 10 Water saturation at T= 55 days. Discontinuous tensor with high anisotropy.
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linear nonlinear

Figure 11 Oil pressure at T= 10 days. Discontinuous tensor with high anisotropy.
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Figure 12 Oil / water production rates. Discontinuous tensor with high anisotropy.

Fully implicit scheme

We proceed to the numerical comparison of the impact of the nonlinear and linear flux discretizations
to the convergence of the Newton method for the fully implicit scheme presented in the second section.
We confine ourselves by nonlinearities coming from the relative permeabilities, viscosities and flux
coefficients (for nonlinear discretizations). In the comparison we neglect nonlinearity generated by the
rock and fluids compressibilities and the capillary pressure.

We consider the simulation of water injection and oil production on grid M3 from the first experiment.
Table 3 presents CPU times and numbers of Newton iterations for 200 day simulation with different
time steps (from 1 to 20 days) and stopping criterionεnwt = 10−3. We observe that both the compu-
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Linear Nonlinear
∆t (N) time #it #it/N time #it #it/N

1.0 (200) 111s 369 1.8 120s 422 2.1
2.0 (100) 69s 211 2.1 99s 328 3.3
4.0 (50) 51s 140 2.8 76s 233 5.7
8.0 (25) 35s 86 3.4 59s 168 6.7
20.0 (10) 25s 49 4.9 46s 122 12.2

Table 3 Time step, (N – number of steps), CPU time (sec) and the total number of Newton iterations
(#it.), εnwt = 10−3.

tational work (time) and the total number of Newton iterations (#it) are higher for the nonlinear flux
discretization than those produced by the conventional linear fluxes. The increase of the time step re-
duces the computation time, but the average number of iterations per time step grows. For the smaller
time steps the total CPU time and total number of iterations are only 20% higher for the nonlinear flux
discretization than for the linear one. For the bigger steps, however, the difference is larger - 2.5 times.

Linear Nonlinear
∆t (N) time #it #it/N time #it #it/N

1.0 (200) 122s 412 2.1 206s 738 3.7
2.0 (100) 79s 247 2.5 159s 558 5.6
4.0 (50) 54s 158 3.1 123s 420 8.4
8.0 (25) 38s 94 3.8 97s 304 12.2
20.0 (10) 26s 53 5.3 65s 182 18.2

Table 4 Time step, (N – number of steps), CPU time (sec) and the total number of Newton iterations
(#it.), εnwt = 10−4.

Table 4 presents CPU times and numbers of Newton iterations for 200 day simulation with different
time steps (from 1 to 20 days) and stopping criterionεnwt = 10−4. One can see the use of the nonlinear
discretization makes the residual of the Newtom method to drop slower, and the difference between
linear and nonlinear discretizations becomes more noticeable: extra 75% for small time steps and up to
3.5 times for the big ones.

The time measurements presented in tables 3, 4 indicate thatthe computational cost of each Newton
iteration is the same for both linear and nonlinear discretizations.

Conclusions

We presented here the new monotone cell-centered finite volume method. Its monotonicity is understood
as non-negative approximations of non-negative solutionsto partial differential equations, but it can be
easily modified to provide the discrete maximum principle.

The cornerstones of the method are the nonlinear two-point flux discretization and the second order
upwind approximation. Numerical experiments with the two-phase black oil model demonstrate its
superiority to the conventional linear two-point flux discretization.

For orthogonal grids with isotropic or grid-aligned anisotropic permeability tensor, the nonlinear two-
point flux discretization is identical to the conventional linear two-point flux discretization. However,
in case of non-orthogonal grid or full anisotropic permeability tensor, the nonlinear two-point flux dis-
cretization provides more accurate and physically relevant front propagation and water breakthrough
time than the conventional linear two-point flux discretization. The computational work for the new
method is noticeably higher for IMPES due to the use of Picarditerations, yet just slightly higher for
fully implicit method due to the larger number of Newton iterations.
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