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1. INTRODUCTION

A new type anticancer chemotherapy, introduced in 1971 by Folkman [1] and targeting cancer
angiogenesis pathways, has been extensively developing during last two decades. Unlike classical
chemotherapy, when both tumor and normal cells should be killed, antiangiogenic agents are not aimed
to destroy actively dividing cells. Antiangiogenic drugs are expected to initiate arrest of tumor-related
angiogenesis in order to inhibit tumor growth by metabolites and oxygen deprivation. As glucose and
oxygen (O2) are considered to be the key metabolites of cell functioning, they are essential also for
tumor cell growth. O2 is an energy nutrient, whereas glucose is energy and basic plastic nutrient. In
turn, tumor cells are hypoxic due to their fast growing behavior and exhibit high consumption rate of
nutrients. They produced biologically active substances aimed to recruit surrounding cells, known as
tumor associated cells, in order to create an optimal environment for tumor cells survival and growth.
One of the key ingredients, produced by tumor cells, is a vascular endothelial growth factor (VEGF),
which is the key molecule in the angiogenesis pathway. As a result the density of the capillary network
surrounding the tumor is increased, which means increase of effective permeability for blood flow and
associated increase of O2 and glucose transport to the tumor. Quantification of these alterations is still
underestimated.

Arterio-venous partial pressure gradient of the glucose in blood is relatively small. Maximum value
of 12% is achieved in brain tissue. It means that glucose partial pressure along some chosen capillary is
almost constant. Thus, the main limiting factor for the glucose delivery to the tissue is the surface area of
the capillaries. O2 arterio-venous partial pressure gradient in blood is always near 100%. Consequently,
O2 consumption rate is much higher than that for glucose. Amount of O2 available for consumption in
the tissue is strongly associated with the number of erythrocytes capable to carry it within the blood flow.
Thereby, in contrast to the glucose, O2 delivery to the tissue is limited by volumetric blood flow.

Total surface of new capillaries formed due to tumor angiogenesis can be assessed on the basis of their
number. Blood flow alteration assessment in capillary network with new capillaries is not so obvious it
depends on many factors and should be simulated. Such a model may help to predict and explain to
understand nutrients delivery rate to the tumor due to angiogenesis. It may help to assess the rate of
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glycolysis and glucose oxidation phosphorylation in malignant cells. This is very important for design
new anticancer drugs, which are sensitive to the metabolic changes in malignant cells [2].

Blood flow in microcirculatory bed is very complex process. Major physiological factors of micro-
circulation include non-Newtonian properties of the blood, blood viscosity dependence on capillary
diameter (Fahraeus–Lindqvist effect), erythrocytes concentration decrease due to capillary diameter
decrease (Fahraeus effect), complex topology of the microvascular network.

Mathematical modeling of the microcirculation is performed by a number of different approaches. In
the first approach blood is considered as monophase Newtonian fluid. Poiseuille law relating pressure
drop and volumetric flow is used for every microvessel. The network flow is established by extending
this condition with mass conservation in the nodes [3]. The second approach treats the blood as
two-phase 2D Newtonian fluid separated by two zones: main stream of erythrocytes and boundary
layer of cytoplasm [4]. Such models are useful for detailed flow analysis in single capillary. The third
approach takes into account blood viscosity dependence on the microvessel’s diameter and dependence
on erythrocytes concentration. The main variable of the model is hematocrit [6].

Detailed simulations of microcirculation in macro region of a tissue are rarely performed due to
complexity of it’s structure and great number of elements. 2D model of fluid flow through porous media
was proposed to study microcirculatory perfusion at organ scale [7]. This model was coupled with the
the network model of large vessels and used for numerical study of global matter transport [8]. Recent
micro CT study [9] allows develop and partly validate a model of microcirculation in macro region. In
this work we use statistics from the [9] to fit the network parameters.

The paper is organised as follows. In Section 2 we propose a method of the microvascular network
structural prototype generation in the case of normal microcirculation and in the case of angiogenesis. In
Section 3 a model of blood flow in microvessel’s network is presented and it’s numerical implementation
is discussed. In Section 4 we validate the model of microcirculation by testing relative blood perfusion
in healthy case without angiogenesis. In the second part of this section volumetric blood flow alteration
due to angiogenesis is analysed. In Section 5 discussion of the model and future perspectives is given.

2. STRUCTURAL MODEL OF MICROCIRCULATORY NETWORK

2.1. Healthy Microcirculation

Structure of the normal microcirculatory network is quite complex. It characterized by extremely
high density of small vessels per unit volume. Experimental study of such structure is rarely possible
and complicated. Precise experimental in vivo study of its structure became available only last decade
by means of micro CT and met with difficulties [9].

In this section we propose a method of generation a network structure which can be considered
as physiologically correct prototype of the real microcirculatory network. It means that this artificial
network may be different from real one but it has the same topology (connectivity), geometrical
characteristics (length and diameters distribution, 3D space layout) and functional properties (blood
flow permeability per unit volume). In this section we address to the first two aspects (topology and
geometrical characteristics). The third aspect (permeability) is considered in Section 4.1 as validation
of the model functioning.

Our algorithm consists of two stages. At the first stage a framework of the network is generated,
which is composed of small arterioles and venules prototypes. Every node of the framework beside the
predetermined inputs and outputs has a number of incident edges between 1 and 3. Coordinates of
all nodes (micro-vessel junctions) are randomly generated within predetermined cube in 3D space. At
the second stage we apply directed force algorithm of graph layout in 3D space. Finally the network is
extended by capillaries prototypes which may connect arterioles and venules or other capillaries.

At the first stage we perform following steps:
(1) A 3D cube is divided to a number of 3D cells by uniform partition in each direction. The number

of cells is equal or more than the number of microvessel’s connection points (nodes).
(2) Every connection node is placed in separate cell by random uniform distribution along coordinates

inside the cell.
(3) Nodes are connected with each other so that directed graph is produced. Every node of the graph

has a number of incident edges between 1 and 3. The following limitations are applied. The only node
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(a) (b)

Fig. 1. Capillary network prototype: a—random nodes placement, b—physiologically correct equivalent.

has one outgoing edge. It corresponds to the input. Limited number of nodes (one in most cases) have
one incoming edge. These nodes correspond to the output. Possibly nearest nodes are used to set up
the edge. One possible output of this step is shown at Fig. 1a.

(4) The edges of the produced network are considered as arterioles and venules structural prototypes.
The length and diameter are set up as attributes to each edge according measured distribution [9]. We
assume correlation between length and diameter. It means that the edge of greater length has greater
diameter value. Actual lengths of the edges do not correspond to the parametric length at this stage.
Actual length is updated at the next stage.

Physiologically correct nodes placement in 3D space is achieved by applying Directed Force Layout
algorithm to the graph produced at the first step. Review and basic idea of this method can be found
in [16]. Energy function should be constructed for a graph which is considered as mechanical system.
It is assumed, that every node of the graph produces repulsive force which is exerted to all other nodes
and attractive force which is exerted to every node connected by an edge. Repulsive force is commonly
inversely proportional to the distance between the nodes. Attractive force is commonly proportional to
the distance between the nodes. It may have negative value and become repulsive provided that distance
between connected nodes (spatial length of the edge) is less than parametric length. Finally, spatial
distribution of the nodes corresponding to the minimum total energy of the system should be produced.
Equivalently, spatial distribution of the nodes should be found which gives zero net force for the system.
This task can be considered as generalized n-body problem.

Let’s define G as a set of nodes of the graph and P as a set of node pairs connected by an edge. Let’s
define unit vector ruv as

ruv =
rv − ru

luv
, u, v ∈ G,

where ru, rv are directing vectors of the nodes u, v ∈ G and luv = ||rv − ru|| is an euclidean distance
between nodes u and v.

It is not necessary to consider explicit mechanical spring/electric analogy as we only interested in
final result of the directed force layout algorithm which should provide relatively uniform distribution of
the nodes in 3D space and possibly fit the distances between the connected nodes to the desired length
which was set up initially as attribute. Thus logarithm and inverse square dependencies were chosen for
attraction and repulsion as they provide faster convergence then conventional spring/electric analogy.

Attractive force from node v to node u is defined as

fu
atr,v = catr ln

luv

l0uv

ruv, (u, v) ∈ P,

where catr is attractive force coefficient, l0uv is the desired length ascribed to the edge as a parameter at
previous stage of the algorithm. Repulsive force from node v to node u is defined as

fu
rep,v = −crep

l2uv

ruv, u �= v, v ∈ G,
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Fig. 2. Vessels distribution by length: comparison between micro CT measurements from [9] and simulated network.
N is number of vessels.
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Fig. 3. a—fragment of the basic network, b—example of capillary network elements attachment.

where crep is repulsive force coefficient. In this work we use catr = 0.1, crep = 0.01. The net force to the
selected node u is calculated as

Fu
res =

∑

(u,v)∈P
fu
atr,v +

∑

v �=u,v∈G
fu
rep,v.

Equilibrium state of this system should be found, which means that the following nonlinear equation set
should be solved Fu

res = 0 ∀u ∈ G.

Simple iteration method with relaxation parameter is used to update coordinates of the nodes. New
directing vector ri+1

u of a node u is calculated as

ri+1
u = ri

u + τFu,i
res.

In this work we use τ = 0.01. Maximum number of iterations was set to 104 for all cases. Iterations
were terminated when 10% error achieved in the length distribution (e.g. see Fig. 2).

One possible result of the algorithm is presented at Fig. 1b. The quality of the algorithm output is
confirmed by fitting the vessels distribution by length with experimental data from [9]. The result of such
comparison for the case presented at Fig. 1b is shown at Fig. 2.

The network of arterioles and venules is extended with capillaries. We aggregate capillaries to the
typical capillary network element. These elements are randomly attached to the edges of arterioles and
venules as shown at Fig. 3.

Let’s define blind node as a node having 1 incident edge. Each blind end of capillaries originated
from arterioles is connected to the nearest blind node of capillaries originated from venules and having 1
incident edge. Thus all such junctions have 2 incident edges.

Capillary diameter is set up randomly from 6 to 10 micron as an attribute. Capillary length is
calculated basing on the actual space position of it’s nodes. It ranges from 0.4 mm to 1 mm in all
structure simulations. The distance between capillaries varies from 0.1 mm to 0.2 mm.
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2.2. Angiogenesis in Microcirculatory Network

One of the main factors of angiogenic capillary growth is concentration of the VEGF in tissue. In this
work we consider uniform space distribution of VEGF. Thus new capillary may be developed anywhere
in the network with random uniform distribution. New capillary is attached by one of its nodes to the
edge of some pre-existing capillary, which is selected by random uniform distribution. The other node
is attached to the edge of another capillary. The second pre-existing candidate is selected by random
uniform distribution basing on the limitation that new capillary length should be not more than 4 mm.
This is always possible as the distance between pre-existing capillaries varies from 0.1 mm to 0.2 mm
as mentioned in Section 2.1.

3. BLOOD FLOW MODEL IN MICROCIRCULATORY NETWORK

Blood flow in microcirculatory region is substantially different form the one in large vessels. The flow
is stationary without pulsations. The driving force is applied due to pressure drop between input and
outputs. Blood composition and rheology is also important factor. Thus for every microvessel indexed
as uv we use Poiseuille’s law for pressure drop in the form

Quv = Guv (Pv − Pu) , (u, v) ∈ P, (1)

and mass conservation condition in the selected node u in the form∑

(u,v)∈P
Quv = 0, (2)

where Guv is conductivity coefficient, Quv is volumetric blood flow, Pu, Pv are pressures in the nodes u
and v, Ruv is radius, μ is blood viscosity,

Guv =
8μluv

πR4
uv

. (3)

At the input and outputs of the network constant pressure values were set according to the physiological
values P in = 35 mm Hg, P out = 20 mm Hg. The set (1)–(3) is a set of linear equations. It is solved by
the following iteration procedure

P i+1
u =

∑
(u,v)∈P

P i
vGuv

∑
(u,v)∈P

Guv
, u ∈ G.

The flow is than updated as

Qi+1
uv = Guv

(
P i+1

v − P i+1
u

)
, (u, v) ∈ P.

Initial pressure in all internal nodes was set as P 0
u = 0 mm Hg. Maximum number of iterations was set

to 3 × 104. Iterations were terminated when 0.1% relative error achieved in pressure values at all nodes
between two successive iterations.

4. RESULTS

4.1. Relative Blood Perfusion in Healthy Microcirculation

Functional validation of the model was performed using analysis of relative blood perfusion per unit
volume. Normal capillary network should provide uniform distribution of this parameter.

The result of microcirculatory network prototype structure simulation represents spherical-like 3D
space layout of the network (see Fig. 1b). Spherical region is divided into a number of spherical layers.
External radius of the nth layer is set as

rn =
n

N
RN , n = 1, . . . , N, (4)

where n is index of spherical layer, RN is radius of the embracing sphere, N is number of layers.
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Fig. 4. Scheme of new capillaries generation. 1—arterioles or venules, 2—normal capillaries, 3—new capillaries.
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Fig. 5. Averaged relative unit blood perfusion by number of microvessels. A—18 × 103, B—21 × 103, C—24 × 103,
D—30 × 103, E—37 × 103.

Unit blood perfusion was calculated for every spherical layer as a ratio of total blood flow in the vessels
of the region to the volume of this region. Unit blood perfusion of the first layer (0 < r < r1) which also
is a sphere of radius r1 was selected as reference value for relative unit blood perfusion analysis. Thus,
we define Q̄1 = 1. Relative unit blood perfusion Q̄n can be calculated as

Q̄n =
Qn/Vn

Q1/V1
, n = 1, . . . , N,

where Qn total blood flow in the nth layer, Vn volume of the nth layer. In the ideal case relative unit
blood perfusion (Q̃) is constant (Q̃n = 1, n = 1, . . . , N ). It means absolutely uniform blood supply of
the tissue.

In this work we set RN = 0.6 cm, N = 6. Five series of computational experiments were carried
out for the total number of microvessels in mth case Km ∈ {18× 103, 21× 103, 24× 103, 30× 103, 37×
103}, m = 1, . . . , 5. The value K5 = 37 × 103 corresponds to the physiological density of the microves-
sels per unit volume for sphere of radius RN = 0.6 cm. It was considered 10 different randomly generated
networks by algorithm presented in Sec. 2.1 for every Km. Blood flow distribution was calculated by
algorithm presented in Section 3. Relative unit blood perfusion was averaged in each case. Results
are shown at Fig. 5. From Fig. 5 is clear that the networks composed by relatively small number of
the microvessels can’t provide uniform supply of the tissue. An increase of the microvessels number
and, thus, density per unit volume results in more uniform volumetric supply. Physiologically acceptable
number and density of the microvessels allows to generate networks with almost uniform volumetric
perfusion.

Mean square deviation from ideal case is presented in table 1. It was calculated as

σm
n =

1√
5

(
5∑

i=1

(
Q̄i

n − Q̃n

))1/2

, m = 1, . . . , 5, n = 1, . . . , 6.

Obviously, for any network σm
1 = 0, so the first segment is not included. The stable decrease of σm

n
with increase of m and regardless of n = 2, . . . , 4 confirm that increased number of microvessels up to
physiologically reasonable value allows to generate networks with required functional properties.

From Table 1 it is also clear, that mean square deviation from ideal case remains extremely high in the
external layers even for dense networks. This is principal limitation of our approach. Real microvascular
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Table 1. Mean square deviation of relative blood perfusion from ideal perfusion. Km is number of microvessels, n
is index of segment according to (4)

Km
n

2 3 4 5 6

18 × 103 0.54 1.75 1.87 0.73 0.9

21 × 103 0.46 1.07 1.02 0.59 0.97

24 × 103 0.29 0.69 0.85 0.68 0.98

30 × 103 0.26 0.59 0.46 0.69 0.99

37 × 103 0.28 0.15 0.12 0.71 0.99

Table 2. Standard deviation of relative blood perfusion. Km is number of microvessels, n is index of segment
according to (4)

Km
n

2 3 4 5 6

18 × 103 0.18 1.77 2.60 0.44 0.00

21 × 103 0.21 0.77 0.76 0.07 0.00

24 × 103 0.06 0.27 0.60 0.07 0.00

30 × 103 0.06 0.29 0.32 0.01 0.00

37 × 103 0.00 0.06 0.01 0.00 0.00

network has very complicated connectivity. It has many inputs and outputs so that it is impossible to
isolate autonomous region, which is supplied by one input arteriole.

Standard deviation is presented in Table 2. Substantial distinct decrease of standard deviation in
all segments is observed with increase of the number of microvessels up to physiological conditions. It
means that result of random network generation by our algorithm become more stable if the number of
microvessels is taken from the physiological rage. The other conclusion from Table 2 is stable failure in
simulating relative unit perfusion in the external layers. It confirms principal limitation of this approach.
Also, it confirms correct blood flow simulation in the core region of the network.

Computational experiments of this section confirm that it is still possible to simulate blood flow by
our method in isolated region of microcirculation saving the most important physiological features.
Our analysis shows that internal spherical region of radius R̃N = 2RN/3 (approximately 70% of total
volume) can be adequately simulated regardles of N > 6 for RN = 0.6 cm. Thus the network in the
region R̃N < r < RN should be excluded from the analysis. But it plays important role as a boundary
layer maintaining correct boundary conditions and blood flow in the rest of the network.

4.2. Blood Perfusion Alterations Due to Angiogenesis

It is well known that the microcirculatory network transforms during angiogenesis process. New
capillaries are formed depending on VEGF concentration in the tissue. Algorithm of microcirculatory
network update during angiogenesis (see Section 2.2) is used in this section to account for this feature
and for analysis of blood perfusion alterations depending on capillary network density increase due to
angiogenesis.

Tumor induced angiogenesis is supposed to increase O2 supply of neoplasm and surrounding normal
tissue. Oxygen transport depends on the number of erythrocytes and, thus, on volumetric blood
flow through microcirculatory network. According to Poiseuille law volumetric blood flow depends
on pressure drop and permeability of the region. In the considered case pressure drop between
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Fig. 6. Volumetric blood flow in afferent arteriole (mm3/s) depending on the relative increase of capillaries.

afferent arteriole and draining venules is constant in wide range of conditions. It depends on general
arteriovenous pressure drop, which is determined by systemic haemodynamics. Thus, volumetric blood
flow alteration depends on effective permeability of microcirculatory network, which, in turn, determined
by density and structure of capillary network consisted of pre-existing and new capillaries formed due to
angiogenesis.

Calculated alterations of volumetric blood flow in afferent arteriole is present at Fig. 6. Blood
flow was simulated for different capillary network density and uniform distribution in the region of
interest. Greater microcirculatory density is associated in the model with higher level of tumor induced
angiogenesis in tissue. Total number of capillaries is described by parameter p

p =
N0 + Nangio

N0
, (5)

where N0 is a number of capillaries in normal network (without angiogenesis), Nangio is a number of
new capillaries developed due to tumor induced angiogenesis. We consider a range of p from 1 (normal
network) to 2. The upper value is limited by the space available in tissue for new capillaries.

From Fig. 6 one may observe an increase of volumetric blood flow in afferent arteriole up to 20%
during maximum possible angiogenesis. It may results in substantial change of O2 supply of the tumor
up to 20%. This value may differ depending on structural, flow and angiogenesis models complexity. In
the present case it demonstrates substantial contribution of angiogenesis to the O2 supply increase.
Alterations of the volumetric blood flow in afferent arteriole due to angiogenesis is very important
characteristic for further development of the joint model of tumor growth [17] and its nutrients supply by
blood flow.

5. DISCUSSION

The results obtained in this study indicate that tumor angiogenesis is more conducive to the influx of
glucose, whereas increase of O2 inflow is rather small. Figure 9 clearly shows that two-fold increase in
the density of the capillary network leads to only 20−25% increase of blood flow therethrough, and thus
the inflow of O2 into the tissue will grow in a similar manner. At the same time, the similar increase of
capillary network density will twice increase the inflow of glucose into angiogenic tissue.

It should be emphasized that the change in the ratio between the supply of glucose and O2 to the
tissue as a result of angiogenesis should lead to a change in the ratio between glucose oxidation phos-
phorylation and glycolysis in energy production of malignant cells, in favor of the latter. Experimentally,
it is the first time found Otto Warburg in 1956 [18]. Thus glycolysis prevails in energy tumor cells even
in the presence of excess O2 concentration, which was originally called by Warburg “fermentation”,
the process is currently better known as “aerobic glycolysis” [2]. In light of our results one possible
explanation for such a transformation of malignant cells may be occurring due to angiogenesis skewed
influx of glucose in the tumor growth, which is grafted to the predominance of the tumor cells with the
preferred mechanism for glycolytic energy production. However, this issue requires a separate study.

In this work we accepted a number of simplifications which should be subjected to more detailed
analysis in the future. In the case of tumor angiogenesis VEGF concentration is not uniform in space.
A model of tumor growth is required (e.g. [17]) for realistic assessment of VEGF distribution. The
other important structural feature is that pre-existing as well as new capillaries should degenerate non
uniformly in necrotic zone of the tumor.
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Viscosity factor in microvessels substantially depends on hematocrit factor, diameter and volumetric
blood blow. It gives nonlinear dependency in (3) and, thus, in mass conservation equations (2). All these
aspects should be taken into account in future work.

Nevertheless, the model developed in this work, may be used for fast but physiologically correct
preliminary assessment of blood flow alteration in the microcirculatory region due to angiogenesis. The
method of microcirculatory structural prototype generation steadily produces networks providing almost
uniform relative perfusion per unit volume. A tissue sample of volume up to 1 cm3 and containing up
to 105 microvessels can be simulated. Such microvessels concentration per unit tissue volume is in
physiologically acceptable range. The network flow distribution also may be used as null approximation
for a more complex nonlinear models, which should improve convergence of iterations in their numerical
implementations.
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