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Abstract We present a new nonlinear monotone finite vol-
ume method for diffusion equation and its application to
two-phase flow model. We consider full anisotropic dis-
continuous diffusion or permeability tensors on conformal
polyhedral meshes. The approximation of the diffusive flux
uses the nonlinear two-point stencil which provides the
conventional seven-point stencil for the discrete diffusion
operator on cubic meshes. We show that the quality of the
discrete flux in a reservoir simulator has great effect on the
front behavior and the water breakthrough time. We com-
pare two two-point flux approximations (TPFA), the pro-
posed nonlinear TPFA and the conventional linear TPFA,
and multipoint flux approximation (MPFA). The new non-
linear scheme has a number of important advantages over
the traditional linear discretizations. Compared to the linear

This work has been supported in part by RFBR grants
11-01-00971, 12-01-31275, 12-01-33084, Russian Presidential
grant MK-7159.2013.1, Federal target programs “Scientific
and scientific-pedagogical personnel of innovative Russia” and
“Research and development for priority directions of science and
technology complex of Russia”, ExxonMobil Upstream Research
Company, and project “Breakthrough” of Rosatom

K. Nikitin (�) · K. Terekhov · Y. Vassilevski
Institute of Numerical Mathematics, Russian
Academy of Sciences, Moscow, Russia
e-mail: nikitin.kira@gmail.com

K. Nikitin · K. Terekhov
Nuclear Safety Institute, Russian Academy of Sciences,
Moscow, Russia

K. Terekhov
e-mail: kirill.terehov@gmail.com

Y. Vassilevski
Moscow Institute of Physics and Technology,
Dolgoprudny, Russia
e-mail: yuri.vassilevski@gmail.com

TPFA, the nonlinear TPFA demonstrates low sensitivity to
grid distortions and provides appropriate approximation in
case of full anisotropic permeability tensor. For nonorthog-
onal grids or full anisotropic permeability tensors, the
conventional linear TPFA provides no approximation, while
the nonlinear flux is still first-order accurate. The computa-
tional work for the new method is higher than the one for
the conventional TPFA, yet it is rather competitive. Com-
pared to MPFA, the new scheme provides sparser algebraic
systems and thus is less computational expensive. More-
over, it is monotone which means that the discrete solution
preserves the nonnegativity of the differential solution.

Keywords Numerical methods · Multiphase flows ·
Nonlinear scheme · Monotone discretization

1 Introduction

Applications in reservoir simulation use different types of
meshes such as tetrahedral, hexahedral, prismatic, octree,
etc. All of them fall in the class of conformal meshes
with polyhedral cells. The demand from the engineering
community for a simple and accurate conservative method
applicable to general conformal meshes and full anisotropic
tensor permeability coefficients is very distinct.

The conservative linear methods on unstructured poly-
hedral meshes are well known: cell-centered finite volume
(FV) with multipoint flux approximation (MPFA) [1], the
KR mixed finite element (MFE) [3, 7], and the mimetic
finite difference (MFD) [11] methods. They are second-
order accurate and are not monotone even when the diffu-
sion coefficient is moderately (1:100) anisotropic. The FV
method with a linear two-point flux approximations (TPFA)
is monotone but may be not even first-order accurate for
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anisotropic problems or unstructured meshes. Nevertheless,
this method is conventional in modeling flows in porous
media due to its technological simplicity and monotonicity.

In this paper, we present a new cell-centered FV method
that preserves solution positivity and discuss its application
for multiphase flows. The method belongs to the class of
methods with nonlinear flux discretizations [5, 6, 8, 12–14,
16, 20, 23]. The method is applicable to the 3D conformal
polyhedral meshes and diffusion equations with hetero-
geneous full diffusion tensor [5] or advection–diffusion
equations [14, 16]. The approximation of advective fluxes
is based on the upwinding approach along with a piecewise
linear reconstruction of the FV solution and a slope-limiting
technique. In all cases of model equations, the method is
exact for linear and piecewise linear solutions and thus one
can expect the second-order truncation error. We note that in
this paper, we consider the method that preserves nonnega-
tivity of the discrete solution but still can violate the discrete
maximum principle (DMP) [5]. However, the method can
be modified [15] so that it provides the DMP and preserves
the minimal compact stencil of the FV discretization. Other
FV methods providing the DMP for the diffusion equation
are proposed in [9, 10, 21].

The new nonlinear TPFA has a number of important ad-
vantages over the conventional linear TPFA. First, it demon-
strates very low sensitivity to grid distortions. Second, it
provides appropriate approximations in the case of full ani-
sotropic permeability (diffusion) tensor. Third, being com-
bined with the cell-centered FV method, it preserves solu-
tion positivity and thus provides a monotone discretization.

The TPFA schemes are technologically appealing due to
the compact stencil of the FV discretization even on polyg-
onal or polyhedral meshes. For cubic meshes, this stencil
reduces to the conventional seven-point finite difference
stencil. Compared to MPFA [1] scheme, the new scheme
provides sparser algebraic systems and thus is less com-
putational expensive. Moreover, it is monotone that means
that the discrete solution preserves the nonnegativity of the
differential solution.

The major computational overhead of the solution of
the linear diffusion equation by the nonlinear FV method
is related to two nested iterations in the nonlinear solver.
The outer iteration is any linearization method, for instance,
Picard method which guarantees solution positivity on each
iteration. The inner iteration is the Krylov subspace method
for solving linearized problems.

We consider applications of the new FV method to the
solution of the two-phase flow equations [17]. The two-
phase flow model concerns the secondary stage of oil
recovery which is called water flooding. At this stage, water
is injected into injection wells while oil is produced through
production wells. We simulate the two-phase flow of immis-
cible fluids using the implicit pressure–explicit saturation

(IMPES) and fully implicit methods. The IMPES method
presumes the discretization and nested iteration solution of
the diffusion equation for pressure. The implicit method
presumes the straightforward discretization of the system
of flow equations and the solution by Newton method that
is nested iteration as well. We show that the quality of the
discrete flux in a reservoir simulator has a great effect on
the front behavior and the water breakthrough time. We
compare two methods of the discrete flux definition: the
conventional linear TPFA and the new nonlinear TPFA.

We emphasize that in special cases of orthogonal grid
with isotropic or grid-aligned anisotropic permeability ten-
sor (so-called K-orthogonal grid) MPFA, linear TPFA and
nonlinear TPFA are identical. On the other hand, if the
grid is not K-orthogonal, the linear TPFA provides no
approximation of the flux, while the nonlinear TPFA is still
first-order accurate and preserves the sparsity of the linear
TPFA, in contrast to MPFA. Numerical experiments with
the two-phase flow model demonstrate significant loss of
accuracy due to the conventional TPFA or slow down of
the simulation with MPFA and thus justify the use of the
nonlinear TPFA alternative.

The paper outline is as follows. In the first section, we
introduce the FV method and different approaches for the
diffusive flux discretization. In the second section, we recall
the two-phase flow model formulation and present two time
discretization schemes: IMPES and fully implicit method.
In the third section, we present the numerical results for
the multiphase flows modeling using the conventional linear
TPFA, MPFA, and new nonlinear TPFA schemes.

2 Finite volume method

Let � be a three-dimensional polyhedral domain with
boundary consisting of two parts: � = �N ∪ �̄D and
�D ∩ �N = ∅.

We consider a model steady diffusion problem for a
conservative unknown c:

−div(K∇c) = g in �,

c = gD on �D,

−(K∇c) · n = gN on �N,

(1)

where K(x) = K
T (x) > 0 is a symmetric positive definite

discontinuous (possibly anisotropic) full diffusion tensor, g

is a source term, and n is the exterior normal vector.
Let T be a conformal polyhedral mesh composed of

NT shape-regular cells with planar faces. We assume that
each cell T is a star-shaped 3D domain with respect to its
barycenter xT , and each face f is a star-shaped 2D domain
with respect to face’s barycenter xf . We also assume that
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T is face-connected, i.e., it cannot be split into two meshes
having no common faces.

Let q = −K∇c denote the diffusive flux. In general
terms, the flux q of the conservative unknown c satisfies the
mass conservation equation with a source term g:

div q = g in �. (2)

We derive cell-centered FV scheme with TPFA. Integrat-
ing Eq. 2 over a polyhedron T and using Green’s formula,
we get:
∫

∂T

q · nT ds =
∫

T

g dx, (3)

where nT denotes the outer unit normal to ∂T . Let f denote
a face of cell T and nf be the corresponding normal vector.
For a single cell T , we always assume that nf is the outward
normal vector. In all other cases, we specify orientation of
nf . It will be convenient to assume that |nf | = |f | where
|f | denotes the area of face f . The Eq. 3 becomes

∑
f ∈∂T

qf · nf =
∫

T

g dx, (4)

where qf is the average flux density for face f .
For each cell T , we assign one degree of freedom, CT , for

the conservative unknown c. For simplicity, we shall refer
to c as concentration. Let C be the vector of all discrete
concentrations. If two cells T+ and T− have a common face
f , our flux approximation with the two-point support, or the
two-point flux approximation, is as follows:

qh
f · nf = D+CT+ − D−CT− , (5)

where D+ and D− are some coefficients. In the linear
TPFA, these coefficients are equal and fixed. In the nonlin-
ear TPFA, they may be different and depend on concentra-
tions in surrounding cells. On face f ∈ �D , the flux has a
form similar to Eq. 5 with an explicit value for one of the
concentrations. For the Dirichlet boundary value problem,
�D = ∂�, substituting Eq. 5 into Eq. 4, we obtain a system
of NT equations with NT unknowns CT . The cornerstone
of the cell-centered FV method is the definition of discrete
flux (5).

2.1 Linear flux discretization

We consider an anisotropic diffusion tensor and a K-
nonorthogonal grid: neither co-normal vector Knf , nor the
vector tf connecting collocation points x−, x+ are orthogo-
nal to face f (Fig. 1).

For the flux through the interior face f , we have:

K∇c · nf = ∇c · (K nf ). (6)

Fig. 1 Notations for the linear flux discretization

The linear TPFA of the tf -component of the concentra-
tion gradient is:

(∇c)ht = C+ − C−
|tf | , (7)

where C± = c(x±).
Replacing ∇c · (K nf ) with (∇c)ht (K nf ) · tf

|tf | and
substituting Eq. 7 into Eq. 6, we get

(K∇c)hf · nf =C+ − C−
|tf | K nf · tf

|tf | (8)

=K nf · tf
|tf |2 (C+ − C−) = T (C+ − C−)

with the transmissibility T = K nf · tf
|tf |2 .

The flux through the boundary face is defined by the
Dirichlet or Neumann data.

In case of K-orthogonal mesh, K nf and tf are colinear,
and the expression (8) takes the form of the central finite
difference and approximates the flux with at least first-order
accuracy. In general case, the linear scheme may not provide
approximation at all.

2.2 Nonlinear flux discretization

Let FI , FB be the disjoint sets of interior and boundary
faces, respectively. The subset FJ of FI collects faces with
jumping diffusion tensor. The sets FT and ET denote the
sets of faces and edges of polyhedron T , respectively. For
every cell T in T , we define the collocation point xT at
the barycenter of T . Finally, we denote by �T the set of
nearby collocation points of the cell T , and by �f,T the set
of nearby collocation points of the face f ∈ FT [5, 16].

We assume that for every cell–face pair T → f , T ∈ T ,
f ∈ FT , there exist three points xf,1, xf,2, and xf,3 in set
�T such that the following condition is held (see Fig. 2):
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Fig. 2 Co-normal vector and vector triplet

The co-normal vector �f = K(xf )nf started from xT

belongs to the trihedral corner formed by vectors

tf,1 = xf,1 − xT , tf,2 = xf,2 − xT , tf,3 = xf,3 − xT , (9)

and

1

|�f |�f = αf

|tf,1| tf,1 + βf

|tf,2| tf,2 + γf

|tf,3| tf,3, (10)

where αf ≥ 0, βf ≥ 0, γf ≥ 0.
The coefficients αf , βf , γf are computed as follows:

αf = Af,1

Af

, βf = Af,2

Af

, γf = Af,3

Af

, (11)

where

Af = |tf,1tf,2tf,3|
|tf,1||tf,2||tf,3| , Af,1 = |�f tf,2tf,3|

|�f ||tf,2||tf,3|

Af,2 = |tf,1�f tf,3|
|tf,1||�f ||tf,3| , Af,3 = |tf,1tf,2�f |

|tf,1||tf,2||�f |
and |a b c| = |(a × b) · c|.

Similarly, we assume that for every face–cell pair f →
T , f ∈ FB ∪ FJ , T : f ∈ FT , there exist three points
xf,1, xf,2, and xf,3 in set �f,T such that the vector �f,T =
−KT (xf )nf started from xf belongs to the trihedral corner
formed by vectors

tf,1 = xf,1 − xf , tf,2 = xf,2 − xf , tf,3 = xf,3 − xf ,

(12)
and Eqs. 10–11 hold true.

Let f be an interior face. The case of boundary face is
considered in detail in [5, 16] and is not addressed here. We
denote by T+ and T− the cells that share f and assume that
nf is outward for T+. Let x± (or xT±) be the collocation
points of T±. Let C± (or CT± ) be the discrete concentrations
in T±.

We begin with the case f /∈ FJ and introduce Kf =
K(xf ). Let T = T+. Using the above notations, definition
of the directional derivative,

∂c

∂�f

|�f | = ∇c · (Kf nf ),

and assumption (10), we write

qf · nf = −|�f |
|f |

∫
f

∂c

∂�f

ds (13)

= −|�f |
|f |

∫
f

(
αf

∂c

∂tf,1
+ βf

∂c

∂tf,2
+ γf

∂c

∂tf,3

)
ds.

Replacing directional derivatives with finite differences, we
get∫

f

∂c

∂tf,i

ds = Cf,i − CT

|xf,i − xT | |f |+O(h3
T ), i = 1, 2, 3, (14)

where hT is the diameter of cell T . Using the finite dif-
ference approximations (14), we transform formula (13)
to

qh
f ·nf =−|�f |

(
αf

|tf,1| (Cf,1−CT )

+ βf

|tf,2|(Cf,2−CT )+ γf

|tf,3| (Cf,3−CT )

)
.

(15)

At the moment, this flux involves four rather than two con-
centrations. To derive a two-point flux approximation, we
consider the cell T− and derive another approximation of
flux through face f . To distinguish between T+ and T−,
we add subscripts ± and omit subscript f . Since nf is the
inward normal vector for T−, we have to change sign of the
right-hand side:

qh± · nf = ∓ |�f |
(

α±
|t±,1| (C±,1 − C±)

+ β±
|t±,2| (C±,2 − C±) + γ±

|t±,3| (C±,3 − C±)

)
,

(16)

where α±, β±, and γ± are given by Eq. 11 and C±,i denote
concentrations at points x±,i from �T± .

We define a new discrete diffusive flux as a linear
combination of qh± · nf with nonnegative weights μ±:

qh
f ·nf =μ+ qh+ · nf + μ− qh− · nf

=μ+|�f |
(

α+
|t+,1| + β+

|t+,2| + γ+
|t+,3|

)
C+

−μ−|�f |
(

α−
|t−,1| + β−

|t−,2| + γ−
|t−,3|

)
C−

−μ+|�f |
(

α+
|t+,1|C+,1+ β+

|t+,2|C+,2+ γ+
|t+,3|C+,3

)

+μ−|�f|
(

α−
|t−,1|C−,1+ β−

|t−,2|C−,2+ γ−
|t−,3|C−,3

)
.

(17)

The obvious requirement for the weights is to cancel the
terms in the last two rows of Eq. 17 which results in
a two-point flux formula. The second requirement is to
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approximate the true flux. These requirements lead us to the
following system{−μ+d+ + μ−d− = 0,

μ+ + μ− = 1,
(18)

where

d± = |�f |
(

α±
|t±,1|C±,1 + β±

|t±,2|C±,2 + γ±
|t±,3|C±,3

)
.

Since coefficients d± depend on both geometry and concen-
tration, the weights μ± do as well. Thus, the resulting TPFA
is nonlinear.

Remark 1 It may happen that concentration C+,i , (C−,i )
i = 1, 2, 3, is defined at the same collocation point as C−
(C+). In this case, the terms to be cancelled are changed
so that they do not incorporate C±. By doing so, for the
Laplace operator, we recover the classical linear scheme
with the 6-1-1-1-1-1-1 stencil on uniform cubic meshes.

The solution of Eq. 18 can be written explicitly. In all
cases d± ≥ 0 if C ≥ 0. If d± = 0, we set μ+ = μ− = 1

2 .
Otherwise,

μ+ = d−
d− + d+

and μ− = d+
d− + d+

.

This implies that the weights μ± are nonnegative. Substitut-
ing this into Eq. 17, we get the two-point flux formula (5)
with nonnegative coefficients

D± = μ±|�f |(α±/|t±,1| + β±/|t±,2| + γ±/|t±,3|). (19)

Now, we consider the case f ∈ FJ when K+(xf ) and
K−(xf ) differ, where

K±(xf ) = lim
x∈T±, x→xf

K(x).

We derive the nonlinear TPFAs in cells T+ and T− inde-
pendently using auxiliary unknown Cf collocated at xf :

(
qh

f · nf

)
+ = N+C+ − N+

f Cf , (20)

−
(

qh
f · nf

)
− = N−C− − N−

f Cf . (21)

Nonnegative coefficients N+, N+
f , N−, N−

f are derived
similarly to coefficients (19) on the basis of discrete con-
centrations at collocation points from �T± , �f,T± and �± =
∓K±(xf ) nf , the co-normal vectors to face f outward with
respect to T±. Continuity of the normal component of the
diffusive flux allows us to eliminate Cf from Eqs. 20–21

Cf = (
N+C+ + N−C−

)
/
(
N+

f + N−
f

)
(22)

and derive nonlinear TPFA (5) with coefficients

D± = N±N∓
f /
(
N+

f + N−
f

)
. (23)

If both N±
f = 0, we set D± = N±/2 and Cf = (C+ +

C−)/2.
In Section 3.2, we shall need the variation of coefficients

D± in Eq. 19 to calculate Jacobian matrix. First, we write
variations for d± and μ± :

	d± =|�f |
(

α±
|t±,1|	C±,1+ β±

|t±,2|	C±,2+ γ±
|t±,3|	C±,3

)
,

(24)

	μ± = 	d∓
d∓ + d±

− (	d∓ + 	d±)
d∓

(d∓ + d±)2 . (25)

Then for the variation of D±, we have the linear combina-
tion:

	D± = 	μ±
(
α±/|t±,1| + β±/|t±,2| + γ±/|t±,3|

)
=

∑
Ti∈�T∗

L±
i 	Ci, (26)

where �T∗ := �T+ ∪ �T− and L±
i = L±

i (C) are the coef-
ficients of the linear combination obtained by substituting
Eqs. 24 and 25 into Eq. 19.

2.3 Nonlinear discrete system

For every T in T , the cell Eq. 4 is
∑

f ∈FT

χ(T , f ) qh
f · nf =

∫
T

f dx, (27)

where χ(T , f ) = sign(nf ·nT (xf )). Substituting two-point
flux formula (5) with nonnegative coefficients given by Eqs.
19 and 23 into Eq. 27, we get a nonlinear system of NT
equations

M C = G. (28)

The matrix M = M(C) with elements depending on C

may be represented by assembling of 2 × 2 matrices

Mf =
(

D+ − D−

−D+ D−

)
(29)

for the interior faces and 1 × 1 matrices Mf (C) = D+
for Dirichlet faces. The right-hand side vector G = G(C)

is generated by the source and the boundary data. The sys-
tem (28) is solved by, e.g., Picard method that contains two
nested iterations, the nonlinear outer iterations and inner
iterations for linearized systems.

3 Two-phase flow model

For the sake of simplicity, we consider the two-phase flow
in a porous medium [2, 4]; as for the three-phase flow, the
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effect of using linear or nonlinear discretization scheme is
the same. The phase that wets the medium more than the
other is called wetting phase and is indicated by subscript w.
The other phase is the nonwetting phase and indicated by o.

The basic equations for the two-phase flow are the
following:

1. Mass conservation for each phase:

∂

∂t

φSα

Bα

= −divuα + qα, α = w, o. (30)

2. Darcy’s law:

uα = −λαK(∇pα − ραg∇z), α = w, o. (31)

3. Two fluids fill the voids:

Sw + So = 1. (32)

4. Pressure difference between phases is given by capil-
lary pressure pc = pc(Sw):

po − pw = pc, (33)

where K is an absolute permeability tensor, φ is the poros-
ity, g is the gravity term, z is the depth; in the phase α:
pα is unknown pressure, Sα is unknown saturation, uα is
unknown Darcy’s velocity, ρα is unknown density, Bα =
ρα,0/ρα is the formation volume factor, μα is the viscosity,
krα is the relative phase permeability, λα = krα/(μαBα) is
the mobility, qα is the source/sink well term.

We choose oil pressure po and water saturation Sw

as primary unknowns (p, S) ≡ (po, Sw). In the sequel,
we also take into account the following dependencies:
krα = krα(Sw), μα = μα(po), Bα = Bα(po), and φ =
φ0
(
1 + cR

(
po − p0

o

))
.

We have no-flow (homogeneous Neumann) boundary
condition on the reservoir boundary. Wells are incorporated
through the well terms in Eq. 30. Each well is assumed to be
vertical and connected to the center of a cell. The formula
for the well term was suggested by Peaceman [19]. For a
cell T with center xT connected to the well, we have:

qα = ραkrα

μα

WI
(
pbh − p − ρα(zbh − z)

)
δ(x − xT ), (34)

where pbh is a given bottom hole pressure, WI is a well
index which does not depend on the properties of fluids but
depends on properties of the media, δ(x − xT ) is the Dirac
function.

3.1 IMPES time stepping

In this section, we recall the IMPES time stepping for two-
phase flow model. Let the total velocity be u = uo + uw .

If the rock porosity and liquid densities are fixed during
the time step, we have ∂So

∂t
+ ∂Sw

∂t
= 0 and then

divu = qw + qo. (35)

Applying Eq. 33 to Eq. 31 gives

u = −K
(
λ∇p − λw∇pc − (λwρw + λoρo)g∇z

)
, (36)

where λ = λw + λo is the total mobility.
Substituting Eq. 36 into Eq. 35 gives the pressure equa-

tion

− div(Kλ∇p) = qw + qo

− div
[
K
(
λw∇pc + (λwρw + λoρo)g∇z

)]
. (37)

The phase velocities uw and uo can be expressed through
the total velocity u by

uw = λw

λ

(
u + Kλo∇pc + Kλo(ρw − ρo)g∇z

)
,

uo = λo

λ

(
u − Kλw∇pc + Kλw(ρo − ρw)g∇z

)
.

Similarly, Eqs. 33 and 36 applied to Eqs. 30 and 31 (for
α = w) yield the saturation equation

div
λw

λ

[
u + Kλo

(
dpc

dS
∇S + (ρo − ρw)g∇z

)]

+ φ
∂S

∂t
= qw. (38)

Finally, the IMPES method can be formalized:

1. Solve implicitly (37) to obtain current pressure pn from
current saturation Sn:

− div(Kλn∇pn) = qw + qo (39)

= −div
[
K
(
λn

w∇pc + (λn
wρn

w + λn
oρ

n
o )g∇z

)]
,

where λn
α = λα(Sn, pn) and ρn

α = ρα(pn).
2. Use Eq. 36 to find current Darcy’s velocity un using

current Sn and pn:

un = −K
(
λn∇pn − λn

w∇pc − (λn
wρn

w + λn
oρ

n
o )g∇z

)
.

(40)

3. Solve explicitly (38) to get the next time step saturation
Sn+1 using current Sn, pn, and un:

1

	tn+1

[(
φS

Bw

)n+1

−
(

φS

Bw

)n
]

= qw (41)

− div
λn

w

λn

[
Kλn

o

(
dpc

dS
∇S + (ρn

o − ρn
w)g∇z

)
+ un

]
.

Note that the Eq. 39 is a stationary diffusion equation
with diffusion tensor Kλn. Discretization of diffusion fluxes
in Eq. 39, as well as computation of the right-hand sides
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of Eqs. 40 and 41 is based on the nonlinear TPFA substi-
tuting concentration for pressures po, pc, or z. The use of
Picard method for the solution of Eq. 39 with lagging coef-
ficients from previous nonlinear iteration allows us to take
all coefficients in Eq. 39 implicitly: λn, λn

w, λn
o , ρn

w , ρn
o .

In the discrete counterpart of Eqs. 39–41 the mobility
λα = krα(S)

Bα(p)μα(p)
on face fij is taken upwinded:

λα =
{

λα(Si, pi) if flow is directed from cell i to j,

λα(Sj , pj ) if flow is directed from cell j to i.

If a cell contains a well, the phase mobilities are taken from
the well cells. In case of the injector well, we have only
water injected and thus take the downstream mobility:

λinjector =
(

krw

Bwμw

+ kro

Boμo

)
cell

.

It is assumed that there is no capillary pressure in wells, so
both water and oil fluxes depend on the same (oil) pressure.

3.2 Fully implicit scheme

Another time discretization technique widely used in reser-
voir simulation is the fully implicit scheme. First, we apply
the implicit scheme to the mass conservation Eq. 30:

(
φSα

Bα

)n+1 −
(

φSα

Bα

)n

	tn+1
= − divun+1

α + qn+1
α , α = w, o.

(42)

Now, we can define the nonlinear residual for the lth

approximation to a quantity evaluated at time step n + 1
inside grid cell Ti :

Rα,i =
∫

Ti

[(
φSα

Bα

)l

i

−
(

φSα

Bα

)n

i

(43)

+	tn+1
(

div ul
α − ql

α

)]
dx, α = w, o.

The discrete counterpart of Eq. 42 can be written as:

Rα,i = 0, α = w, o (44)

for all grid cells Ti at every time step.
The combination of Eqs. 31, 43, and 44 generates a non-

linear system which is usually solved by Newton method:

J
(
xl
)

δxl = −R
(
xl
)

, (45)

xl+1 = xl + δxl, (46)

where l is the lth Newton step, x = (poSw)T is a vector of
primary unknowns in all grid cells, R(x) = (Rw(x)Ro(x))T

is a vector of nonlinear residuals in all grid cells, and J is
the Jacobian matrix:

J (x) =
(

∂Rw

∂po
(x) ∂Rw

∂Sw
(x)

∂Ro

∂po
(x) ∂Ro

∂Sw
(x)

)
.

We terminate Newton’s method when the norm of the
residual vector drops below εnwt.

The construction of Jacobian matrix is as follows. We
divide the residual into two parts: accumulation (including
well terms) and transport, Rα,i = Racc

α,i + Rtrans
α,i , where:

Racc
α,i = Vi

[(
φSα

Bα

)l,i

−
(

φSα

Bα

)n,i
]

− 	tn+1Ql,i
α ,

Ql,i
α =

∫
Ti

ql
αdx,

Rtrans
α,i = 	tn+1

∫
Ti

div ul
α dx, α = w, o.

3.2.1 Accumulation term

First, we consider the variation of the accumulation term:

	Racc
w,i = Vi 	

(
φSw

Bw

)
− 	tn+1	Qw,

	Racc
o,i = Vi 	

(
φSo

Bo

)
− 	tn+1	Qo,

where

	

(
φSw

Bw

)
= φ

Bw

	Sw + Sw

(
φ0cR

Bw

− φ

B2
w

dBw

dpo

)
	po,

	

(
φSo

Bo

)
= − φ

Bo

	Sw+(1−Sw)

(
φ0cR

Bo

− φ

B2
o

dBo

dpo

)
	po.

For the wells, we first define auxiliary variables and
derivatives:

Dα = pbh − po − ρα,0

Bα

g(zbh − z),

dDα

dpo

=−1+ ρα,0

B2
α

dBα

dpo

g(zbh −z),
dλα

dSw

= dkrα

dSw

1

Bαμα

,

dλα

dpo

=−krα

(
Bα

dμα

dpo

+μα
dBα

dpo

)
/(Bαμα)2, α=w, o.

Then the variation of the well term is: for the producer well

	Qα = WI

[
Dα

dλα

dSw

	Sw +
(

λα
dDα

dpo

+ dλα

dpo

Dα

)
	po

]
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and for the injector well

	Qw = WI

[
Dw

(
dλw

dSw

+ dλo

dSw

)
	Sw

+
(

(λw + λo)
dDw

dpo

+ Dw

(
dλw

dpo

+ dλo

dpo

))
	po

]
,

	Qo = 0.

3.2.2 Transport term

Now, we consider the transport term composed of Darcy
fluxes

Rtrans
α,i = 	tn+1

∫
∂Ti

(uα · n) ds ≈ 	tn+1
∑

f ∈∂Ti

uh
α,f · nf .

(47)

We apply TPFA for the flux of each field: po, pc, z and
denote the respective flux coefficients by D±

p , D±
pc

, D±
z and

the collocated field values at xT± by p±
o , p±

c , S±
w , z±. In this

case,

uh
w,f · nf =−

(
krw

μwBw

)
f

(
D+

p p+
o − D−

p p−
o

)

+
(

krw

μwBw

)
f

(
D+

pc
p+

c −D−
pc

p−
c

)

+
(

krw

μwB2
w

)
f

[
ρw,0 g

(
D+

z z+−D−
z z−)], (48)

uh
o,f · nf = −

(
kro

μoBo

)
f

(
D+

p p+
o − D−

p p−
o

)

+
(

kro

μoB2
o

)
f

[
ρo,0 g

(
D+

z z+−D−
z z−)]. (49)

Here, krα = krα(S̃w), S̃w is the upwinded value of water
saturation on face f and Bα = Bα(p̃o), μα = μα(p̃o), p̃o

is the upwinded value of oil pressure on face f .

Table 1 Fluid compressibility properties

p (psia) Bo

(
bbl

STB

)
Bw

(
bbl

STB

)
μo (cp) μw (cp)

3,900 1.0030 1.01317 90.6 0.515

4,000 1.0020 1.01291 96.0 0.518

4,100 1.0009 1.01264 101.7 0.521

We define auxiliary variables and derivatives:

λg,α = krα

μwB2
w

,
dλg,α

dS̃w

= dλα

dS̃w

/Bw,

dλg,α

dp̃o

=
(

dλα

dp̃o

Bw − λα
dBw

dp̃o

)
/B2

w, α = w, o,

D1 = D+
p p+

o − D−
p p−

o ,

D2 = D+
pc

p+
c − D−

pc
p−

c ,

D3,α = ρα,0 g
(
D+

z z+ − D−
z z−).

Using Eqs. 48 and 49, we get the following representation
for the flux variation for each of two phases:

	
(

uh
w,f · nf

)
=
[(dλw

dS̃w

)
(−D1+D2)+ dλg,w

dS̃w

D3,w

]
	S̃w

+
[(dλw

dp̃o

)
(−D1+D2)+ dλg,w

dp̃o

D3,w

]
	p̃o

− λw

(
D+

p 	p+
o − D−

p 	p−
o

)

+ λw

(
D+

pc

( dpc

dSw

)+
	S+

w

−D−
pc

( dPc

dSw

)−
	S−

w

)

− λw

(
	D+

p p+
o − 	D−

p p−
o

)

+ λw

(
	D+

pc
p+

c − 	D−
pc

p−
c

)
, (50)

Fig. 3 Left: Oil and water
relative permeabilities. Right:
Capillary pressure dependence
on Sw
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Fig. 4 Orthogonal and
nonorthogonal sample grids

Producer Producer Producer

	
(

uh
o,f · nf

)
=
[(

dλo

dS̃w

)
(−D1+D2)+ dλg,o

dS̃w

D3,o

]
	S̃w

+
[(

dλo

dp̃o

)
(−D1 + D2) + dλg,o

dp̃o

D3,o

]
	p̃o

− λo

(
D+

p 	p+
o − D−

p 	p−
o

)

+ λo

(
	D+

p p+
o − 	D−

p p−
o

)
. (51)

Two possible approaches may be used to calculate the
variation of the transport terms (50) and (51): coefficients
D±∗ may be assumed to be frozen for each Newton step [18,
22] or they may be differentiated as dependent of pressure
and saturation in a few neighboring cells. In the first case,
	D±∗ = 0 and difference between the linear and nonlinear
TPFAs is only in the way we calculate D±∗ , but not in spar-
sity of Jacobian matrix. The cost of each Jacobian-vector
multiplication will remain the same for both linear and

nonlinear TPFAs. If no coefficients are frozen in differenti-
ation, then

	D±
p =

∑
Ti∈�T∗

L±
p,i 	pi

o, (52)

	D±
pc

=
∑

Ti∈�T∗

L±
pc,i

( dpc

dSw

)i

	Si
w, (53)

where L±
p,i and L±

pc,i
are the coefficients calculated in

Eq. 26 for fields po and pc(Sw), respectively. This results in
more dense Jacobian matrix and more expensive Jacobian-
vector multiplication and preconditioning in the linear
solve. To increase efficiency, one may consider a threshold
which filters off small entries of the Jacobian matrix [22].
We shall not consider this option here.

4 Numerical experiments

In this section, we present a few numerical results obtained
with the nonlinear TPFA for the two-phase flow model. The

Fig. 5 Water saturation for
grids M1 and M2 for the linear
and nonlinear scheme at
T = 250 days

Grid M1 Grid M2 Grid M2
linear = nonlinear linear nonlinear



Comput Geosci

Fig. 6 Water saturation for
grids M1 and M3 for the linear
and nonlinear scheme at
T = 250 days

Grid M1 Grid M3 Grid M3
linear = nonlinear linear nonlinear

accuracy and the computational cost of the method are com-
pared with the ones for the conventional linear TPFA or
MPFA. For the sake of brevity, we address here the fully
implicit scheme only.

In the first two test cases, we consider pseudo-3D prob-
lems on N ×N ×1 hexahedral meshes and use the following
rock and fluid properties. Relative permeabilities of fluids
krα are shown in Fig. 3 (left). Capillary pressure pc depen-
dence on Sw is presented in Fig. 3, right. Viscosities μα

and volume factors Bα are set by Table 1, and densities are
ρw,0 ≈ 4.331 × 10−1psi/ft and ρo,0 ≈ 3.898 × 10−1psi/ft.
The rock is assumed to be incompressible.

Both wells are incorporated through the bottom hole
pressures. For injector, it is pbh,inj = 4,100 psia and for pro-
ducer pbh,pr = 3,900 psia. Well indexes are assumed to be

fixed WI = 10 bbl·cp
day·psi .

4.1 Nonorthogonal grid

The main idea of the first experiment as follows. Take uni-
form 32 × 32 × 1 mesh. Fix the first and last two grid
lines in order to leave well-connected cells intact. Rotate the
central lines towards the wells (angle α = −30◦) or away
from them (α = 30◦) and interpolate the other lines lin-
early between central lines and the boundary (see Fig. 4).
Run simulation with the linear and nonlinear TPFAs on
modified mesh and compare the results with the ones on
the orthogonal mesh. Permeability tensor is chosen to be
K = {100, 100, 10}.

Table 2 Water breakthrough times (nonorthogonal grid)

Grid M1 Grid M2 Grid M3

linear TPFA 372.2 224.1 564.2

nonlin.TPFA 372.2 362.2 388.5

Figure 5 shows water saturation field on orthogonal grid
M1 (Fig. 5, left) and on grid M2 for the linear (Fig. 5, cen-
ter) and nonlinear (Fig. 5, right) TPFAs. In case of linear
discretization, the water front accelerates and its form dif-
fers from the one obtained on the orthogonal grid, while
in case of nonlinear discretization, the fronts are almost
equal.

Figure 6 shows water saturation field on orthogonal grid
M1 (Fig. 6, left) and on grid M3 for the linear (Fig. 6, center)
and nonlinear (Fig. 6, right) TPFAs. Again, nonlinear dis-
cretization provides the front which is very close to the front
on the orthogonal grid, while the linear TPFA decelerates
the water front.

The water breakthrough times are also noticeably differ-
ent (see Table 2). Oil production rates are shown in Fig. 7.
For grid M2 both linear and nonlinear fluxes break ear-
lier than for grid M1, while for grid M3 both linear and
nonlinear fluxes alternatively break later than for grid M1.
Meanwhile, the breakthrough times for the nonlinear dis-
cretization on the modified grids are very close to the ones
on the orthogonal grid.
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Fig. 8 Left: discontinuous
anisotropic tensor. Right: sample
mesh

Injector

Producer
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Fig. 9 Water saturation at
T = 55 days. Discontinuous
tensor with high anisotropy

linear non linear

Fig. 10 Oil pressure at T = 10
days. Discontinuous tensor with
high anisotropy

linear non linear
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4.2 Discontinuous tensor with high anisotropy

In the next experiment, we use the uniform orthogonal 64 ×
64 × 1 grid M1, but with a discontinuous full anisotropic
permeability tensor (see Fig. 8).

K = Rz(−θ) diag(1,000, 10, 10) Rz(θ),

where diag(k1, k2, k3) is a diagonal matrix, Rα(θ) is the
rotation matrix in plane orthogonal to oα with angle θ .

The computational domain is 100 ft × 100 ft × 10 ft, and
rotation angle is the following:

θ =

⎧⎪⎨
⎪⎩

0◦ if 50 ft ≤ x + y < 100 ft,

90◦ if 100 ft ≤ x + y < 150 ft,

45◦ if x + y < 50 ft, or x + y ≥ 150 ft.

Figure 9 shows the water saturation field at the moment
T = 55 days and Fig. 10 presents the oil pressure field
at the moment T = 10 days. The front propagations are
completely different even if discretizations differ only near
wells, where θ = 45◦. Oil and water production rates are
shown in Fig. 11.

4.3 Computational complexity

Different methods of flux approximation result in differ-
ent computational work. The latter depends on sparsity
of Jacobian matrix, convergence of Newton iterations, and
convergence of the linear solver. We compare the linear
TPFA, the nonlinear TPFA, and the conventional O-scheme
for MPFA.
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Fig. 11 Oil/water production rates. Discontinuous tensor with high
anisotropy

We consider the simulation of water flooding process on
slightly skewed nonorthogonal 32 × 32 × 8 grid produced
from the orthogonal grid by shifting grid nodes by 	z =
0.01 x + 0.02 y. Tensor K is the same as in the previous test
case, θ = 30◦.

Table 3 presents number of nonzero elements in Jaco-
bian matrix, CPU time, total number of nonlinear and linear
iterations for 200 days simulation using linear TPFA, non-
linear TPFA and MPFA methods. Boundary face unknowns
are taken into account in the system in the simplest TPFA
framework for all three discretization methods. The lin-
ear solver is ILU(1)-preconditioned BiCGStab iterations
with termination threshold 10−12, the Newton iterations
terminate if the residual is less than 10−5.

The nonlinear TPFA simulation is more expensive than
the linear TPFA simulation due to less sparse Jacobian
and greater number of accumulated BiCGStab iterations.
On the other hand, our method is 2.4-fold faster than FV
with MPFA. We should note that the linear TPFA provides
wrong solution due to the lack of approximation on skewed
meshes.

4.4 Monotonicity

In the last test case, we analyze the monotonicity quality
of the new method and compare it with two convectional
schemes.

We consider diffusion problem (1) defined in the unit
cube with a cubic hole, � = (0, 1)3/[0.4, 0.6]3. The
boundary of � consists of two disjoint parts, interior �0 and
outer �1. We set �N = ∅, f = 0, gD = 2 on �0, gD = 0 on
�1, and take the anisotropic diffusion tensor

K = Rxyz diag(300, 15, 1) RT
xyz,

where Rxyz = Rz(−π/6)Ry(−π/4)Rx(−π/3).
According to the maximum principle for elliptic PDEs,

the exact solution should be between 0 and 2. Discrete solu-
tions computed with the nonlinear TPFA on all types of the

Table 3 Total number of nonzero elements (nz) in Jacobian matrix,
CPU time (seconds), total number of nonlinear (#nit.) and linear
(#lit.) iterations for simulations with linear TPFA, nonlinear TPFA and
MPFA schemes

Scheme nz Time #nit #lit

lin.TPFA 229 376 205.67 s 1.0x 653 15 896

nonl.TPFA 367 868 343.75 s 1.67x 664 23 924

MPFA 893 632 833.64 s 4.05x 660 26 288
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Fig. 12 Cutplane of the
solution calculated with the
linear TPFA, nonlinear TPFA,
and MPFA FV methods for the
problem with the Dirichlet
boundary conditions. For MPFA
scheme elements with solution
values < −10−5 are marked by
different color. Orthogonal grid
with h = 1/40

linear TPFA nonlinear TPFA

MPFA

considered meshes (orthogonal or randomly distorted hexa-
hedral, unstructured triangular prismatic, or tetrahedral) are
nonnegative everywhere in � whereas the MPFA method
produces large regions with negative concentrations even
on orthogonal grid (see Fig. 12). We remark that MFE
discretization also generates extensive areas of negative
solution [5, 12, 13].

Table 4 presents the minimum and maximum values of
the discrete concentration. The data show that both TPFAs
give the discrete solution within [0, 2], and MPFA pro-
duces considerable undershoots and overshoots. The solu-
tion obtained by the linear TPFA is wrong due to the
lack of approximation. Despite the fact that in this exper-
iment the solution satisfies the DMP, one can find an

Table 4 Minimum and maximum concentration values for the prob-
lem with the Dirichlet boundary conditions (orthogonal grid with h =
1/40)

Scheme Cmin Cmax

lin.TPFA 1.3 × 10−5 1.889

nonl. TPFA 1.6 × 10−10 1.948

MPFA −5.5 × 10−2 2.087

example [5] where the principle is violated for nonlinear
TPFA.

5 Conclusions

We presented the new monotone cell-centered FV method.
Its monotonicity is understood as nonnegative approxima-
tions of nonnegative solutions to partial differential equa-
tions. The method can be easily modified to provide the
discrete maximum principle [15].

The cornerstone of the method is the nonlinear two-
point flux approximation. Numerical experiments with the
two-phase flow model demonstrate its superiority to the
conventional linear TPFA and MPFA.

For K-orthogonal grids, all considered discretizations are
identical. However, in case of K-nonorthogonal grids, the
nonlinear TPFA provides more accurate and physically rele-
vant front propagation and water breakthrough time than the
conventional linear TPFA. The computational complexity
of the new method for fully implicit time stepping scheme
is greater than that of the linear TPFA and lesser than that
of the MPFA (O-scheme). The linear TPFA may produce
wrong solutions due to the lack of approximation.
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de diffusion fortement anisotropes sur des maillages de triangle
non structurés. C. R. Acad. Sci. Ser. I 341, 787–792 (2005)

9. LePotier, C.: Finite volume Scheme Satisfying Maximum and
Minimum Principles for Anisotropic Diffusion Operators, FVCA
V. pp. 103–118 (2008)

10. LePotier, C.: Correction non linéaire et principe du maximum
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