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Abstract: The discrete maximum principle is a meaningful requirement
for numerical schemes used in multiphase flow models. It eliminates numer-
ical pressure overshoots and undershoots, which may cause unnatural Darcy
velocities and wrong numerical saturations. In this paper we study the appli-
cation of the nonlinear finite volume method with discrete maximum principle
[1] to the two-phase flow model. The method satisfies the discrete maximum
principle for numerical pressures of incompressible fluids with neglected capil-
lary pressure. For non-zero capillary pressure and constant phase viscosities
the discrete maximum principle holds for numerical global pressure.

Introduction

The discrete maximum principle is a very desirable property of numerical
schemes used for discretization of numerical models dealing with concentra-
tions, densities, absolute temperatures. It provides non-negativity of solution
an eliminates artificial sources and sinks. In multiphase flow models pres-
sure gradient appears to be the main source of transport. Thus erroneous
local extremum leads to wrong transport terms and consequently to wrong
numerical solutions.

In this article we adapt nonlinear multi-point flux discretization scheme
presented in [1, 2] for two-phase flow model. In the first section we describe
the discretization scheme in application to diffusion equation. Two-phase
flow models and fully implicit scheme for it are described in the third and
fourth sections respectively. Then we prove that nonlinear multi-point flux
discretization for the two-phase flow model leads to solution satisfying the
discrete maximum principle. Then the Jacobian of the model residuals is
computed and Newton iterations are described. Finally we present numer-
ical experiments validating the discrete maximum principle of the solution.
The solution is compared with solutions obtained using two-point linear and
nonlinear schemes [4].
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1 Nonlinear multi-point finite volume flux dis-

cretization

In this section we describe nonlinear multi-point flux discretization scheme
(see [1, 2]) in application to diffusion problem.

Let Ω be a three-dimensional polyhedral domain with the Lipschitz bound-
ary Γ = ΓN ∪ ΓD. The diffusion equation for unknown variable p with the
Dirichlet or Neumann boundary conditions written in a mixed form reads:

q = −K∇p, div q = g in Ω,
p = gD on ΓD,

n · q = gN on ΓN .
(1)

Here K(x) is a symmetric positive definite (possibly anisotropic) diffusion
tensor, f(x) is a source term, gD(x) and gN(x) are given Dirichlet and Neu-
mann boundary conditions for ΓD and ΓN parts of the boundary, conse-
quently.

The weak maximum principle [6] for elliptic problems implies the maxi-
mum principle for diffusion equation solution. The last one states that for
f ≤ 0 the variable p(x) satisfies:

max
x∈Ω̄

p(x) ≤ max
x∈ΓD∪ΓN

p(x).

The minimum principle is formulated accordingly: for f ≥ 0 the pressure
p(x) satisfies:

min
x∈Ω̄

p(x) ≥ min
x∈ΓD∪ΓN

p(x).

Note, that if gN ≥ 0 then maximum principle states additionally, that p
cannot attain maximum on ΓN . If gn ≤ 0 then p cannot attain minimum on
ΓN .

1.1 Nonlinear FV discretization scheme

The FV scheme uses one degree of freedom per cell T , pT , collocated at
cell barycenter xT . Integrating the mass balance equation (1) over T and
using the divergence theorem, we obtain:∑

f∈∂T

σT,f qf · nf =

∫
T

g dx, qf =
1

|f |

∫
f

q ds, (2)
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where qf ·nf is the total flux across face f , and σT,f is either 1 or -1 depending
on the mutual orientation of the normal vectors nf and nT (nT denotes the
outward normal vector), |nf | = |f | and |f | denotes area of face f .

Both nonlinear discretization schemes (multi-point and two-point) exploit
the same idea. The monotone two-point scheme was described in details
in [3, 4]. Here we describe only the multi-point discretization.

1.2 Multi-point flux discretization

p+(p-,1)

p-(p+,1)

p+,2

p-,2

lf

-lf

nf

Figure 1: Two representations of co-normal vector lf = K ·nf (2D example).

First for each cell-face pair we need to find a triplet (see Fig. 1 for a
2D example), a set of three vectors t∗ such that for the co-normal vector
lf = K · nf we have

lf = α t1 + β t2 + γ t3, (3)

where coefficients α, β and γ are non-negative.
Since the flux normal component is in fact the directional derivative along

the co-normal vector lf , it can also be represented as the sum of three deriva-
tives along t∗ which are approximated by central differences:
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q+ = α′
+ (p+ − p+,1) + β′

+ (p+ − p+,2) + γ′
+ (p+ − p+,3), (4)

where coefficients α′
+, β

′
+, γ

′
+ are normalized by |t+,i|/|lf | coefficients (3) for

cell T+.
For the opposite co-normal vector −lf we have the similar representation

with non-negative coefficients:

q− = α′
− (p− − p−,1) + β′

− (p− − p−,2) + γ′
− (p− − p−,3). (5)

Now we can take a linear combination of (4) and (5) with non-negative
coefficients µ+ and µ−:

qf · nf = µ+q+ + µ−(−q−) (6)

Flux approximation requires the linear combination of µ+, µ− to be con-
vex:

µ+ + µ− = 1. (7)

To construct the multi-point nonlinear discretization, we set equal two
representation of the flux:

µ+q+ = −µ−q−. (8)

The solution of equations (7) and (8) for 2D case is considered in detail
in [1]. Here we use these results in 3D case.

If |q+| = |q−| = 0 then the solution of (7),(8) in not unique. In this case
we choose µ+ = µ− = 1/2. Otherwise consider two cases. The first case is
for q+q− ≤ 0. The solution is

µ+ =
q−

q− − q+
, µ− =

q+
q+ − q−

,

and µ± are non-negative. Thus,

qf · nf =
2q+q−
q− − q+

= − 2q−q+
q+ − q−

,

and numerical flux has two equivalent algebraic representations:

qf · nf = 2µ+

(
α′
+(p+ − p+,1) + β′

+(p+ − p+,2) + γ′
+(p+ − p+,3)

)
= (9)
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= A+,1(p+ − p+,1) + A+,2(p+ − p+,2) + A+,3(p+ − p+,3),

and

−qf · nf = 2µ−

(
α′
−(p− − p−,1) + β′

−(p− − p−,2) + γ′
−(p− − p−,3)

)
= (10)

= A−,1(p− − p−,1) + A−,2(p− − p−,2) + A−,3(p− − p−,3),

with non-negative coefficients A±,k, k = 1, 2, 3. Note that these coefficients
depend on fluxes and hence on values of p at neighboring cells. Thus, the
resulting multi-point flux approximation is nonlinear and its stencil is em-
bedded into the set of the closest neighboring cells.

The second case, q+q− > 0, leads to a potentially degenerate diffusive
flux. In order to avoid this degeneracy, the authors in [5] re-group the terms
in equation (6) as follows:

qf · nf = µ+q̃+ + µ−(−q̃−) + (µ+α
′
+ + µ−α

′
−)(p+ − p−),

where q̃+ = β′
+(p+−p+,2)+γ′

+(p+−p+,3), q̃− = β′
−(p−−p−,2)+γ′

−(p−−p−,3).
We find µ+ and µ− as a solution of

q̃+µ+ + q̃−µ− = 0,

µ+ + µ− = 1.

Again if the solution is not unique, we choose µ+ = µ− = 1/2. Otherwise,
for q̃+q̃− ≤ 0 we get

qf · nf = 2µ+q̃+ + (µ+α
′
+ + µ−α

′
−)(p+ − p−)

= A+,1(p+ − p+,1) + A+,2(p+ − p+,2) + A+,3(p+ − p+,3)

= −2µ−q̃− − (µ+α
′
+ + µ−α

′
−)(p− − p+) (11)

= −A−,1(p− − p−,1)− A−,2(p− − p−,2)− A−,3(p− − p−,3),

where A+,1 = A−,1 = µ+α+,1 + µ−α−,1. If q̃+q̃− > 0

qf = (µ+α
′
+ + µ−α

′
−)(p+ − p−) = A+,1(p+ − p−).

Calculating A±,k and inserting the diffusive fluxes qf · nf in the mass bal-
ance equation, we get an algebraic problem. For a logically cubic mesh,
the considered finite volume scheme results in the conventional seven-point
stencil.
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2 Two-phase black oil model

We consider a two-phase flow of immiscible fluids in a porous medium
[7, 8]. The phase, that wets the medium more than the other, is called
wetting phase and is indicated by subscript w. The other phase is the non-
wetting phase and indicated by o.

The basic equations for the two-phase flow are the following:

• Mass conservation for each phase:

∂ϕραSα

∂t
= −∇ · (ραuα) + qα, α = w, o. (12)

• Darcy’s law:

uα = −krα
µα

K (∇pα − ραg∇z) , α = w, o. (13)

• Two fluids fill the voids:

Sw + So = 1, (14)

• Pressure difference between phases is given by capillary pressure:

po − pw = pc(Sw), (15)

where K is the absolute permeability tensor, ρα is the phase density, µα is
the viscosity, krα is the relative phase permeability, ϕ is the porosity, g is the
gravity term and qα is the source/sink well term.

On the reservoir boundary we consider no-flow (homogeneous Neumann)
condition.

Wells are introduced through one of the following conditions: either given
bottom hole pressure pbh, or given component flux qα, or given total flux
qT = qw + qo for producer wells.

All the test cases in this article were performed for vertical perfect wells.
The formula for the well term was suggested by Peaceman [9]. For a cell T
with center xT connected to the well we have:

qα =
krα
µα

WI
(
pbh − pα − ραg(zbh − z)

)
δ(x− xT ), (16)
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WI is the well index which does not depend on the properties of fluids but
depends on properties of the media, δ(x− xT ) is the Dirac function.

Choosing oil pressure P = po and water saturation S = Sw as primary
unknowns, defining a formation volume factor Bα = ρα,0/ρα, and mobility
λα = krα/(µαBα) and using (12)-(15) we can get the equivalent formulation:

∂

∂t

ϕS

Bw

+∇ ·Kλw(∇P −∇Pc(S)−
ρw,0

Bw

g∇z) =
qw
ρw,0

, (17)

∂

∂t

ϕ(1− S)

Bo

+∇ ·Kλo(∇P − ρo,0
Bo

g∇z) =
qo
ρo,0

. (18)

In the discrete counterparts of (12)-(13) the mobilities λα(S, p) on the
face fij are taken upwinded:

λα(S) =

{
λα(Si, pi) if flow is directed from cell i to cell j,
λα(Sj, pj) if flow is directed from cell j to cell i.

The phase mobilities for well-producer are taken upwinded from the cell.
For well-injector we have only water injected and thus take the downstream
mobility from the cell with the well: λinj = ( krw

µwBw
+ kro

µoBo
)cell. We also assume

that there is no capillary pressure in wells, so all the well fluxes depend on
the same (oil) pressure.

3 Fully implicit scheme for two-phase flow

equations

First we apply the implicit scheme to the mass conservation equations
(12):

(ϕSα

Bα
)n+1 − (ϕSα

Bα
)n

∆tn+1
= −div(un+1

α ) +

(
qα
ρα,0

)n+1

, α = w, o. (19)

Now we can write down the nonlinear residual equations for the lth ap-
proximation to a quantity evaluated at time step n+ 1 inside grid cell Ti:

Rl
α,i =

∫
Ti

[(
ϕSα

Bα

)l

i

−
(
ϕSα

Bα

)n

i

+∆tn+1

(
divuα − qα

ρα,0

)l

i

]
dx, α = w, o.

(20)
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The discrete counterpart of (19) can be written as:

Rα,i = 0, α = w, o (21)

for all grid cells at every time step.

4 Discrete maximum principle

In order to derive discrete maximum principle we introduce assumptions on
two-phase flow model coefficients:

(a1) constant water and oil densities: Bα = 1, α = w, o,
(a2) constant porosity: ϕ = const,
(a3) capillary pressure is neglected: pc ≡ 0,
(a4) gravitational term is neglected: uα = −krα

µα
K(∇pα), α = w, o.

Using summation over α in (21) and assumptions (a1–a4) we get

−
∫
Ti

div (Kλ∇po)
ldx =

∫
Ti

(
qw
ρw

+
qo
ρo

)l

dx, (22)

where λ = krw
Bwµw

+ kro
Boµo

.

Using divergence theorem we rewrite (22):

∑
f∈∂T

λl
fq

l
f · nf =

∫
Ti

(
qw
ρw

+
qo
ρo

)l

dx (23)

where nf is the exterior normal vector to face f , |nf | = |f |, |f | is the area of
face f , and qf is the flux over face f . The discrete flux normal component
qf · nf may be defined via the pressure differences according to section 1.2:

∑
f∈∂T

3∑
i=1

λl
fAi,f (p

l
T − plT,i) =

∫
Ti

(
qw
ρw

+
qo
ρo

)l

dx. (24)

Let T stand for the set of all cells and TD and TN stand for the set of cells
with Dirichlet boundary faces and Neumann boundary faces, respectively.
We also denote all boundary cells by TB = TD ∪ TN .
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Theorem 1 (Discrete maximum principle). Let the solution p to (24) exist.
Let Tinj be the set of cells where qw

ρw
+ qo

ρo
> 0. Then

max
T∈T \(Tinj∪TB)

pT ≤ pmax = max
Tinj∪TB

pT . (25)

Proof. Assume that pT in a cell T ∈ T \ (Tinj ∪TB) has the maximum value.
Coefficients Ai,f in (24) are nonnegative by construction. As pT has the

maximum value, from non-negativity of coefficients Ai,f and the form of
equation (24) one derives that ql

f · nf are non-negative. λ is a positive
coefficient. Thus the left hand side of equation (24) is non-negative, and the
right hand of (24) is non-positive in T \ (Tinj ∪ TB). Then both sides of the
equation are equal to zero.

Since λfq
l
f ·nf are non-negative and their sum is zero, we get ql

f ·nf = 0
∀f ∈ ∂T . Since the discrete normal flux on face f contains the term pT −pT ′

where T ′ is the cell neighbouring T through f , we conclude that pT = pT ′ .
Assuming that the mesh T /Tinj is face-connected, we get that p is con-

stant in T \ (Tinj ∪ TB).

Remark 1. If we have no-flow Neumann condition for p on face f or positive
Neumann condition (outflux), flow over this face ql

f ·nf is non-negative and
the proof of the theorem 1 remains correct for this case. Thus p also cannot
attain maximum on Neuman boundary (otherwise p ≡ const in the whole
domain).

Remark 2. The authors of [1] also construct nonlinear multi-point flux dis-
cretization for discontinious diffusion tensor K. Under assumptions (a1–a4)
the discrete maximum principle for solution of the two-phase flow model also
holds for discontinious case. The proof is similar to the proof of the theo-
rem 1.

5 Nonlinear coefficients variation

If we use a Jacobian-based nonlinear solver, we need a variation of coef-
ficients A±,i in flux discretizations.

First we write variations for q± and q̃±:

∆q± = (α′
± + β′

± + γ′
±)p± − α′

±∆p±,1 − β′
±∆p±,2 − γ′

±∆p±,3,
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∆q̃± = (β′
± + γ′

±)p± − β′
±∆p±,2 − γ′

±∆p±,3.

Variations for µ± and A±,i depend on the q+, q−. If |q+| + |q−| > 0 and
q+q− ≤ 0, then

∆µ± =
∆q∓

q∓ − q±
− (∆q∓ −∆q±)

q∓
(q∓ − q±)2

,

∆A±,1 = 2α′
±∆µ±, ∆A±,2 = 2β′

±∆µ±, ∆A±,3 = 2γ′
±∆µ±.

Otherwise variation for µ± depends on the q̃+, q̃−. If |q̃+| + |q̃−| > 0 and
q̃+q̃− ≤ 0, then

∆µ± =
∆q̃∓

q̃∓ − q̃±
− (∆q̃∓ −∆q̃±)

q̃∓
(q̃∓ − q̃±)2

,

∆A±,1 = α′
+∆µ+ + α′

−∆µ−, ∆A±,2 = 2β′
±∆µ±, ∆A±,3 = 2γ′

±∆µ±.

If |q̃+|+ |q̃−| > 0 and q̃+q̃− > 0, then

∆µ± =
∆q̃∓

q̃∓ − q̃±
− (∆q̃∓ −∆q̃±)

q̃∓
(q̃∓ − q̃±)2

,

∆A±,1 = α′
+∆µ+ + α′

−∆µ−, ∆A±,2 = 0, ∆A±,3 = 0.

In the case of |q+| = |q−| = 0 or |q̃+| = |q̃−| = 0 we refer to remark 3.
The final variation for q± is

∆q± = (A±,1 + A±,2 + A±,3)∆p± − A±,1∆p±,1 − A±,2∆p±,2 − A±,3∆p±,3+
∆A±,1(p± − p±,1) + ∆A±,2(p± − p±,2) + ∆A±,3(p± − p±,3).

Remark 3. Coefficients µ± in case of zero fluxes |q+| = |q−| = 0 or zero
modified fluxes |q̃+| = |q̃−| = 0 have discontinuities with respect to p±,i. These
cases pose a technical problem for the Newton solver. Possible solution of this
problem is to induce small perturbation in the pressure field. Alternatively
one can use a solver without usage of Jacobian for one timestep.

6 Newton method for two-phase flow model

We suggest to use Newton’s method to solve nonlinear system (21) with
Darcy velocities (13):

J(xl)δxl = −R(xl), (26)
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xl+1 = xl + δxl, (27)

where l is the lth Newton step, x is a vector of primary unknowns in all grid
cells,

x =

(
po
Sw

)
,

R is the vector of nonlinear residuals in all grid cells,

R(x) =

(
Rw(x)
Ro(x)

)
,

and J is the Jacobian matrix:

J(x) =

( ∂Rw

∂po
(x) ∂Rw

∂Sw
(x)

∂Ro

∂po
(x) ∂Ro

∂Sw
(x)

)
.

We terminate Newton’s method when the norm of the residual vector drops
below εnwt.

Below we consider the construction of Jacobian matrix. We divide the
residuals into two parts: accumulation (including well terms) and transport,
Rα,i = Racc

α,i +Rtrans
α,i , where:

Racc
α,i = Vi

[(
ϕSα

Bα

)l

i

−
(
ϕSα

Bα

)n

i

]
−∆tn+1

(
qα
ρα,0

)l

i

, α = w, o,

Rtrans
α,i = ∆tn+1

∫
Ti

(divuα) dx, α = w, o.

We also take advantage of the following dependencies:

• So = 1− Sw, (see eq. (14)),

• pw = po − pc(Sw), with piecewise linear function pc(Sw) given by table
data (see eq. (15)),

• krα = krα(Sw) are piecewise linear functions given by table data,

• µα = µα(po) are piecewise linear functions given by table data,

• Bα = Bα(po) are piecewise linear functions given by table data,

• ϕ = ϕ(1 + cR(po − p0o)).
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6.0.1 Accumulation term

The variation of the accumulation term is as follows:

∆Racc
w,i = Vi

[
∆

(
ϕSw

Bw

)]
−∆tn+1∆

(
qw
ρw,0

)
,

∆Racc
o,i = Vi

[
∆

(
ϕSo

Bo

)]
−∆tn+1∆

(
qo
ρo,0

)
,

where

∆

(
ϕSw

Bw

)
=

ϕ

Bw

∆Sw + Sw

(
cR
Bw

− ϕ

B2
w

dBw

dpo

)
∆po,

∆

(
ϕSo

Bo

)
= − ϕ

Bo

∆Sw + (1− Sw)

(
cR
Bo

− ϕ

B2
o

dBo

dpo

)
∆po.

6.0.2 Transport term

Now we consider the transport term composed of Darcy fluxes

Rtrans
α,i = ∆tn+1

∫
T. i

(uα · n) ds ≈ ∆tn+1
∑
f∈T. i

uα,f · nf .

If we use the multi-point discretization of the flux, then we have two
different representations of flux over face f for two neighbouring cells T±:

(uh
w,f · nf )± = −

(
krw

µwBw

)
f
(Apo

±,1(po,± − po,±,1) + Apo
±,2(po,± − po,±,2) + Apo

±,3(po,± − po,±,3))

+
(

krw
µwBw

)
f
(Apc

±,1(pc,± − pc,±,1) + Apc
±,2(pc,± − pc,±,2) + Apc

±,3(pc,± − pc,±,3))

+
(

krw
µwB2

w

)
f
(ρw,0g(A

z
±,1(z± − z±,1) + Az

±,2(z± − z±,2) + Az
±,3(z± − z±,3))),

(28)

(uh
o,f · nf )± = −

(
kro
µoBo

)
f
(Apo

±,1(po,± − po,±,1) + Apo
±,2(po,± − po,±,2) + Apo

±,3(po,± − po,±,3))

+
(

kro
µoB2

o

)
f
(ρo,0g(A

z
±,1(z± − z±,1) + Az

±,2(z± − z±,2) + Az
±,3(z± − z±,3))).

(29)
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Here krα = krα(S̃), S̃ is the upwinded value of water saturation on face f
and Bα = Bα(p̃), µα = µα(p̃), p̃ is the upwinded value of oil pressure on face
f and coefficients A±,i depend on variable value in the neighbouring cells:

Apα
±,i = Apα

±,i(pα,+,1, pα,+,2, pα,+,3, pα,−,1, pα,−,2, pα,−,3),

Az
±,i = Az

±,i(z+,1, z+,2, z+,3, zz−,1, zz−,2, z−,3).

We define auxiliary variables and derivatives:

λg,α =
krα

µwB2
w

,

dλg,α

dS̃
=

dλα

dS̃
/Bw,

dλg,α

dp̃
=

(
dλα

dp̃
Bw − λα

dBw

dp̃

)
/B2

w,

D1 = Apo
±,1(po,± − po,±,1) + Apo

±,2(po,± − po,±,2) + Apo
±,3(po,± − po,±,3),

D2 = Apc
±,1(pc,± − pc,±,1) + Apc

±,2(pc,± − pc,±,2) + Apc
±,3(pc,± − pc,±,3),

D3,α = ρα,0g(A
z
±,1(z± − z±,1) + Az

±,2(z± − z±,2) + Az
±,3(z± − z±,3)).

Using (28) and (29) we get the following representation for the flux variation
for each of two phases:

∆(uh
w,f · nf ) =

[
(dλw

dS̃w
)(−D1 +D2) +

dλg,w

dS̃w
D3,w

]
∆S̃w+[

(dλw

dp̃o
)(−D1 +D2) +

dλg,w

dp̃o
D3,w

]
∆p̃o−

λw (∆qpo± )+

λw

(
∆qpc±

dPc

dSw
∆Sw

)
+

λg,wρw,0g(∆qz±),

(30)

∆(uh
o,f · nf ) =

[
( dλo

dS̃w
)(−D1 +D2) +

dλg,o

dS̃w
D3,α

]
∆S̃w+[

(dλo

dp̃o
)(−D1 +D2) +

dλg,o

dp̃o
D3,α

]
∆p̃o−

λo (∆qpo± )+
λg,oρo,0g(∆qz±),

(31)

where variation for the flux qy± of the variable y is defined in section 5.
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7 Numerical experiments

We consider two pseudo-2D numerical experiments, each uses three dif-
ferent flux discretization schemes: nonlinear multi-point, nonlinear two-point
and linear two-point. Both test cases use the uniform 32 × 32 × 1 grid
for the compunational domain [−50; 50]× [−50; 50]× [4000; 4010]. The first
experiment is for one injecting and one producing well, and the second one
is for three injecting and one producing well.

A B

Injector

Producer

Injector Injector

Injector Producer

Figure 2: Schemes of the numerical experiments.

Well locations are presented on Fig. 2. Injecting well pressure is equal to
4100 and producing well pressure is 3900.

Both experiments have been conducted for incompressible phases with
constant viscosities µw = 1, µo = 50, constant porosity ϕ = 0.2, zero capillary
pressure and zero gravity terms, as required by the derivation of the discrete
maximum principle theorem 1. Relative permeabilities are shown of Fig. 3
and the absolute permeability tensor is:

k = Rz(−θz)diag(k1, k2, k3)Rz(θz),

where k1 = k3 = 100, k2 = 0.1, θz = 112.5◦, and Rz(α) is the matrix of the
rotation in xy-plane.

Pressure for the two wells problem (Fig. 2, left) is presented on Fig. 4.
The nonlinear multi-point scheme and the linear two-point scheme satisfy
the discrete maximum principle for pressure as expected, while the nonlinear
two-point flux discretization violates the discrete maximum principle. It was
demonstrated in [3] that the mesh refinement reduces the magnitude of the
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Figure 3: Relative permeabilities.

overshoots and undershoots for the nonlinear two-point scheme, yet the DMP
is still violated. In contrast to two nonlinear schemes, the linear two-point
scheme does not provide approximation for the fluxes which results in non-
physical pressure field: the solution if not aligned with the main anisotropy
direction. Therefore, only the nonlinear multi-point scheme is consistent and
satisfies the discrete maximum principle.

multi-point nonlinear two-point linear two-point
max 4099.81 4111.68 4097.24
min 3901.08 3890.21 3927.66
P
4100

4050

4000

3950

3900

O

U

Figure 4: Pressure for t = 2000 for different flux discretization schemes
(numerical experiment with 2 wells). Overshoot (p > 4100) and undershoot
(p < 3900) domains are denoted by O and U respectively.
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The four wells test case (Fig. 2, right) demonstrates the similar pressure
solution violating the discrete maximum principle and the consequences of
pressure DMP violation for the saturation solution. Fig. 5 shows the pressure
solution for the time t = 100. Again, the discrete maximum principle is
violated by the two-point nonlinear scheme in the vast region. The top left
injecting well cell has the overshoot and the pressure is higher than the well
bottom hole pressure 4100. As a result the top left injecting well starts
to pump out water instaed of injecting. The nonphysical flow is magnified
by the use of the downstream discretization of well mobility λinj = (λw +
λo)cell > 0, and water saturation of the well cell decreases even after it
becomes zero. This leads to the nonphysical negative saturation on the top
left well cell (see Fig. 6, middle), water saturation on this cell drops up to
−0.800. Water saturations obtained by the multi-point nonlinear scheme, the
nonlinear two-point scheme and the two-point linear schemes are compared
in Fig. 6. Following the lack of the flux approximation of the linear two-point
scheme the water flow is not alighed with the main anisotropy direction.

multi-point nonlinear two-point linear two-point
max 4099.92 4119.92 4099.05
min 3906.03 3861.63 3947.19
P
4100

4050

4000

3950

3900

O

U

Figure 5: Pressure for t = 100 for different flux discretization schemes
(numerical experiment with 4 wells).Overshoot (p > 4100) and undershoot
(p < 3900) domains are denoted by O and U respectively.

8 Conclusion

16



multi-point nonlinear two-point linear two-point
max 0.515 0.502 0.572
min 0.150 -0.800 0.150
S
0.515

0.424

0.333

0.241

0.150

Figure 6: Water saturation for t = 100 for different flux discretization
schemes (numerical experiment with 4 wells). Bottom panel is colored ac-
cording to extended saturation legend. Initial saturation is s(0) = 0.15.

It was proved that under certain assumptions the nonlinear multi-point
flux discretization scheme satisfies the discrete maximum principle for two-
phase flow model. The scheme was implemented and the numerical results
demonstrate that the solution for the pressure satisfies the discrete maximum
principle in the cases where the monotone nonlinear two-point scheme fails.
Unlike the conventional two-point linear scheme the nonlinear multi-point
scheme preserves the flux approximation for the non-orthogonal grids and
anisotropic permeability tensors. It was shown that the new scheme may be
used with the Newton solver in fully implicit time discretization.
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