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We present a new second-order accurate monotone finite volume (FV) method for the
steady-state advection–diffusion equation. The method uses a nonlinear approximation
for both diffusive and advective fluxes and guarantees solution non-negativity. The inter-
polation-free approximation of the diffusive flux uses the nonlinear two-point stencil pro-
posed in Lipnikov [23]. Approximation of the advective flux is based on the second-order
upwind method with a specially designed minimal nonlinear correction. The second-order
convergence rate and monotonicity are verified with numerical experiments.
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1. Introduction

Accurate and reliable discretization methods inherit or mimic fundamental properties of continuous systems. The max-
imum principle and local mass conservation are the essential properties of the steady-state advection–diffusion equation.
Despite a relative simplicity of this equation, an accurate discretization method that satisfies the discrete maximum princi-
ple (DMP) is hard to develop. Therefore, our focus is on a simplified version of the DMP that provides only solution non-neg-
ativity as is referred to as the monotonicity condition. Some physical quantities, such as concentration and temperature, are
non-negative by their nature and their approximations should be non-negative as well. We develop a nonlinear finite vol-
ume (FV) method that satisfies the monotonicity condition for both diffusion-dominated and advection dominated regimes.

In advection dominated problems, a solution may have internal shocks and exponential or parabolic boundary layers. The
thickness of these features is usually small compared to the mesh size and hence they cannot be resolved properly. In
diffusion-dominated problems and highly anisotropic media, some of the diffusive fluxes may be poorly approximated if
mesh cells are not aligned with the principle directions of the diffusive tensor. In both regimes, unwanted spurious
(non-physical) oscillations may appear in the numerical solution. The design of advanced discretization methods that elim-
inate or significantly reduce these oscillations remains the field of extensive research for the last five decades.

One of the most popular finite element (FE) methods was developed by Brooks and Hughes in [6] and is referred to as the
streamline upwind Petrov Galerkin (SUPG) method. The stabilization procedure proposed in this method improves signifi-
cantly robustness of the FE discretization; however, the spurious oscillations around sharp layers may still appear in the
numerical solution. Indeed, the SUPG method is neither monotone nor a monotonicity preserving method. Several
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modifications and improvements of the SUPG method are reviewed in [14]. These modifications aim to design methods that
satisfy the DMP, at least in some model cases, and were dubbed in [14] as the spurious oscillations at layers diminishing (SOLD)
methods. Recently, another approach towards a robust FE method was developed in [17,18] and was dubbed as the algebraic
flux correction method. The drawback of many FE methods is that they are formally not locally conservative on the original
computational mesh, the property which is very desirable when a nonlinear advection–diffusion equation is coupled with
other transport equations.

The finite volume (FV) methods guarantee the local mass conservation by construction. Recently, many new FV meth-
ods have been developed for the advection–diffusion equation (see [36,4,5,11,25,20] and references therein). It turns out
that in the design of a monotone second-order accurate method, the approximation of diffusive fluxes is as challenging as
that of the advective fluxes. The advective fluxes can be approximated via the upwinding approach [2] and controlled
with different slope-limiting techniques [8,21,5] or introduction of an artificial viscosity [3,25]. For a long time, it was
not clear how to approximate and control the diffusive fluxes in the case of general meshes and diffusion tensors. The
theoretical analysis of DMP in the FE methods [9,16,35] imposes severe restrictions on the coefficients and computational
mesh that are often violated in real-life simulations where the media is heterogeneous and anisotropic and the compu-
tational mesh may be strongly perturbed. In such a case, many advanced linear methods fail to satisfy the monotonicity
condition [1,27,?]. This includes the mixed finite element (MFE), mimetic finite difference (MFD), and multi-point flux
approximation (MPFA) methods that are locally conservative and second-order accurate on unstructured meshes. The lin-
ear two-point flux approximation FV method, still used in modeling flows in porous media, is monotone but not even
first-order accurate for anisotropic problems. It was noticed in [5,14] that nonlinear approximations is the key ingredient
and the price to pay for construction of a monotone and second-order accurate discretization. In [7] a nonlinear method
has been developed for the Poisson equation. For a general diffusion equation, a number of nonlinear methods have been
developed [10,15,19,28,22,29,34,37]. The optimization procedures were developed in [24,26] for tensorial diffusion
equation.

In this article, the approximation of diffusive fluxes is based on a nonlinear two-point flux approximation method [23].
The original idea was proposed by Le Potier in [28] for triangular meshes. It was further analyzed and extended to shape-
regular polygonal meshes (but scalar diffusion coefficient) in [22] and to tetrahedral meshes in [15]. Yuan and Sheng [37]
extended the method to a bigger class of polygonal meshes with star-shaped cells and full tensor coefficients. In [34], the
nonlinear diffusive fluxes and the operator splitting method were used for solving the unsteady advection–diffusion equa-
tion. All the above methods, in addition to primary unknowns defined at mesh cells, require solution values at mesh vertices
that must be interpolated from the primary unknowns. As shown in [22,37], the choice of the interpolation method affects
the accuracy of the nonlinear FV method for problems with constant diffusion coefficients. The interpolation problem be-
comes even a more challenging task for problems with discontinuous coefficients [37]. A interpolation-free nonlinear FV
method was developed in Lipnikov et al. [23]. The numerical experiments presented there demonstrate that the new method
requires lesser number of nonlinear iterations compared to the methods using interpolation algorithms. The interpolation-
free method was extended to polyhedral meshes in Danilov and Vassilevski [10]; however, interpolation of solution at mid-
edge points may be still required in certain pathological cases. Finally, new results on the DMP were reported in the confer-
ence proceedings [29].

The approximation of advective fluxes follows ideas of the monotonic upstream-centered scheme for conservation laws
(MUSCL) introduced in van Leer [32]. A piecewise linear discontinuous reconstruction of the FV solution on polygonal cells
allows to build more accurate advective fluxes that are also nonlinear. In order to control monotonicity and robustness of the
method, we use a new slope limiting technique. In each cell, we minimize deviation of the reconstructed linear function from
given values at selected points subject to some monotonicity constraints. For each cell, majority of these points are centers of
the closest neighboring cells, except a few special cases. Other limiting procedures more closely related to the proposed
method are discussed in Hubbard [12]. The essential difference lies in the points where monotonicity constraints are im-
posed and in the norm used to measure the difference between the unlimited and limited linear functions. The methods
in Hubbard [12] use the Cartesian distance between gradients of these functions. We use an analog of the discrete L2-norm
over the reconstruction area.

In this article, we prove non-negativity of the discrete solution and verify it with numerical experiments. The developed
nonlinear FV method is exact for linear solutions; therefore, the second-order asymptotic convergence rate is expected for
problems with smooth solutions. This rate is observed in our numerical experiments.

One of the goals of this article it to study impact of coupling of diffusive and advective fluxes on the iterative nonlinear
solver which is the major computational overhead in the proposed method. To focus numerical analysis on this issue, we
consider only continuous anisotropic diffusion tensors and refer for derivation of diffusive fluxes for discontinuous problems
to [28,15,37,10,23]. We consider the Picard method and prove that each iterative approximation to the discrete solution is
non-negative. This extends similar results for diffusion problems [28,23] to advection–diffusion problems. We found out that
difference in various methods for approximation of advective fluxes, which may be subtle from viewpoint of numerical
methods for hyperbolic problems, may become important for stability of the Picard method. For instance, our selection of
the set of admissible gradients is driven by this stability issue.

The paper outline is as follows. In Section 2, we state the steady advection–diffusion problem. In Section 3, we describe
the nonlinear finite volume scheme. In Section 4, we prove monotonicity of the proposed scheme. In Section 5, we present
numerical analysis of the scheme using triangular, quadrilateral and polygonal meshes.
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2. Steady-state advection–diffusion equation

Let X be a two-dimensional polygonal domain with boundary C ¼ CN [ CD where CD \ CN ¼ ; and CD – ;. We consider a
model advection–diffusion problem for unknown concentration c:
divðvc �KrcÞ ¼ f in X

c ¼ gD on CD ð1Þ
� ðKrcÞ � n ¼ gN on CN
where KðxÞ is a symmetric positive definite continuous (possibly anisotropic) diffusion tensor, vðxÞ 2 C1ð�XÞ is a velocity
field, divv P 0; f is a source term, n is the exterior normal vector, and gD; gN are given data. We denote by Cout the outflow
part of C where v � n P 0, and define Cin ¼ C n Cout . We assume that CN � Cout .

The sufficient conditions for non-negativity of the solution cðxÞ are f ðxÞP 0; gD P 0 and gN 6 0. We assume that these
conditions are hold. From a physical viewpoint the requirements f ðxÞP 0 and gN 6 0 mean that no mass can be taken
out of the system.

The Dirichlet boundary condition on Cout may result in parabolic and/or exponential boundary layers. A parabolic bound-
ary layer can be also generated by discontinuity in boundary data gD. An ideal discretization scheme must introduce minimal
amount of a numerical diffusion to avoid excessive smearing of boundary layers but sufficient to damp non-physical
oscillations.

3. Monotone nonlinear FV scheme on polygonal meshes

In this section, we derive a FV scheme with a nonlinear two-point flux approximation. Let q ¼ �Krc þ cv denote the to-
tal flux which satisfies the mass balance equation:
divq ¼ f in X: ð2Þ
Let T be a conformal polygonal mesh composed of NT shape-regular cells T. We assume that T is edge-connected, i.e. it can-
not be split into two meshes having no common edges. We denote by nT the exterior unit normal vector to @T and by ne the
normal vector to edge e fixed once and for all. On a boundary edge, the vector ne is exterior. We assume that jnej ¼ jej where
jej denotes the length of edge e. Let the set �CN \ �CD belong to the set of nodes of T .

Let NB be the number of boundary edges. We denote by EI; EB disjoint sets of interior and boundary edges. The set EB is
further split into subsets ED

B and EN
B where the Dirichlet and Neumann boundary conditions, respectively, are imposed. Alter-

natively, the set EB is split into subsets Eout
B and Ein

B of edges belonging to Cout and Cin, respectively. Finally, ET denotes the set
of edges of polygon T.

Integrating Eq. (2) over a polygon T and using Green’s formula we get:
X
e2@T

vT;e qe � ne ¼
Z

T
f dx; qe ¼

1
jej

Z
e

q ds ð3Þ
where qe is the average flux density for edge e, and vT;e is either 1 or �1 depending on mutual orientation of normal vectors
ne and nT .

For each cell T, we assign one degree of freedom, CT , for concentration c. Let C be the vector of all discrete concentrations.
If two cells Tþ and T� have a common edge e, the two-point flux approximation is as follows:
qh
e � ne ¼ Mþ

e CTþ �M�
e CT� ; ð4Þ
where Mþ
e and M�

e are some coefficients. In a linear FV method, these coefficients are equal and fixed. In the nonlinear FV
method, they may be different and depend on concentrations in surrounding cells. On edge e 2 CD, the flux has a form similar
to (4) with an explicit value for one of the concentrations. For the Dirichlet boundary value problem, CD ¼ @X, substituting
(4) into (3), we obtain a system of NT equations with NT unknowns CT . Dirichlet and Neumann boundary conditions are con-
sidered in Section 3.4.

3.1. Notations

For every T in T , we define the collocation interior point xT at the barycenter of T. Similarly, for every edge e 2 EB, we
define the collocation point xe at the barycenter of e.

For every T we define a set RT of nearby collocation points as follows. First, we add to RT the collocation point xT . Then, for
every interior edge e 2 ET \ EI , we add the collocation point xT 0e

, where T 0e is the cell, other than T, that has edge e. For every
boundary edge e 2 ET \ EB, we add the collocation point xe. Let NðRTÞ denote the number of elements in the set RT .

We shall refer to collocation points on edges e 2 EB as the secondary collocation points. They are introduced for mathe-
matical convenience and will not enter the final algebraic system. In contrast, we shall refer to the other collocation points
as the primary collocation points.

We assume that for every e 2 ET , there exist two points xe;1 and xe;2 in set RT such that the following two conditions are
held [37] (see Fig. 1 for graphical interpretation).



Fig. 1. The vector ‘e forms acute angles with vectors te;1 and te;2. The collocation points are marked by solid circles.
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(C1) If te;1 ¼ xe;1 � xT ; te;2 ¼ xe;2 � xT , and he;i; i ¼ 1;2, is the angle between te;i and the co-normal vector ‘e ¼ KðxeÞne (see
Fig. 1), then
he;1 < p; he;2 < p and he;1 þ he;2 < p: ð5Þ
(C2) The vectors te;i and ‘e satisfy
te;1 � ‘e 6 0 and te;2 � ‘e > 0: ð6Þ
If conditions (5) and (6) cannot be satisfied, we may extend the set RT by adding neighbors of already included collocation
points. The trigonometric observations give the following lemma (see [37] for details).

Lemma 3.1. Under assumptions (5) and (6) , there exist non-negative ae and be such that
1
j‘ej

‘e ¼
ae

jte;1j
te;1 þ

be

jte;2j
te;2; ð7Þ
where
ae ¼
sin he;2

sinðhe;1 þ he;2Þ
and be ¼

sin he;1

sinðhe;1 þ he;2Þ
:

3.2. Nonlinear two-point diffusion flux approximation for an interior edge

This section follows closely Section 3.2 in Lipnikov et al. [23]. For completeness of the presentation, we summarize the
key formulas. Let us consider the diffusion flux on an interior edge e 2 EI
qe;d ¼
1
jej

Z
e
�Krc ds:
We denote by Tþ and T� the cells that share e and assume that ne is outward for Tþ and T ¼ Tþ. Let x� (or xT� ) be the col-
location point in T�;Ke � KðxeÞ and C� (or CT� ) be the discrete concentrations in T�.

Note thatrc � ðKe neÞ is the derivative in direction ‘e multiplied by j‘ej. Using Lemma 3.1, we rewrite the normal compo-
nent of the diffusion flux as follows:
qe;d � ne ¼ �ð1þ OðjejÞÞ j‘ej
jej

Z
e

@c
@‘e

ds ¼ �ð1þ OðjejÞÞ j‘ej
jej

Z
e

ae
@c
@te;1

þ be
@c
@te;2

� �
ds: ð8Þ
Replacing derivatives along directions te;1 and te;2 by finite differences, we get
Z
e

@c
@te;i

ds ¼ jej Ce;i � CT

jxe;i � xT j
þ Oðjxe;i � xT jÞ

� �
; i ¼ 1;2: ð9Þ
Note that this formula is exact for linear concentrations. If xe;i is the secondary collocation point, we use formula (29) for Ce;i.
Substituting (9) in (8) we get:
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qh
e;d � ne ¼ �j‘ej

ae

jte;1j
ðCe;1 � CTÞ þ

be

jte;2j
ðCe;2 � CTÞ

� �
: ð10Þ
At the moment, this flux involves three concentrations. To derive a two-point flux approximation, we consider polygon T�
and derive another approximation of the same flux through edge e. To distinguish between Tþ and T�, we add subscripts �
and omit subscript e. Since ne is the inward normal vector for T�, we have to change sign of the right-hand side:
qh
�;d � ne ¼ �j‘ej

a�
jt�;1j

ðC�;1 � C�Þ þ
b�
jt�;2j

ðC�;2 � C�Þ
� �

; ð11Þ
where a� and b� are given by Lemma 3.1 and C�;i denotes concentration at collocation point x�;i from RT� .
We define a new flux as a linear combination of two fluxes (11) with non-negative weights l�:
qh
e;d � ne ¼ lþqh

þ;d � ne þ l�qh
�;d � ne

¼ lþj‘ej
aþ
jtþ;1j

þ bþ
jtþ;2j

� �
Cþ � l�j‘ej

a�
jt�;1j

þ b�
jt�;2j

� �
C� � lþj‘ej

aþ
jtþ;1j

Cþ;1 þ
bþ
jtþ;2j

Cþ;2

� �
þ l�j‘ej

a�
jt�;1j

C�;1 þ
b�
jt�;2j

C�;2

� �
: ð12Þ
The first requirement for the weights is to cancel the two last terms in (12). The second requirement is to approximate the
true flux:
�lþdþ þ l�d� ¼ 0 and lþ þ l� ¼ 1 ð13Þ
where d� ¼ j‘ejða�C�;1=jt�;1j þ b�C�;2=jt�;2jÞ. Note that d� P 0 for non-negative concentrations. If d� ¼ 0, we select the sym-
metric solution lþ ¼ l� ¼ 1

2. Otherwise,
lþ ¼
d�

d� þ dþ
and l� ¼

dþ
d� þ dþ

: ð14Þ
Since coefficients d� depend on both geometry and concentration, so do the weights l�. Thus, the resulting two-point flux
approximation is nonlinear.

Substituting (14) into (12), we get
qh
e;d � ne ¼ Dþe CTþ � D�e CT� ð15Þ
with coefficients
D�e ¼ l�j‘ej
a�
jt�;1

þ b�
jt�;2j

� �
: ð16Þ
Remark 3.1. Although formula (10) is invariant with respect to the addition of a constant function, the discrete flux (15) is
defined correctly only for non-negative concentrations. Analysis below requires to extend definition of the discrete diffusive
flux to negative concentrations. It can be done by adding the smallest positive constant to all concentrations in (12) that
makes them non-negative.
3.3. Nonlinear advection flux on interior edges

In this section we consider the advection flux on an interior edge e 2 EI ,
qe;a ¼
1
jej

Z
e

cv ds;
and its nonlinear upwind approximation
qh
e;a � ne ¼ vþeRTþ ðxeÞ þ v�eRT� ðxeÞ; ð17Þ
where
vþe ¼
1
2
ðve þ jvejÞ; v�e ¼

1
2
ðve � jvejÞ; ve ¼

1
jej

Z
e

v � ne ds;
and RT is a linear reconstruction of the concentration over cell T. We define the linear reconstruction as follows:
RTðxÞ ¼ CT þ gT � ðx� xTÞ; 8x 2 T; ð18Þ
where gT is the gradient of the linear function. Since CT is collocated at the barycenter of T, this reconstruction preserves the
mean value of the concentration for any choice of gT .
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It is conventional to reconstruct the gradient using approximation arguments and to constrain it using stability argu-
ments. Let GT be the set of admissible gradients ~gT that satisfy the constraints (20)–(22) formulated below. We consider
the following constrained minimization problem:
Fig. 2.
constra
gT ¼ arg min
~gT2GT

J Tð~gTÞ; ð19Þ
where the functional
J Tð~gTÞ ¼
1
2

X
xk2~RT
½CT þ ~gT � ðxk � xTÞ � Ck	2
measures deviation of the reconstructed function from the targeted values Ck collocated at points xk from a set ~RT which is
built as follows. First, the auxiliary set R̂T is defined by eliminating the secondary collocation points xe; e 2 Eout

B , from the set
RT . Second, the set R̂T is extended whenever it is either too small or ill-conditioned. More precisely, if R̂T ¼ fxT ;xT 0 g, we add
to it the elements of R̂T 0 other than xT . If R̂T ¼ fxT ; xT 0 ;xT 00 g and area of the triangle formed by these three points is less than
10�3jTj, we add to it the elements of R̂T 0 and R̂00T other than xT . The resulting set forms the set ~RT .

The following three sets of constraints are introduced to avoid non-physical extrema. The admissible gradient ~gT must
result in a linear reconstruction that is bounded at the collocation points xk 2 R̂T :
min C1; C2; . . . ; CNðR̂T Þ

n o
6 CT þ ~gT � ðxk � xTÞ 6 max C1;C2; . . . ;CNðR̂T Þ

n o
: ð20Þ
Additionally, the reconstructed function must satisfy the following restrictions at points xe on edges e 2 ET where ve > 0:
CT þ ~gT � ðxe � xTÞP 0: ð21Þ
This condition guarantees correct sign of the advective flux. Frequently, this condition follows from (20). However, if the
edge mid-point xe lies outside the convex hull of points xk 2 R̂T the reconstructed function may be negative at this point.

Finally, the reconstructed function must be bounded from below at the secondary collocation points on the outflow
boundary:
min C1; C2; . . . ; CNðR̂T Þ

n o
6 CT þ ~gT � ðxe � xTÞ; e 2 ET \ Eout

B : ð22Þ
The set R̂T and the above constraints were designed to be practical and at the same time as weak as possible. For instance,
our attempts to use only edge mid-points xe in (20) or drop out (22) resulted in numerical instabilities in the nonlinear iter-
ative method which is introduced in Section 4. Due to (20), we get that ~gT � 0 in local minima and maxima.

Fig. 2 illustrates the elliptic nature of the deviation functional J T . In this particular case, solution of the unconstrained
problem is located outside the admissible set P. The solution of the constrained problem is the closest point to the boundary
of P when the level sets of J T are circles. In a general case, the solution may deviate significantly from the closest point.

Lemma 3.2. Minimization problem (19) with constraints (20)–(22) has a unique solution.

Proof. A solution to problem (19) does exist, since the constant reconstruction (gT ¼ ð0;0Þ
T ) satisfies inequalities (20)–(22).

Each of these inequalities represents a half-plane. The admissible set GT is the intersection of half planes; therefore, it is a
convex polygon. The problem (19) reduces to a problem of convex analysis [30]: given a point n0 on a plane and a convex
polygon P, find
n ¼ arg min
n02P
ðn0 � n0Þ

T R ðn0 � n0Þ; ð23Þ
constrainted gradient

minimum of

Illustration of the set of admissible gradients (hexagon P), level sets of the deviation functional J T (ellipses), and location of the unconstrained and
ined gradients (solid circles).
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where R is a 2� 2 symmetric positive definite matrix. The point n0 and the matrix R can be easily derived from parameters in
the deviation functional J T .

If n0 2 P, it is the solution of the constrained problem. Otherwise, the solution n is a unique point on @P. This point can be
found by searching for minima of quadratic functions on edges of P.

Using (17) and (18), we represent the advective flux as the sum of a linear part (the first-order approximation) and a non-
linear part (the second-order correction):
qh
e;a � ne ¼ Aþe Cþ � A�e C�; ð24Þ
where
A�e ¼ �v�e ð1þ g� � ðxe � x�ÞC�1
� Þ ð25Þ
and subscript � stands for T�.
We note that the coefficients A�e are non-negative for positive concentrations. If CT ¼ 0 in a cell T then gT must be the zero

and A�e ¼ �v�e .

3.4. Fluxes on boundary edges

Let us consider a Neumann boundary edge e 2 EN
B . The diffusive flux through this edge is
qh
e;d � ne ¼ �gN;ejej; ð26Þ
where �gN;e is the mean value of gN on edge e. In the subsequent discussion, it may be convenient to think about e as the cell
with zero area. Let T be the cell with edge e. Replacing Cþ and C� with CT and Ce, respectively, we get from formula (24) the
approximation of the advective flux:
qh
e;a � ne ¼ Aþe CT : ð27Þ
Thus, the equation for the total flux is
ðqh
e;d þ qh

e;aÞ � ne ¼ �gN;ejnej þ Aþe CT ; e 2 EN
B ; ð28Þ
where coefficient Aþe is non-negative for non-negative concentrations.
Let us consider a Dirichlet boundary edge e 2 ED

B . Let T be again the cell containing this edge. The equation for concentra-
tion is trivial,
Ce ¼ �gD;e ¼
1
jej

Z
e

gD ds: ð29Þ
The approximation of the diffusive flux is given by formula
qh
e;d � ne ¼ Dþe CT � D�e Ce; ð30Þ
where coefficients D�e are given by (16). The approximation of the advective flux depends on velocity direction on edge e. If
e 2 Eout

B , the approximation adopts formulas (27) and (25). If e 2 E in
B , we use
qh
e;a � ne ¼ �A�e ; ð31Þ
where
A�e ¼ ��gD;eve � ��gD;ev�e P 0: ð32Þ
4. Discrete system and monotonicity analysis

Substituting two-point flux formula (4) with non-negative coefficients M�
e ¼ D�e þ A�e given by (16) and (25) into into the

mass balance Eq. (3), and using Eq. (29) to eliminate boundary concentrations, we get a nonlinear system of NT equations
with NT unknowns:
MðCÞC ¼ FðCÞ; ð33Þ
where C is the vector of discrete concentrations at the primary collocation points. The matrix MðCÞ is assembled from 2� 2
matrices
MeðCÞ ¼
Mþ

e ðCÞ �M�
e ðCÞ

�Mþ
e ðCÞ M�

e ðCÞ

 !
ð34Þ



4024 K. Lipnikov et al. / Journal of Computational Physics 229 (2010) 4017–4032
for the interior edges and 1� 1 matrices MeðCÞ ¼ Mþ
e ðCÞ for Dirichlet edges. The right-hand side vector FðCÞ is generated by

the source and the boundary data:
FTðCÞ ¼
Z

T
f dxþ

X
e2ED

B \@T

M�
e ðCÞ�gD;e �

X
e2EN

B \@T

jej�gN;e; 8T 2 T : ð35Þ
For f ðxÞP 0; gD P 0 and gN 6 0 the components of vector F are non-negative. We use the Picard iterations to solve the non-
linear system (33) (see Algorithm 1).
Algorithm 1. Generation and solution of nonlinear system (33).

1: For each interior edge e 2 EI shared by elements T� find vectors t�;1, t�;2 satisfying conditions (5) and (6). Find
similar vectors for boundary edges.

2: Select an initial vector C0 with non-negative entries and a small value enon > 0.
3: for k ¼ 0; . . . ;do
4: Calculate concentrations Ce on edges e 2 ED

B using (29).

5: Assemble the global matrix MðCkÞ from the edge-based matrices MeðCkÞ. Use formulas (16) and (25) to form

MeðCkÞ.
6: Calculate the right-hand side vector FðCkÞ using (35).

7: Stop if kMðCkÞCk � FðCkÞk 6 enon kMðC0ÞC0 � FðC0Þk.
8: Solve MðCkÞCkþ1 ¼ FðCkÞ.
9: end for
The linear system in Step 8 with the non-symmetric matrix MðCkÞ is solved by the ILU-preconditioned Bi-Conjugate Gra-

dient Stabilized (BiCGStab) method [31]. The BiCGStab iterations are terminated when the relative norm of the residual be-
comes smaller than elin.

The next theorem shows that the solution to (33) is non-negative provided that it exists.

Theorem 4.1. Let CN ¼ ;ðED
B � EBÞ; f P 0 in X; gD P 0 on CD � @X and the solution C to (33) exist. Then C P 0.

Proof. The proof is by contradiction. Let us consider the cell T with the smallest concentration CT and assume that CT < 0.
Without lose of generality, we assume that vectors ne are exterior with respect to T. Let T ¼ Tþ in the flux formulas. Since CT

is minimal, RT � CT . The definition of advective fluxes gives
X
e2ET

qh
e;a � ne ¼

X
e2ETnEin

B

ðvþe CT þ v�e RT�e ðxeÞÞ þ
X

e2ET\Ein
B

v�e �gD;e:
Recall that v�e ¼ ve on inflow edges and ve ¼ vþe þ v�e . By adding and subtracting v�e CT , we get
X
e2ET

qh
e;a � ne ¼ CT

X
e2ET

ve þ
X

e2ET nEin
B

v�e ðRT�e ðxeÞ � CTÞ þ
X

e2ET\Ein
B

v�e ð�gD;e � CTÞ:
From the mass balance Eq. (3) we derive
�CT

X
e2ET

ve þ
Z

T
f dx�

X
e2ET

qh
e;d � ne �

X
e2ET nEin

B

v�e ðRT�e ðxeÞ � CTÞ �
X

e2ET\Ein
B

v�e ð�gD;e � CTÞ ¼ 0: ð36Þ
We have
X
e2ET

ve ¼
Z
@T

v � ne ds ¼
Z

T
divðvÞ dx P 0;
and, by assumption,
CT

X
e2ET

ve 6 0:
Since CT is minimal, it holds RT�e ðxeÞP CT , and since CT < 0, it holds �gD;e > CT . Let eC be a vector with non-negative entries
obtained by adding positive constant �CT to every entry of C. For e 2 ET , we have
qh
e;dðeCÞ � ne ¼ Dþe eCT � D�e eCT�e ¼ �D�e eCT�e 6 0:
As explained in Remark 3.1, the discrete diffusive flux for C is equal to that for eC. Therefore, qh
e;d � ne 6 0 and
X

e2ET

qh
e;d � ne 6 0:



Fig. 3. Examples of three types of uniform meshes.
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By virtue of v�e 6 0 we conclude that all the terms in (36) are non-negative and must be equal to zero. This implies
0 ¼
X
e2ET

qh
e;dðeCÞ � ne ¼ �

X
e2ET

D�e eCT�e
which means CT�e ¼ CT for all e 2 ET .
Therefore, instead of T we can consider any neighboring cell T�e . Since T is edge-connected, we conclude that C is constant

on T . Considering a cell T with edge e 2 EB, from �gD;e � CT ¼ 0, we get that this constant is non-negative. This contradicts our
assumption. h

The following result illustrates properties of the Picard iterations.

Theorem 4.2. Let f P 0; gD P 0; gN 6 0 and CD – ; in (1). If C0 P 0 and linear systems in the Picard method are solved exactly,
then Ck P 0 for k P 1.
Proof. The proof follows closely the proof of Theorem 4.1 in [23]; therefore, it is only sketched below. First, we observe that
the matrix MTðCkÞ fulfills all conditions of Corollary 1 on p. 85 of [33] when Ck P 0. Thus, MTðCkÞ is the M-matrix and all
entries of ðMTðCkÞÞ�1 are positive. Since the transpose and inverse are commuting operations, we get that Ckþ1 P 0. This
proves the assertion of the theorem. h

Remark 4.1. The theorem holds true also for linear advective fluxes:
qh
e;a � ne ¼ Aþe Cþ � A�e C�; A�e ¼ �v�e :
5. Numerical experiments

5.1. Implementation issues

In all experiments, we set CN ¼ ;. For advection-dominated problems, this helps to find more analytical solutions such
that the right-hand side vector is non-negative, FðCÞP 0, for any non-negative C.

5.1.1. Errors
We use the following discrete L2-norms to evaluate relative discretization errors for the concentration c and the flux q:
ec
2 ¼

P
T2T ðcðxTÞ � CTÞ2jTjP

T2T ðcðxTÞÞ2jTj

" #1=2

and eq
2 ¼

P
e2EI[EB

ððqe � qh
e Þ � neÞ2jSejP

e2EI[EB
ðqe � neÞ2jSej

" #1=2

;

where jSej is a representative area for edge e. More precisely, jSej is the arithmetic average of areas of mesh cells sharing the
edge. In convergence studies, the nonlinear iterations are terminated when the reduction of the initial residual norm be-
comes smaller then enon ¼ 10�7. The convergence tolerance for the linear solver is set to elin ¼ 10�12.

5.1.2. Meshes
The numerical tests are performed on three sequences of uniform meshes, two sequences of distorted structured meshes,

and one sequence of polygonal meshes. The uniform meshes are square meshes {M1} and two types of triangular meshes
produced by splitting each square cell into two triangles by the north-east {M2} or north-west diagonal {M3}, as shown
in Fig. 3.



M4 M5 M6

Fig. 4. Examples of two types of distorted structured meshes and a polygonal mesh.

Table 1
Convergence analysis for diffusion-dominated problems.

h {M4} {M5} {M6}

eC
2 eq

2 eC
2 eq

2 eC
2 eq

2

1/32 7.13e�04 3.32e�03 3.43e�04 2.67e�03 8.76e�04 4.77e�03
1/64 2.61e�04 1.31e�03 9.49e�05 1.17e�03 2.72e�04 1.73e�03
1/128 9.80e�05 5.18e�04 2.67e�05 4.67e�04 7.35e�05 6.03e�04
1/256 3.99e�05 2.13e�04 7.24e�06 2.10e�04 1.96e�05 2.20e�04
Rate 1.39 1.32 1.85 1.23 1.83 1.48
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The distorted structured meshes include triangular {M4} and quadrilateral {M5} meshes. The distorted mesh is con-
structed from the uniform mesh with the mesh size h by random distortion of internal nodes ðx; yÞ:
x :¼ xþ anxh; y :¼ yþ anyh; ð37Þ
where nx and ny are random variables with values between �0.5 and 0.5 and a 2 ½0;1	 is the degree of distortion. To avoid
mesh tangling, we set a ¼ 0:4 for triangular meshes and a ¼ 0:6 for quadrilateral meshes. It is pertinent to emphasize that
the distortion is performed on each refinement level. A polygonal mesh from sequence {M6} is a dual mesh for a smoothly
transformed uniform triangular mesh. Examples of these meshes are shown in Fig. 4. For each space resolution, the quadri-
lateral and polygonal meshes have roughly the same number of cells. The corresponding triangular meshes have twice more
cells.

5.2. Anisotropic diffusion with advection

5.2.1. Convergence study
The convergence study is performed for a smooth solution on mesh sequences {M4}, {M5} and {M6}. A sequence of dis-

torted meshes is the most challenging test for a numerical scheme due to fixed amount of random noise in position of mesh
nodes. Let X ¼ ð0;1Þ2, and the exact solution, velocity field and anisotropic diffusion tensor be as follows:
cðx; yÞ ¼ x cosð0:5pyÞ; v ¼ ð1;�1ÞT ; K ¼
10 0
0 0:1

� �
:

The forcing term f and the Dirichlet boundary data gD are set accordingly to the exact solution. Table 1 shows the relative L2-
norms of the errors. The linear regression algorithm has been used for calculating the convergence rates. The convergence
rate for the concentration is close to the second-order for quadrilateral and polygonal meshes, while the convergence rate
for the flux is higher than the first-order on all meshes. This is one of the advantages of usage of polygonal meshes in
simulations.

Since our method is exact for linear functions, we may expect the asymptotic second-order convergence rate on all se-
quences of meshes. The triangular meshes does not show this asymptotics. This loss of convergence rate can be explained
by a smaller number of neighboring cells compared to the other meshes. To verify this assumption, we modify the definition
of set RT for triangular meshes. More precisely, for every triangle T, we consider neighboring cells T 0 which share at least a
vertex with triangle T. We include new collocation points xT 0 into the original set RT . The new set is denoted by Rext

T . Results



Table 2
Convergence analysis for diffusion-dominated problems on triangular meshes {M4}.

{M4} {M4}

h Original RT Extended Rext
T

eC
2 eq

2 eC
2 eq

2

1/32 7.13e�04 3.32e�03 4.61e�04 1.42e�03
1/64 2.61e�04 1.31e�03 1.10e�04 5.25e�04
1/128 9.80e�05 5.18e�04 2.83e�05 1.95e�04
1/256 3.99e�05 2.13e�04 6.87e�06 8.27e�05
Rate 1.39 1.32 2.01 1.37

Γ0
Γ1

v

k2

k1

M1 M2 M3

Fig. 5. Top panel: A sketch of the computational domain X with the primary directions of the diffusion tensor and the velocity field. Bottom panel: Solutions
calculated with the nonlinear FV method on three different meshes.
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of calculations with Rext
T are presented in the last two columns of Table 2. We observe essential improvement in the conver-

gence rate for the concentration and the error reduction for both unknowns. In the remaining numerical experiments on tri-
angular meshes, we continue to use RT , since no deterioration of the convergence rate is observed.

5.2.2. Monotonicity test
The monotonicity study is performed of mesh sequences {M1}, {M2} and {M3} for a problem with highly anisotropic dif-

fusion tensor. Such a problem is a challenging task for many linear discretization methods (see numerical experiments in
[19,22]) that may result in significant violation of the DMP and even produce a numerical solution with non-physical oscil-
lations. We consider problem (1) in the unit square with a square hole, X ¼ ð0;1Þ2=½4=9;5=9	2, so that the boundary of X con-
sists of two disjoint parts as shown in Fig. 5. We set f ¼ 0; gD ¼ 0 on C0; gD ¼ 2 on C1;v ¼ ð700;700ÞT and take the following
anisotropic diffusion tensor K:
K ¼ Rð�hÞ
k1 0
0 k2

� �
RðhÞ; RðhÞ ¼

cos h sin h

� sin h cos h

� �
; ð38Þ
where k1 ¼ 1000; k2 ¼ 1 and h ¼ �p=6.



Table 3
Convergence analysis for the advection-dominated problem and the smooth solution.

h {M4} {M5} {M6}

eC
2 eq

2 eC
2 eq

2 eC
2 eq

2

1/32 1.72e�03 1.66e�03 6.91e�04 5.81e�04 9.37e�04 8.13e�04
1/64 4.77e�04 4.65e�04 1.87e�04 1.66e�04 3.29e�04 3.12e�04
1/128 1.31e�04 1.28e�04 4.67e�05 4.13e�05 9.49e�05 9.18e�05
1/256 3.34e�05 3.24e�05 1.22e�05 1.09e�05 2.61e�05 2.56e�05
Rate 1.89 1.89 1.94 1.92 1.73 1.67
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According to the maximum principle for elliptic PDEs, the exact solution should be between 0 and 2. Solutions computed
with the nonlinear FV method on triangular and square meshes are non-negative everywhere in the computational domain
(see the color bar in Fig. 5). The solution profile on mesh M2 is wider than that on mesh M3 where the mesh size along the
velocity direction is effectively twice smaller. The square mesh gives an intermediate result. It is pertinent to note that our
method guarantees only non-negativity of the numerical solution. Thus, some overshoots may occur and were observed in
Lipnikov et al. [23] for diffusion problems. Overshoots are more localized compared to undershoots occurring in linear meth-
ods. For instance, the solution of (38) with v ¼ ð0;0ÞT calculated with the lowest-order Raviart-Thomas MFE method is neg-
ative on both triangular meshes over almost half of the computational domain.

5.3. Advection dominated problems

5.3.1. Convergence study for smooth solutions
Here we study the accuracy of our FV method for advection-dominated problems with smooth solutions. The convergence

studies are performed on mesh sequences {M4}, {M5} and {M6}. Let X ¼ ð0;1Þ2 and the exact solution, constant velocity field
and anisotropic diffusion tensor be as follows:
cðx; yÞ ¼ x cosð0:5pyÞ; v ¼ ð1;�1ÞT ; K ¼ 10�5 10 0
0 0:1

� �
:

The forcing term f and the Dirichlet boundary data gD are set accordingly to the exact solution. Table 3 shows the relative L2-
norms of the errors. For all types of meshes we observe the second-order convergence rate for the concentration and the rate
higher than the first-order for the flux. Again, triangular meshes produce higher errors compared to errors on quadrilateral
and polygonal meshes. Note that significant error reduction ð21:86Þ on the last polygonal mesh is overpowered by slower con-
vergence rate on coarser meshes. Thus, the linear regression algorithms gives only 1.73.

5.3.2. Convergence study for solutions with boundary layers
In this section, we study the accuracy of our FV method for problems with exponential boundary layers. Let X ¼ ð0;1Þ2.

We consider the problem which also was studied in Manzini and Russo [25]. The exact solution, the constant velocity field
and the isotropic diffusion tensor are defined by
cðx; yÞ ¼ x� exp
2ðx� 1Þ

m

� �� �
y2 � exp

3ðy� 1Þ
m

� �� �
; v ¼ ð2;3ÞT ; K ¼ m I;
where m characterizes thickness of the boundary layer in the top-right corner of X. For the advection-dominated problem, we
set m ¼ 10�4. The goal of our numerical tests is to demonstrate that the nonlinear FV method has good convergence proper-
ties and produces the numerical solution without oscillations in a subdomain outside the boundary layer. More precisely, the
errors are computed in the domain ð0;0:8Þ2. The results presented in Table 4 demonstrate the second-order convergence rate
for the concentration and the superconvergence for the flux on all types of considered meshes. Moreover, in all tests the
numerical solutions vary between 0 and 1.

5.3.3. Monotonicity test
In this section we consider the advection-dominated problem with discontinuous Dirichlet boundary data. The disconti-

nuity produces an internal shock in the solution, in addition to exponential boundary layers. This is a popular test case for the
discretization schemes designed for advection-dominated problems, see [13] and [14]. Following [14], we set
v ¼ cos
p
3
;� sin

p
3

� �
; K ¼ mI; m ¼ 10�8:
The Dirichlet boundary conditions are imposed as follows:
cðx; yÞ ¼
0 if x ¼ 1 or y 6 0:7;
1 otherwise:

�

The exact solution has a boundary layer next to two lines y ¼ 0 and x ¼ 1. It also has an internal layer along the streamline
passing through the point (0, 0.7).



Table 4
Convergence analysis for the advection-dominated problem and the solution with the boundary layer.

h {M4} {M5} {M6}

eC
2 eq

2 eC
2 eq

2 eC
2 eq

2

1=32 9.71e�04 4.81e�04 1.83e�03 1.60e�03 4.90e�03 3.52e�03
1=64 2.38e�04 1.12e�04 4.92e�04 4.29e�04 1.26e�03 8.74e�04
1=128 5.94e�05 2.93e�05 1.23e�04 1.08e�04 3.15e�04 2.16e�04
1=256 1.48e�05 7.58e�06 3.07e�05 2.74e�05 7.86e�05 5.34e�05
Rate 2.01 1.99 1.97 1.96 1.99 2.01

Fig. 6. Monotonicity test: the numerical solutions vary between 0 and 1.
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The computations were performed on meshes M1, M2, M3 and M6 with the effective mesh parameter h ¼ 1=64, so that
the number of degrees of freedom for concentration is 4096 on the square and polygonal meshes and 8192 on the triangular
meshes. The Péclet number is PeK ¼ 781;250. According to Theorems 4.1 and 4.2, the numerical solution must be non-neg-
ative. The numerical solutions for four meshes are shown in Fig. 6.



Table 5
The quantities that characterize the quality of the numerical solution for the problem described in Section 5.3.3.

Mesh oscmin
int

oscmax
int oscexp smearint smearexp

M1 0 6.34e�12 2.19e�11 7.81e�02 2.13e�05
M2 0 2.41e�07 6.02e�14 8.33e�02 4.51e�05
M3 0 9.42e�16 6.27e�06 4.69e�02 4.33e�05
M6 0 6.96e�08 1.84e�13 1.13e�01 8.36e�05

Fig. 7. The convergence of the Picard method: (a) diffusion-dominated problem from Section 5.2.1 (xk ¼ 0:95), and (b) advection-dominated problem from
Section 5.3.2 ðxk ¼ 0:5Þ.
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In order to measure quality of the numerical solution, the authors of [14] have proposed several estimates which quantify
solution oscillations and smearing effects caused by a discretization scheme. Let X1 ¼ fðx; yÞ 2 X : x 6 0:5; y P
0:1g;X2 ¼ fðx; yÞ 2 X : x P 0:7g, and X3 denote a cell strip in the vicinity of the line y ¼ 0:25,
X3 ¼ fT 2 T : xT ¼ ðxT ; yTÞ; jyT � 0:25j 6 jTj1=2g:
For the square mesh M1, the width of this strip is equal to 2h. First, we define two estimates (39) and (40) which characterize
the values of undershoots and overshoots in X1, correspondingly:
oscmin
int �

X
ðx;yÞ2X1

ðminf0; chðx; yÞgÞ2
 !1=2

; ð39Þ

oscmax
int �

X
ðx;yÞ2X1

ðmaxf0; chðx; yÞ � 1gÞ2
 !1=2

: ð40Þ
Second, we define estimate (41) which quantifies oscillations near the boundary layer in X2:
oscexp �
X
ðx;yÞ2X2

ðmaxf0; chðx; yÞ � 1gÞ2
 !1=2

: ð41Þ
Third, we define two estimates (42) and (43) which measure thickness of the boundary layer and the internal shock,
respectively:
smearexp �
X
ðx;yÞ2X2

ðminf0; chðx; yÞ � 1gÞ2
 !1=2

; ð42Þ

smearint � x2 � x1; ð43Þ
where
x1 ¼ min
xT2X3 ;CðxT ÞP0:1

xT and x2 ¼ max
xT2X3 ;CðxT Þ60:9

xT :
For the continuous solution these estimates depend on the diffusion process only, so they are much smaller than the con-
sidered mesh size. For the numerical solution, small values of estimates (39)–(43) characterize almost non-oscillatory and
almost non-diffusive discrete solution.

The results obtained by the nonlinear FV method are shown in Table 5. They are competitive with the best results pre-
sented in review [14]. The increase of the internal shock width on the polygonal mesh is caused by non-uniformity of mesh
density. The cells near the shock are larger than the average cell size.



Fig. 8. The convergence study for different values of nonlinear tolerance enon: (a) diffusion-dominated problem from Section 5.2.1 ðxk ¼ 0:95Þ, and (b)
advection-dominated problem from Section 5.3.2 ðxk ¼ 0:5Þ.
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5.4. Nonlinear iteration

In the last group of tests we investigate the convergence of nonlinear iterations in Algorithm 1.
We recall that in all numerical experiments presented above, the Picard method was terminated when the discrete L2-

norm of the nonlinear residual was reduced by factor enon ¼ 10�7. Each iteration of this method is computationally expen-
sive; therefore, reduction in the number of iterations will greatly reduce the overall cost. The goal of this study is to dem-
onstrate that the numerical solution is sufficiently accurate when the nonlinear system (33) is solved with much cruder
tolerance than 10�7.

We consider the problem with the smooth solution described in Section 5.2.1 and the problem with the exponential
boundary layer described in Section 5.3.2. Both of these problems are solved on a sequence of distorted quadrilateral meshes
{M5}. In Fig. 7(a) and (b), the relative L2-norm of error for the concentration and the relative Euclidean norm of the nonlinear
residual are plotted for each iteration. The error stabilizes much earlier than the nonlinear residual reaches the prescribed
tolerance enon ¼ 10�7. This difference is even more distinct in the advection-dominated problem.

In Fig. 8(a) and (b), the relative L2-norm of error for the concentration is plotted against the mesh size for three different
values of the convergence tolerance enon. These results demonstrate that the second-order convergence can be achieved with
much cruder tolerance and, respectively, with much smaller number of nonlinear iterations. For example, 20 nonlinear iter-
ations are required to achieve the second-order convergence in the problem with the exponential boundary layer. For the
problem with the smooth solution, gradual decrease of enon with the mesh size is required to achieve the second-order con-
vergence. Respectively, the number of nonlinear iterations increases from 20 ðh ¼ 1=32Þ to 40 ðh ¼ 1=128Þ.

We have found that the Picard method may not converge up to the prescribed tolerance in some cases, especially on
highly distorted meshes. In these cases, a relaxed version of the Picard method demonstrates more robust behavior. The iter-
ative process is reformulated as follows:
MðCkÞ~Ckþ1 ¼ FðCkÞ; Ckþ1 ¼ Ck þxkð~Ckþ1 � CskÞ;
where xk is the damping factor, 0 < xk 6 1. If xk � 1, we recover the method described in Algorithm 1. The choice of the
damping factors fxkg is determined by the delicate balance between the robustness and the convergence speed of the iter-
ative process. It is difficult to determine a unique damping parameter which is optimal for different types of meshes and
problems considered in this section. Our experience shows that xk between 0.5 and 0.75 provides robust behavior for the
considered problems. We noticed that the relaxation is important for the advection-dominated problems on highly distorted
meshes. Also, usage of the extended set Rext

T on triangular meshes requires additional relaxation compared to the smaller set
RT . A dynamic choice of the damping factor can significantly increase the efficacy of the method and it will be analyzed in the
future.

6. Conclusion

We developed and analyzed the new monotone finite volume method for the advection–diffusion equation with a full
anisotropic continuous diffusion tensor. We proved non-negativity of the numerical solution provided that the source term
and the Dirichlet boundary data are non-negative and the flux on the Neuman boundary is non-positive. The method does
not require to interpolate solution to mesh nodes and can be applied to unstructured polygonal meshes. Generalization of
the method to problems with heterogeneous diffusion coefficients can be done following the path described in [10,23].
The numerical experiments demonstrated the second-order convergence rate for the concentration and the first-order con-
vergence rate for the flux on randomly distorted meshes for problems with highly anisotropic coefficients in both advection-
dominated and diffusion-dominated regimes.
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