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Abstract. There are two mathematical models of elastic walls of healthy and atherosclerotic blood
vessels developed and studied. The models are included in a numerical model of global blood
circulation via recovery of the vessel wall state equation. The joint model allows us to study the
impact of arteries atherosclerotic disease of a set of arteries on regional haemodynamics.
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1. Introduction
Vascular diseases are the main factors of mortality, and atherosclerosis is the most common vascu-
lar disease. Advanced medical treatment of atherosclerosis is one of the challenges for contempo-
rary medicine. A study of vascular diseases and, in particular, of atherosclerosis impact on haemo-
dynamics may be based on mathematical models and numerical simulation [2, 11, 7, 14, 16, 17]. It
is supposed to use the closed blood circulation model [14] in which the elastic properties of blood
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vessels are included in the wall state equation. The latter sets up the dependence of lumen cross
section on the transmural pressure. Vessel diseases impact may be incorporated into the model
through the recovery of the diseased vessel state equation. We suggest to derive the diseased wall
state equation on the basis of the numerical solution of the equilibrium problem for a simplified
elastic fiber-spring system which imitates the atherosclerotic vessel reaction to a deformation. The
fiber-spring model was introduced in [17] where all materials were considered as linear.

In this paper we introduce approaches to modelling of atherosclerotic vessels elastic properties
as nonlinear material ones. The key relationship in the theory of elasticity is the stress-strain
relationship. Most bio-materials are nonlinear [4], arterial walls being the representative example.
To review constitutive equations for arterial material we refer to [5, 6, 18]. We have applied a Neo-
Hookean solid model which was used in modelling of atherosclerotic vessels [9] and aneurysms
development study [19].

Two models of nonlinear elasticity were developed for healthy and diseased vessels. The first
model is analytical and restricted by simple geometries of the vessel and the plaque. The second
model is numerical and applies to much wider class of plaque geometry. We validate our numerical
model via the analytical model and reproduce the state equation of the diseased wall. The recov-
ered wall state equation allows us to employ the haemodynamic model and predict atherosclerotic
plaques impact on the blood flow regime.

The outline of the paper is following. In Section 2 analytical thin-walled and numerical fiber
models of a healthy artery are considered. Analytical three-layer and numerical fiber-spring models
of atherosclerotic artery are presented in Section 3. Section 4 deals with the network blood flow
model. In Section 5 the numerical results are presented. Section 6 sums up the paper.

2. Elasticity models of healthy vessel
This section presents two elastic models for a healthy vessel wall considered as Neo-Hookean
material. The first model is based on equilibrium problem analytic solution for the thin-walled
cylinder composed of Neo-Hookean material. Applicability of this approach is limited by vessels
with straight cylindrical geometry. The second model uses a fiber representation of a vessel elas-
tic wall. It benefits a simple finite difference discretization scheme and applicability to general
geometries of blood vessels. In Section 5 we validate the fiber model via the reference solution
obtained by the thin-wall model. The fiber model of a healthy vessel forms the basis for more
complex atherosclerotic vessel model than presented in Section 3.

2.1. Thin-wall model
We consider a blood vessel as a thin-walled circular cylindrical shell inflated by the internal pres-
sure. A strain in the axial direction is assumed to be negligible. The mechanical behavior of the
arterial wall is defined by the incompressible Neo-Hookean material model. The Neo-Hookean
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solid is characterized by a strain energy density function W which for the incompressible case is

W =
µ

2
(λ2

1 + λ2
2 + λ2

3 − 3), (2.1)

where µ is the material constant, λi are the principal stretches. For the incompressible Neo-
Hookean material the relationship between the initial Young’s modulus of the vessel (arterial) wall
and the material constant µ is the following µ = E/3. The principal components of the Cauchy
stress for the incompressible hyper-elastic material are given by

σi = −p + λi
∂W

∂λi

, i = 1, 2, 3, (2.2)

where p is pressure to be determined.
In terms of the cylindrical polar coordinates (R, Θ, Z) the geometry of the tube is defined by

R0 −H/2 ≤ R ≤ R0 + H/2, where R0 and H denote the middle radius and the thickness of the
non-deformed tube, respectively.

The tube middle radius and thickness with respect to the axisymmetric deformed configuration
are denoted by r0 and h, respectively. In terms of cylindrical polar coordinates (r, θ, z) the tube
under internal pressure p0 is given by r0 − h/2 ≤ r ≤ r0 + h/2.

In our case the principal stretches are stretches in radial, circumferential and axial directions,
i.e., λr, λθ and λz, respectively. They are defined by

λr = h/H, λθ = r0/R0, (2.3)

and λz = 1 due to the assumption that the strain in the axial direction is negligible. Thus the
incompressibility constraint is

λrλθλz = λrλθ = 1. (2.4)

Using the simplification σr = −p + λr∂W/∂λr = 0 for the radial stress (the membrane
approximation) we can find the pressure p = λr∂W/∂λr = µλ2

r . The circumferential stress σθ

is assumed to be approximately constant through the tube thickness; then balancing the tension in
the tube and the inflation pressure we find that

p0 =
hσθ

ri

, (2.5)

where ri = r0 − h/2 is internal radius of the deformed cylinder and

σθ = µ(λ2
θ − λ2

r). (2.6)

Taking into account (2.3), (2.4) and (2.5) we can write the following system of equations in
two unknowns λθ and λr 

λrλθ = 1,

µ(λ2
θ − λ2

r) =
p0

λrH

(
λθR0 −

λrH

2

)
.

(2.7)

System (2.7) reduces to a bi-quadratic equation on λθ (or λr) and thus may be solved analytically.
Knowing solution of the system (2.7) we can find circumferential stress σθ, the pressure p and the
geometrical parameters of the deformed tube h and R.
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2.2. Fiber model
Using the approach described in [13], we imitate a response of the elastic surface to a deformation
as the response of fibers collection to the same deformation. Let ~X(s, t) represent the fiber points
position in space, where Lagrange coordinate s is an arc length of the fiber in the unstressed state.
We denote the fiber tension as T (s, t). The local force density is given by the expression [15]:

~f =
∂

∂s
(T~τ), (2.8)

where ~τ is the unit tangent vector

~τ =
∂ ~X

∂s

∣∣∣∣∣∂ ~X

∂s

∣∣∣∣∣
−1

. (2.9)

In case of axisymmetric problem we can assume the middle surface of the cylindrical shell as
a collection of independent ring fibers, and the fiber tension is defined by (2.6), i.e.

T = µ(λ2
θ − λ−2

θ ), λθ =

∣∣∣∣∂X

∂s

∣∣∣∣ . (2.10)

Substituting (2.8) with (2.10) results in final fiber-based stress-strain problem.
In case of Hookean wall material we use fiber tension in form [17]:

T = E∗

(∣∣∣∣∂X

∂s

∣∣∣∣− 1

)
, (2.11)

where E∗ is the elastic modulus of the fiber.
We derive the numerical approximation of the fiber model following [15, 13]. Let Nθ be the

number of computational nodes on the fiber, ~Xk be the coordinates of the kth node, k = 1, ..., Nθ,
∆s be the distance between neighboring nodes along the non-deformed fiber. We assume that ∆s
will be the same for all fibers. In accordance with formulas (2.10), (2.11) we discretize T and ~τ :

Tk+1/2 = µ




∣∣∣ ~Xk+1 − ~Xk

∣∣∣
∆s

2

−


∣∣∣ ~Xk+1 − ~Xk

∣∣∣
∆s

−2
 , (2.12)

and in case of linear tension:

Tk+1/2 = E∗


∣∣∣ ~Xk+1 − ~Xk

∣∣∣
∆s

− 1

 , (2.13)

~τk+1/2 =
~Xk+1 − ~Xk∣∣∣ ~Xk+1 − ~Xk

∣∣∣ . (2.14)
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The discrete elastic force at kth node is defined as

~fk =
Tk+1/2~τk+1/2 − Tk−1/2~τk−1/2

∆s
. (2.15)

The above formulas set up our numerical fiber elastic model of the response to deformation.

3. Elasticity models of atherosclerotic vessel
Interior wall of an atherosclerotic vessel is covered by atherosclerotic plaques. Each plaque is
composed of a thin fibrous cap and a lipid pool, and may cover lengthy parts of blood vessels.
Mechanical studies show that besides the arterial wall, fibrous cap and lipid pool are composed by
Neo-Hookean materials as well.

Following the strategy of Section 2 we present two elastic models for an atherosclerotic vessel
with a lengthy plaque. The first model represents the diseased vessel as a three-layer circular
cylindrical shell inflated by internal pressure. The internal and external layers are thin-walled
cylindrical shells which represent the plaque fibrous cap and the vessel wall, respectively (see
Fig. 1). The middle layer represents the lipid pool of the plaque. In contrast to [17] we assume
that the materials forming all three layers are incompressible Neo-Hookean solids. This model
is limited to cylindrical vessels with uniform and lengthy plaques. In this case the deformation
problem reduces to a system of nonlinear equations which can be solved semi-analytically. The
solution provides geometric characteristics of the equilibrium state for any internal pressure, and,
in particular, the dependence of a lumen cross section on the transmural pressure.

Figure 1: Geometry of the plaque.

The second model uses fiber representations of the arterial wall and the fibrous cap. The lipid
pool is imitated by a set of radial springs with nonlinear relation between reaction force and dis-
placement. An equilibrium state recovery of the above mentioned fiber-spring system is obtained
in the framework of numerical approximation: finite difference discretization results in a system
of nonlinear algebraic equations which has to be solved iteratively. This model benefits the wide
class of plaque geometries. For instance, the Hookean materials fiber-spring model has been suc-
cessfully tested for lengthy and local, symmetric and non-symmetric, plaques [17]. In Section 5
we validate the Non-Hookean materials fiber-spring model by solving the deformation problem of
a vessel with a lengthy atherosclerotic plaque using the first three-layer model.
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3.1. Equilibrium of thick-walled cylinder
We consider a thick-walled cylinder under internal pressure pa and external pressure pb. The
deformation is defined by the mapping

r = r(R), θ = Θ, z = Z. (3.1)

Then the principal stretches in radial, circumferential and axial directions, λr, λθ and λz are

λr =
dr

dR
, λθ =

r

R
, λz =

dz

dZ
= 1. (3.2)

Using and integrating the incompressibility constraint λrλθλz = 1 we can obtain

r2 = R2 −K, (3.3)

where K is the constant of integration.
It has been shown [3] that the equilibrium equation along radial direction is

R2dW

dr
dr = K

dσr

dr
, (3.4)

which after integration gives

pa = pb +
1

K

∫ rb

ra

R2dW

dr
dr, (3.5)

where W is the stress energy density function defined by (2.1) for the cylinder and W = W (r).

3.2. Three-layer circular cylindrical shell
The geometry of the non-deformed three-layer cylinder is defined by the following inequalities:
R1 ≤ R ≤ R2 defines the fibrous cap, R2 < R ≤ R3 defines the lipid pool, R3 < R ≤ R4 defines
the arterial wall. The deformation is represented by mapping (3.1) and ri = r(Ri), i = 1, 2, 3, 4.
The three-layer cylinder is inflated by internal pressure p0.

Then we can write equations describing the deformation of each layer of the three-layer cylin-
drical tube:

for the fibrous cap an equilibrium equation and an incompressibility constraint are expressed
as

µf ((λ
f
θ )

2 − (λf
r )

2) =
p0r1 − p1r2

r2 − r1

, (3.6)

λf
θλ

f
r = 1;

for the lipid pool an equilibrium equation is

p1 = p2 +
1

K

∫ r3

r2

R2dW

dr
dr; (3.7)

87



Yu. Vassilevski et al. Simulation of Atherosclerotic Vascular Networks

for the arterial wall there is

µa((λ
a
θ)

2 − (λf
r )

2) =
p2r3

r4 − r3

, (3.8)

λa
θλ

a
r = 1,

where p1 and p2 are contact pressure on surface r = r2 and r = r3, respectively; µf and µa are
the material constants of the cap and the vessel wall, each of them being equal to corresponding
initial Young’s modulus divided by three (µ = E/3); λf

r , λ
f
θ and λa

r , λ
a
θ are the principal stretches

in radial and circumferential directions for the fibrous cap and the arterial wall, respectively; W is
the strain energy density (2.1) which characterizes the lipid pool.

From continuity conditions of radial displacement and incompressibility constraints, we can
find that

r2 = R2 −K, (3.9)

λf
θ =

r1 + r2

R1 + R2

=

√
R2

1 −K +
√

R2
2 −K

R1 + R2

,

λa
θ =

r3 + r4

R3 + R4

=

√
R2

3 −K +
√

R2
4 −K

R3 + R4

.

Thus we can write system of equations describing the deformation of the three-layer cylindrical
tube under internal pressure p0:

µf ((λ
f
θ )

2 − (λf
θ )
−2) =

p0r1 − p1r2

r2 − r1

,

p1 = p2 +
1

K

∫ r3

r2

R2dW

dr
dr,

µa((λ
a
θ)

2 − (λa
θ)
−2) =

p2r3

r4 − r3

,

(3.10)

where r(R), λf
θ , λa

θ are defined by (3.9) and the system (3.10) is the system of nonlinear equations
with three unknowns p1, p2, and K. The solution of this system defines each layer principal
stretches and may be obtained by conventional software (e.g. MAPLE).

3.3. Fiber-spring model
We use a fiber model for the fibrous cap and the arterial wall. An elastic model of the lipid pool is
based on its representation by a set of radial springs. In order to estimate spring displacement, we
use a solution of the deformation problem for the incompressible isotropic cylinder (a ≤ r ≤ b)
under internal pressure pa and external pressure pb. Since we work within the normal physiological
range of blood pressure, we solve the deformation problem using the hypothesis of linear elasticity
theory. In this case the relation between the radial displacement u(r) of cylinder’s points and given
pressures is expressed as

pa − pb =
2(b2 − a2)Ecr

3a2b2
u(r), (3.11)
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where Ec is Young’s modulus of the cylinder.
For each radial spring, displacements of its end points are derived on the basis of (3.11) and

the assumption that only radial displacements may occur. The unknown fields of fibrous cap and
arterial wall radial displacements are specified by ua(θ, z) and ub(θ, z), respectively.

Balancing forces on the external (artery) and internal (fibrous cap) layers implies

pa = p0 − (~f cap, ~ncap)hcap, (3.12)

pb = (~f art, ~nart)hart, (3.13)

where ~f art, ~nart, hart and ~f cap, ~ncap, hcap are force density, surface normal, layer thickness of the
artery wall and the fibrous cap, respectively. Similarly to radial displacements ua(θ, z), ub(θ, z),
the forces, normals and thicknesses are functions of coordinates θ, z. Moreover, due to (2.8) and
(2.4) these functions depend on radial displacements as well:

~f cap = ~f(a + ua(θ, z), θ, z), ~ncap = ~ncap(a + ua(θ, z), θ, z), hcap = Hcapa/(a + ua),
(3.14)

~f art = ~f(b + ub(θ, z), θ, z), ~nart = ~nart(b + ub(θ, z), θ, z), hart = Hartb/(b + ub),
(3.15)

where ~f is given by (2.8), Hcap and Hart are thicknesses of fibrous cap and artery wall in non-
stressed state.

In accordance with (3.12), (3.13) and (3.11) for r = a and r = b, the radial displacements
fields satisfy the following equations:{

(~f art, ~nart)hart + (~f cap, ~ncap)hcap − p0 = ua2(b2 − a2)Ec/3ab2,

(~f art, ~nart)hart + (~f cap, ~ncap)hcap − p0 = ub2(b2 − a2)Ec/3a
2b.

(3.16)

The numerical model is based on equidistant Nz pairs of concentric ring fibers with coordinates
zi, i = 1, . . . , Nz, discretized by the same number of grid nodes with uniform angular distribution
θk, k = 1, . . . , Nθ. The discretized system of equations (3.16) reads as{

(~f art
ik , ~nart

ik )hart
ik + (~f cap

ik , ~ncap
ik )hcap

ik − ua
ik2(b2 − a2)Eca/3ab2 = p0,

(~f art
ik , ~nart

ik )hart
ik + (~f cap

ik , ~ncap
ik )hcap

ik − ub
ik2(b2 − a2)Ecb/3a

2b = p0,
(3.17)

where

~f cap
ik = ~f(a + ua

ik, θk, zi),

~f art
ik = ~f(b + ub

ik, θk, zi),

~ncap
ik = ~n(a + ua

ik, θk, zi),

~nart
ik = ~n(b + ub

ik, θk, zi),

hcap
ik =

Hcapa

a + ua
ik

,

hart
ik =

Hartb

b + ub
ik

.
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The system of 2NzNθ nonlinear equations (3.17) with 2NzNθ unknowns ua
ik, ub

ik is solved by the
Inexact Newton-Krylov method.

4. Network blood flow
We study atherosclerosis impact on the regional blood circulation using the closed circulation
model [14]. In this section we briefly outline the model and discuss its functionality for vascular
diseases simulation.

Blood flow is considered as a pulsating flow of incompressible fluid streaming through the
network of elastic tubes (vessels). For every elastic tube (vessel) we account mass and momentum
change by means of hyperbolic equations written in a characteristic form:

∂S/∂t + ∂(Su) /∂x = 0, (4.1)
∂u/∂t + ∂

(
u2/2 + p/ρ

)
/∂x = −16µuη

(
Ŝ
)
/Ŝ, (4.2)

where t is a time, x is a coordinate along the vessel, ρ is a blood density, S(t, x) is a vessel cross
section area, u(t, x) is linear flow velocity averaged over the vessel area at coordinate x, where p
is pressure (with respect to the atmospheric pressure), function η is set as

η
(
Ŝ
)

=

2, Ŝ > 1,

Ŝ +
1

Ŝ
, S < 1.

(4.3)

Here Ŝ = S/S̄, S̄ is cross section area under zero transmural pressure p (S)−p∗ and zero velocity,
p∗ is a pressure in the surrounding tissues, µ is a friction factor.

The integration domain for (4.1), (4.2) is a set of 1D elastic tubes connected in a closed network
according to the vascular anatomy. The structure of the systemic arterial network is shown in
Fig. 2. The details for the methods of the closed vascular network 1D structure reconstruction and
it’s parameters identification are given in [14]. The presented model is a global circulation model.

The vessels are connected with each other at the nodes and with the heart inlets/outlets through
the boundary conditions set that is formed by Poiseuille’s pressure drop conditions, mass balance
equation combined with the appropriate compatibility condition for (4.1),(4.2):

pk (Sk (t, x̃k))− pl
node (t) = εkR

l
kSk (t, x̃k) uk (t, x̃k) , k = k1, k2, . . . , kM , (4.4)∑

k=k1,k2,...,kM

εkSk (t, x̃k) uk (t, x̃k) = 0, (4.5)

where l is a node index, k is a vessel index, k1, k2, . . . , kM and M are indexes and number of the
vessels meeting at the node; pl

node (t) is a pressure at the vessels junction point; Rl
k is a hydraulic

resistance for the flow from the k-th vessel to the l-th node. For the vessels incoming into a node
we set εk = 1, x̃k = Lk, for the outgoing vessels we set εk = −1, x̃k = 0. At the heart junction
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Figure 2: Systemic arterial network structure.

nodes the product Sk (t, x) uk (t, x) in (4.4), (4.5) is replaced by the volumetric flow to/from the
chamber.

The vessel wall elastic properties are included in (4.1), (4.2) by the wall state equation giving
the dependence of transmural pressure p− p∗ on the vessel cross section area S:

p (S)− p∗ = ρc2
0f (S) , (4.6)

where c0 is the rate of small disturbance propagation in the vessel wall. For healthy vessels we use
S-shaped function f [14]:

f(S) =

{
exp

(
S/S̄ − 1

)
− 1, S > S̄,

ln
(
S/S̄

)
, S 6 S̄,

(4.7)

which seems to be a feasible approximation of the experimental curves.
In general, function f(S) depends on the type and state of the vessel wall and external fac-

tors: elastic or muscular type of the wall, installed endovascular devices, atherosclerotic plaque,
occlusion, etc. It is difficult to estimate analytical approximation f(S) for the above mentioned
cases. In general, the wall state equation should be recovered in the mechanical laboratory study.
We suggest to replace the expensive and time consuming experimental study with the vessel wall
numerical models. The models apply to Hookean or Neo-Hookean elastic materials and provide
discretized functional dependence (4.7). Similar approach with Hookean models have been devel-
oped in [16, 17].

For every vessel, the equations (4.1)-(4.7) are solved by the hybrid (first and second order)
explicit grid-characteristic method. This model also includes a set of stiff ODEs which describes
the heart functioning in terms of volume averaged model [14]. The system of stiff ODEs is solved
by A- and L-stable implicit third order Runge-Kutta method.
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5. Results
Presentation of the numerical results have been divided into three parts.

In the first part we have studied our numerical fiber and fiber-spring models. Firstly, we have
considered the healthy common carotid artery and validate the numerical fiber model via the an-
alytical thin-walled model by comparing their wall state equations. Secondly, we analyze the
lengthy atherosclerotic plaque on the common carotid artery with different lumens and validate the
numerical fiber-spring model via the analytical three-layer model. These comparisons demonstrate
acceptable errors of our numerical models and thus verify the presented approach.

In the second part we have studied the difference between Hookean and Neo-Hookean material
models by comparing the discretized wall state equations for healthy and atherosclerotic artery.

The third part have demonstrated practical advantages of the developed elasticity models.
These models are incorporated in the network blood flow model via the discretized wall state
equations. We chose a region of the common carotid artery as an example of the atherosclerotic
network.

5.1. Validation of fiber and fiber-spring models
Here we consider a straight cylindrical vessel and compare the analytical thin-wall model and the
numerical fiber models. The wall material is assumed to be Neo-Hookean. The solution of the
static equilibrium problem provides the dependence of cross sectional area S on the pressure load
p0. Values of Young’s modulus, an inner radius and a thickness of the arterial wall have been chosen
according to the values known for the common carotid artery: E = 106 Pa [12], R = 0.45 cm
and H = 0.07 cm, respectively. The computed pressure to relative cross section relationship is
summarized in Table 1 where S0 is an area of the healthy unloaded artery. We observe the error
less than 1% for the whole range of pressures and less than 0.2% for pressures not exceeding 8 kPa.
As we see later, the maximum blood pressure for the common carotid simulations is limited by this
value.

Similarly we compare the solutions of the static equilibrium problem obtained by the analytical
three-layer model and the numerical fiber-spring model of an atherosclerotic vessel. The lumen is
set to 50%, 30% and 10%. The elastic constants and geometric characteristics correspond to the
common carotid artery: Young’s moduli for the arterial wall Eart = 106 Pa [12], the fibrous cap
Ecap = 5 · 105 Pa [8] and the lipid pool Epool = 103 Pa [1], the thickness of the fibrous cap and the
arterial wall Hart = Hcap = 0.07 cm. The computed pressure to relative cross section relationship
is summarized in Table 2. We have obtained the error less than 2% in the whole range of pressures
observed in the common carotid artery.

5.2. Elasticity models for Hookean and Neo-Hookean materials
In [16, 17] we have used the Hookean (linear) material model in order to study the impact of
elastic vessel properties changes due to the endovascular filter implantation or the atherosclerotic
plaque occurrence . In this paper, we use the Neo-Hookean (nonlinear) material model for both
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S/S0

p0, kPa A B error,%
0 1 0.9984 0.16
1 1.0113 1.0105 0.08
2 1.0230 1.0229 0.01
3 1.0350 1.0355 0.05
4 1.0475 1.0484 0.09
5 1.0604 1.0616 0.12
6 1.0737 1.0751 0.13
7 1.0875 1.0889 0.13
8 1.1018 1.1030 0.11
9 1.1166 1.1173 0.07
10 1.1320 1.1321 0.01
11 1.1480 1.1471 0.07
12 1.1646 1.1625 0.18
13 1.1819 1.1782 0.31
14 1.1999 1.1943 0.47

Table 1: Relative cross section of the common carotid artery under static pressure load p0 obtained
by analytical thin-walled model (A) and numerical fiber model (B).

healthy and atherosclerotic arteries. In this section we compare both material models in terms
of the computed wall state equation in order to examine the difference between the two material
models. Figure 3 demonstrates the dependencies p0(S/S0) for the cases of healthy vessel (left
panel) and atherosclerotic vessel with a lengthy plaque (right panel) and 10 % lumen. Parameters
for the static equilibrium problem are set according to the common carotid artery properties.

In case of the healthy artery, we observe substantial deviation of the Hookean and Neo-Hookean
curves p0(S/S0) for pressures higher than 8 kPa. Since such high pressure is achieved no longer
than 0.1 seconds within the cardiac cycle, the discrepancy impact in the wall state equations is
almost negligible.

For the atherosclerotic artery, the discrepancy in the wall state equations is more distinct. The
substantial pressures difference is observed for transmural pressures over 4 kPa as well as for nega-
tive transmural pressures. It results in higher sensitivity to inflating transmural pressure and higher
resistivity to deflating transmural pressure.

5.3. Blood flow in atherosclerotic vessels network
We have used the computed wall state equations (see Tables 1, 2) for atherosclerotic arteries in
the network blood flow model. The following scenario of atherosclerosis has been chosen: the
common, internal and external carotid arteries (vessels No. 9, 65, 66 in Fig. 4) are healthy or
diseased with lengthy plaques and lumens are 50% or 30% whereas the other vessels are considered
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50% lumen 30% lumen 10% lumen
S/S0 S/S0 S/S0

p0, kPa A B error,% A B error,% A B error,%
0 0.5000 0.4986 0.27 0.3000 0.2995 0.16 0.1000 0.0998 0.25
1 0.5044 0.5041 0.07 0.3028 0.3027 0.03 0.1008 0.1009 0.04
2 0.5089 0.5090 0.02 0.3056 0.3059 0.09 0.1016 0.1019 0.22
3 0.5134 0.5140 0.10 0.3085 0.3092 0.20 0.1025 0.1029 0.41
4 0.5181 0.5190 0.18 0.3115 0.3125 0.31 0.1034 0.1040 0.58
5 0.5228 0.5241 0.25 0.3145 0.3158 0.41 0.1042 0.1050 0.76
6 0.5277 0.5293 0.31 0.3176 0.3192 0.51 0.1051 0.1061 0.92
7 0.5326 0.5346 0.37 0.3208 0.3227 0.60 0.1060 0.1072 1.09
8 0.5376 0.5399 0.42 0.3240 0.3262 0.68 0.1070 0.1083 1.24
9 0.5428 0.5453 0.47 0.3273 0.3297 0.75 0.1079 0.1094 1.39
10 0.5480 0.5508 0.51 0.3306 0.3333 0.82 0.1089 0.1106 1.54
11 0.5534 0.5564 0.54 0.3341 0.3370 0.88 0.1099 0.1117 1.67
12 0.5589 0.5621 0.57 0.3376 0.3407 0.94 0.1109 0.1129 1.81
13 0.5645 0.5678 0.59 0.3411 0.3445 0.98 0.1119 0.1141 1.93

Table 2: Relative cross section of the atherosclerotic common carotid artery with lumen 50%, 30%
and 10% under static pressure p0 obtained by the analytical three-layer model (A) and numerical
fiber-spring model (B).

Figure 3: Comparison of wall state equations for Hookean and Neo-Hookean materials: healthy
artery (left), atherosclerotic artery (right).

94



Yu. Vassilevski et al. Simulation of Atherosclerotic Vascular Networks

to be healthy. For the sake of brevity we consider a healthy vessel as an atherosclerotic vessel with
100% lumen. The wall state equation for vessels No. 9, 65, 66 is computed on the basis of the
fiber-spring model for Neo-Hookean materials. The wall state equation for the other vessels is
defined by analytical formulas (4.6), (4.7).

Figure 4: Fragment of the systemic arterial network.

In the first series of the experiments (see Figs. 5, 6, 7, 8) we assume that the right common
carotid artery is damaged by the lengthy atherosclerotic plaque with 30%, 50% and 100% lumen.
The pressure and velocity profiles in common (No. 9), subsequent internal (No. 65) and external
(No. 66) carotid arteries are shown in Figs. 5, 6. The pressure and velocity profiles in the brachial
artery (No. 12), external carotid continuation (No. 68) and the artery of the Willis circle (No. 91)
are shown in Figs. 7, 8.

The left panel of Fig. 5 reveals no substantial changes of the pressure profile in the common
carotid artery. The atherosclerosis affects only the velocity profile resulting in two-fold decrease of
the maximum velocity under 30% lumen (see left panel of Fig. 6). This observation is confirmed
by the well-known fact that haemodinamically noticeable atherosclerosis or stenosis has lumen
less than 50%. The pressure and velocity profiles of the internal and external carotid arteries
are affected much more noticeable (central and right panels of Figs. 5, 6). They reveal two-fold
decrease of pressure and velocity maximums for the 30% lumen. The network blood flow model
allows us to trace this effect throughout the entire network. For instance, considerable changes in
vessels No. 68 and No. 91 (see Figs. 7, 8) may be interpreted as initial stages of oxygen deficiency
in such important parts as eye and brain. The pressure and velocity decrease in small vessels
leads to thrombosis and subsequent sharp pressure increase. For the eye and the brain it results in
ischemia, hemorrhage, blindness and stroke. These well known atherosclerosis consequences are
also confirmed by the proposed mathematical model. The analysis of the collateral route (vessels
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No. 5, No. 92, No. 93 etc.) reveals no substantial changes in haemodynamics and is not presented
here.

In the second series of experiments we consider simultaneous atherosclerotic disease of vessels
No. 9, 65, 66 with 50%, 50%, 50% lumens and with 50%, 30%, 30% lumens, respectively. The
numerical results are qualitatively similar to those discussed above and thus are not presented here
in detail. We notice the impact of the assumed atherosclerosis on the vessels No. 68 and No. 91: it
is less pronounced than the impact of the single atherosclerotic vessel (the common carotid artery)
with 30% lumen. We explain this fact by smoothing pressure and velocity profiles along the route
in case of the simultaneous atherosclerotic disease.

Figure 5: Pressure, Pa. 1 — 30% lumen, 2 — 50% lumen, 3 — healthy vessel.

Figure 6: Velocity, cm/s. 1 — 30% lumen, 2 — 50% lumen, 3 — healthy vessel.

6. Conclusions
Most of the biological soft tissues demonstrate nonlinear strain-stress relationships, in particular,
at high stresses. Atherosclerotic arteries elastic properties can be represented by the three-layer
composition of Neo-Hookean materials. In this paper we considered lengthy uniform atheroscle-
rotic plaques in straight vessels and introduced the numerical fiber-spring model of atherosclerotic
artery wall which accounts its three-layer Neo-Hookean structure. In our recent paper [17], we
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Figure 7: Pressure, Pa. 1 — 30% lumen, 2 — 50% lumen, 3 — healthy vessel.

Figure 8: Velocity, cm/s. 1 — 30% lumen, 2 — 50% lumen, 3 — healthy vessel.

studied atherosclerotic artery wall as a composition of Hookean materials and showed that the
numerical fiber-spring model could be applied to general shaped atherosclerotic plaques. In both
papers, the elastic vessel wall numerical model produces the pressure to cross section relationship,
or the wall state equation, which is the input function in the global network blood flow model [14].
The latter allows us to study the atherosclerotic disease impact on haemodynamics. Further devel-
opment of this approach to the Neo-Hookean vessels and general shape vessels will be the subject
of future investigations.
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