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1 Numerical experiments

In this section we consider four numerical experiments:

• The first two experiments are designed to study the ability of the mEDFM
to preserve solution non-negativity or to satisfy the discrete maximum
principle (DMP) for different discretization schemes for (??). We consider
two benchmark problems [1] to which several highly permeable fractures
are added to the domain.

• The third experiment is a standard single-phase flow benchmark test “Hy-
drocoin” [2]. This test verifies the mEDFM by comparing with the fine
grid solution.

• The fourth experiment is unsteady two-phase flow model test with several
wells and fractures. The mEDFM is compared with the discrete fracture
method (DFM) based on mesh modification.

1.1 Test for solution non-negativity
The experiment setup is the following. The computational domain is Ω =

Ω1 \ Ω2, Ω1 = [0, 1]3,Ω2 = [0.4, 0.6]3. We solve the diffusion equation with
Dirichlet boundary conditions (see Figure 1):
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−div K∇p = 0,

p|Γ0
= 0,

p|Γ1
= 2.

(1)

K = Rxyz

 300 0 0
0 15 0
0 0 1

RT
xyz,

Rxyz = Rz(−π/6)Ry(−π/4)Rx(−π/3).

Figure 1: Non-negativity test set-up.

The differential solution for this problem is from 0 to 2, and Theorem ??
states that the discrete solution must be non-negative if the monotone NTPFA
is used in mEDFM.

We modify the proposed test by inserting two rectangular fractures and solve
(1) on 20 × 20 × 20 cubic mesh (see Figure 2). The first fracture is a vertical
rectangle with corner points A1 = (0.27, 0.11, 0.11), B1 = (0.77, 0.31, 0.51), the
second one is a vertical rectangle with corner points A2 = (0.26, 0.51, 0.71),
B2 = (0.76, 0.91, 0.66). Fractures widths are wf,1 = wf,2 = 0.01, fracture
permeabilities are isotropic: Kf,1 = 5000 I,Kf,2 = 50000 I.

Figure 2: Non-negativity test: fractures location.

Table 1 shows minima and maxima of the FV solution by TPFA, NTPFA
(non-negative) and MPFA-O schemes in the domain without fractures and with
two fractures. In the latter case, mEDFM is applied to account the fractures.
Both TPFA and NTPFA preserve non-negativity of the FV solution for the
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test without fractures and the test with fractures, while the linear MPFA-O
scheme violates non-negativity in both cases. It is important that MPFA-O FV
discretization of (??) produces negative solutions even inside fractures despite
the fact that the discretization scheme for (??) is non-negativity preserving
linear TPFA. Using the linear TPFA FV discretization for (??) provides solution
non-negativity but has no approximation, see Figures 3, 4.

min(p) max(p) min(pf ) max(pf )
domain without fractures

TPFA 9.8e-5 1.7546 - -
NTPFA 1.6e-7 1.9177 - -
MPFA-O -0.2196 2.0692 - -

domain with two fractures
mEDFM (TPFA) 9.5e-5 1.7542 0.1861 0.4624
mEDFM (NTPFA) 1.6e-7 1.9166 0.1398 0.6261
mEDFM (MPFA-O) -0.1758 2.0620 -0.0094 0.5949

Table 1: Minima and maxima of the FV solutions in porous media and fractures
for the non-negativity test.

Figures 3 and 4 illustrate the FV solutions on the mesh cross-section for the
three schemes in the domain without fractures and with them, respectively. The
noisy isolines for the MPFA-O scheme indicate the negative solution areas.

TPFA NTPFA MPFA-O

Figure 3: Non-negativity test: FV solution for the domain without fractures
(undershoots are colored in dark blue).
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mEDFM (TPFA) mEDFM (NTPFA) mEDFM (MPFA-O)

Figure 4: Non-negativity test: FV solution for the domain with two fractures
(undershoots are colored in dark blue).

1.2 Test for the discrete maximum principle

The second test studies the discrete maximum principle (DMP) property
of the discretization schemes. The domain is the unit cube without two boxes
imitating wells: Ω = [0, 1]3 \ (Ω1 ∪Ω2), Ω1 = [3/11, 4/11]× [5/11, 6/11]× (0, 1),
Ω2 = [7/11, 8/11]× [5/11, 6/11]× (0, 1).

p = 0 on Γ0, p = 1 on Γ1, K∇p · n = 0 on Γout

Figure 5: DMP test setup.

− div K∇p = 0,

K = Rz(−67.5◦)

 1 0 0
0 10−3 0
0 0 1

Rz(67.5◦).

By analogy with the first test, we consider two problem settings. The first
setting corresponds to the domain without fractures (Figure 5). The second
setting has 3 vertical rectangular fractures with the following corner points
(Figure 6):

A1 = (0.16, 0.326795, 0), B1 = (0.36, 0.673205, 1),
A2 = (0.41, 0.326795, 0), B2 = (0.61, 0.673205, 1),
A3 = (0.66, 0.326795, 0), B3 = (0.86, 0.673205, 1).
Fractures locations are chosen to test possible DMP violations. Fractures

width is wf,i = 0.01 and permeability in fractures is isotropic, Kf,i = Kf =
1000I, i = 1, 2, 3.

Table 2 shows minima and maxima of the FV solution by TPFA, MPFA-O,
NTPFA (non-negative) and NMPFA (satisfying DMP) schemes in the domain
without fractures and with three fractures. In the latter case, mEDFM is applied
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to account for the fractures. The mEDFM with linear TPFA, as expected,
provides no approximation but preserves maximum and minimum of the discrete
solution. Both MPFA-O and NTPFA discretizations violate the DMP, while
MPFA-O discretization also violates solution non-negativity. Similar to the
previous test case, the schemes violating the DMP, generate undershoots and
overshoots even in fractures, despite the fact that the discretization scheme
for (??) is linear TPFA satisfying the DMP. Only the NMPFA scheme with the
DMP preserves both maximum and minimum while showing reasonable solution.
Figure 1.3 presents the FV solutions of the problem on a mesh cross-section.

Figure 6: DMP test: fractures location.

min(p) max(p) min(pf ) max(pf )
domain without fractures

TPFA 0.0244 0.9756 - -
NTPFA 0.0061 1.8898 - -
NMPFA 0.0072 0.9928 - -
MPFA-O -0.0261 1.0261 - -

domain with three fractures
mEDFM (TPFA) 0.0245 0.9755 0.1376 0.8534
mEDFM (NTPFA) 0.0063 1.7395 0.1131 1.3636
mEDFM (NMPFA) 0.0074 0.9925 0.0244 0.9750
mEDFM (MPFA-O) -0.0459 1.0442 -0.0015 0.9995

Table 2: Minima and maxima of the FV solution in porous media and fractures
for the DMP test.
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mEDFM (TPFA) mEDFM (MPFA-O)

mEDFM (NTPFA) mEDFM (NMPFA)

Figure 7: DMP test: FV solutions for the domain with three fractures (over-
shoots and undershoots are colored in pink and dark blue respectively).

1.3 Hydrocoin test

A single-phase flow benchmark was proposed in the international Hydrocoin
project for heterogeneous groundwater flow problems. The 2D domain in a
vertical plane contains two intersecting fractures, see Figure 8. The pressure
(hydraulic head) is prescribed on the top boundary and Neumann no-flow on
the other three boundaries. Figure 9 presents the non-orthogonal computational
grid used in this test. The permeabilities (hydraulic conductivities) are 10−6 m
/ s in the fractures and 10−8 m / s in the rock matrix.

Figure 10 shows the mEDFM (NTPFA) solution on 32 × 23 mesh. Fig-
ure 11 demonstrates comparison of three solutions along the line z = −200: the
mEDFM (NTPFA) solution on coarse 32 × 23 mesh (blue), the EDFM solu-
tion [2] (red) and the reference fine grid solution with fractures represented by
cells (black). One can observe good agreement of the mEDFM solution to the
reference.
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Figure 8: Domain and fractures for the Hydrocoin test. The solution should be
verified at the dashed line.

Figure 9: Computational grid for the Hydrocoin test.
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Figure 10: mEDFM+NTPFA solution of the Hydrocoin test.

Figure 11: Comparison of the FV solutions traces on the level -200 m: fine grid
reference solution (black), EDFM solution [2] (red), mEDFM (NTPFA) solution
on the coarse mesh with 32x23 cells(blue).
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1.4 Verification of mEDFM through DFM for two-phase
flow

In the last test we simulate a two-phase flow with one injecting well, one
producing well and a fracture close to the injector. The experiment setup is
shown in Figure 12. For the wells we set the bottom hole pressures pinj =
4100psi and pprod = 3900psi.

Figure 12: Five-spot problem with fracture setup.

The matrix permeability tensor is K = diag(100, 100, 1) and matrix porosity
is φ = 0.15. The fracture permeability tensor is Kf = diag(10000, 10000, 1)
and fracture porosity is φf = 0.85. Tables for capillary pressure dependencies
are similar to two-phase flow experiments from [3]. We use the simple TPFA
discretization for (??) and (??) since the mesh is K-orthogonal.

We simulate water injection for 50 days with time step ∆t = 1 day and
compare the mEDFM (TPFA) solution with the DFM-FV (NTPFA) solution
obtained on the mesh with cut-cells and direct representation of fractures. Fig-
ure 13 shows the oil pressure field at different times of the simulation. Figure 14
presents the water saturation field. One can see very close agreement of the
solutions obtained by different methods.
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a)

b)

c)

Figure 13: Oil pressure field for the two-phase flow: a) T = 2, b) T = 21, c) T
= 50 days. Left: DFM-FV (NTPFA) solution; right: mEDFM-TPFA solution.
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a)

b)

c)

Figure 14: Water saturation field for two-phase flow: a) T = 2, b) T = 21, c)
T = 50 days. Left: DFM-FV solution; right: mEDFM-TPFA solution.

11



References
[1] A. A. Danilov and Y. V. Vassilevski. A monotone nonlinear finite volume

method for diffusion equations on conformal polyhedral meshes. Russ. J.
Numer. Anal. Math. Model., 24(3):207–227, 2009.

[2] B. Flemisch, I. Berre, W. Boon, A. Fumagalli, N. Schwenck, A. Scotti, I. Ste-
fansson, and A. Tatomir. Benchmarks for single-phase flow in fractured
porous media. Adv. Water Resour., 111:239–258, 2018.

[3] K. Nikitin, K. Terekhov, and Y. Vassilevski. A monotone nonlinear finite vol-
ume method for diffusion equations and multiphase flows. Comput. Geosci.,
18(3):311–324, 2014.

12


