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a b s t r a c t

We developed a new monotone finite volume method for diffusion equations. The second-
order linear methods, such as the multipoint flux approximation, mixed finite element and
mimetic finite difference methods, are not monotone on strongly anisotropic meshes or for
diffusion problems with strongly anisotropic coefficients. The finite volume (FV) method
with linear two-point flux approximation is monotone but not even first-order accurate
in these cases. The developed monotone method is based on a nonlinear two-point flux
approximation. It does not require any interpolation scheme and thus differs from other
nonlinear finite volume methods based on a two-point flux approximation. The second-
order convergence rate is verified with numerical experiments.

Published by Elsevier Inc.
1. Introduction

Anisotropic diffusion appears in many physical models describing subsurface flows, head conduction in structured mate-
rials and crystals, biological systems, and plasma physics. Anisotropic diffusion has shown to be a powerful denoising tool in
image processing [1]. Accurate modeling of diffusive processes in these applications requires reliable discretization methods.
In this article we develop a new finite volume method that preserves solution positivity.

The linear methods, such as the multipoint flux approximation (MPFA), the mixed finite element (MFE) and the mimetic
finite difference (MFD) methods, are second-order accurate on unstructured meshes but may produce non-monotone solu-
tions even when the diffusion coefficient is moderately (1:100) anisotropic. The linear two-point flux approximation finite
volume (FV) method, used for instance in modeling flows in porous media, is monotone but not even first-order accurate for
anisotropic problems. Monotonicity of the MPFA methods is analyzed in [2,3]. The theoretical analysis of sufficient mesh
conditions providing the discrete maximum principle (DPM) has been formulated in 70’s by Ciarlet and Raviart [4] for piece-
wise-linear finite element approximations. Later, the DMP has been shown for weaker mesh conditions [5,6]. To guarantee
solution positivity for general meshes, a number of nonlinear methods have been proposed for the Poisson equation [7] and
more recently for general diffusion equation [8–13].

The monotone FV method proposed in this article is based on a nonlinear two-point flux approximation scheme. The
original idea belongs to LePotier [8]. In [9], we proved monotonicity of his method for steady-state diffusion problems
and extended it to shape-regular polygonal meshes and scalar diffusion coefficients. In three-dimensions the method has
been proposed and analyzed by Kapyrin [12,13]. Further development of the method was made by Yuan and Sheng [10].
Their method can be applied to a much bigger class of polygonal meshes consisting of star-shaped cells and full tensor dif-
fusion coefficients. The common property of all these methods is that in addition to primary unknowns defined at mesh cells,
r Inc.
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solution values at mesh vertices are involved in the method construction. These auxiliary unknowns are interpolated from
primary, cell-based unknowns. The interpolation problem becomes even a more challenging task when the diffusion coef-
ficient is discontinuous. The interpolation methods studied in [10] use a piecewise-linear approximation to the solution
around points where the coefficient is discontinuous. However, as shown in [9,10], the choice of the interpolation method
affects the accuracy of the nonlinear FV method even in the case of a constant diffusion coefficient. The choice of an inter-
polation method depends of the problem. The particular interpolation method may be efficient for one problem and be inac-
curate for another. The nonlinear FV method proposed in this article does not use any auxiliary unknowns at mesh vertices,
and thus is the next step towards efficiency of nonlinear two-point flux approximation methods. It is exact for linear and
piecewise-linear solutions and thus has the second-order truncation error. Our numerical experiments show the second-or-
der convergence rate in the mesh-dependent L2-norm.

The two-point flux approximation methods result in schemes with a compact stencil. For square meshes and a diagonal
diffusion tensor this stencil reduces to the conventional five-point stencil. The major computational overhead in nonlinear
FV methods comes from the solution of a nonlinear algebraic problem. The Picard method, used in this and the other papers,
guarantees that the solution is positive on each iteration. Our numerical experiments demonstrate that the proposed method
requires lesser number of nonlinear iterations than the methods using interpolation algorithms.

The paper outline is as follows. In Section 2, we state the diffusion problem. In Section 3, we describe the nonlinear finite
volume scheme. In Section 4, we prove monotonicity of the proposed scheme. In Section 5, we present numerical analysis of
the scheme using triangular, quadrilateral and polygonal meshes.

2. Steady diffusion equation

Let X be a two-dimensional polygonal domain with boundary C ¼ CN [ CD where CD ¼ �CD and CD – ;. We consider a
model diffusion problem for unknown concentration c:
� divðKrcÞ ¼ f in X;

c ¼ gD on CD;

�K
oc
on
¼ gN on CN;

ð1Þ
where KðxÞ ¼ KTðxÞ > 0 is an anisotropic diffusion tensor, f is a source term, and n is the exterior normal vector.
Let T be a conformal polygonal mesh composed from shape-regular cells. Let NT be the number of polygonal cells and NB

be the number of boundary edges. We assume that T is edge-connected, i.e. it cannot be split into two meshes having no com-
mon edges. We also assume that the tensor K is constant inside each cell; however, it may jump across mesh edges as well as
may change orientation of principal directions. Finally, we assume that each polygon has at most one edge across which K is
discontinuous. This can be always achieved by breaking some of the mesh cells into a few new cells.

We denote by EI , EB disjoint sets of interior and boundary edges. The subset EJ of EI collects edges with jumping diffusion
tensor. The set EB is further split into subsets ED

B and EN
B where the Dirichlet and Neumann boundary conditions, respectively,

are imposed. Finally, ET denotes the set of edges of polygon T.

3. Monotone nonlinear FV scheme on polygonal meshes

Let q ¼ �Krc denote the flux which satisfies the mass balance equation:
divq ¼ f in X: ð2Þ

In this section, we derive a FV scheme with a nonlinear two-point flux approximation. Integrating equation (2) over a poly-
gon T and using the Green’s formula we get:
Z

oT
q � nT ds ¼

Z
T

f dx; ð3Þ
where nT denotes the outer unit normal to oT. Let e denote an edge of cell T and ne be the corresponding normal vector. For a
single cell T, we always assume that ne is the outward normal vector. In all other cases, we specify orientation of ne. It will be
convenient to assume that jnej ¼ jej where jej denotes the length of edge e. The equation (3) becomes
X

e2oT

qe � ne ¼
Z

T
f dx; ð4Þ
where qe is the average flux density for edge e.
For each cell T, we assign one degree of freedom, CT , for concentration c. Let C be the vector of all discrete concentrations.

If two cells Tþ and T� have a common edge e, the two-point flux approximation is as follows:
qh
e � ne ¼ Mþ

e CTþ �M�
e CT� ; ð5Þ
where Mþ
e and M�

e are some coefficients. In a linear FV method, these coefficients are equal and fixed. In the nonlinear FV
method, they may be different and depend on concentrations in surrounding cells. On edge e 2 CD, the flux has a form similar
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to (5) with an explicit value for one of the concentrations. For the Dirichlet boundary value problem, CD ¼ oX, substituting
(5) into (4), we obtain a system of NT equations with NT unknowns CT . Dirichlet and Neumann boundary conditions are con-
sidered in Section 3.3.

3.1. Notations

For every T in T , we define the barycenter x�T and a collocation interior point xT . Similarly, for every edge e 2 EB [ EJ , we
define the barycenter x�e and a collocation point xe. If e is the boundary edge, we set xe ¼ x�e. If the diffusion tensor is not chang-
ing across edges of T, we set xT ¼ x�T . Otherwise, the collocation point is selected according to the rules defined in Lemma 3.2.

For every T we define a set RT of nearby collocation points as follows. First, we add to RT the collocation point xT . Then, for
every interior edge e 2 ET n ðEJ [ EBÞ, we add the collocation point xT 0e , where T 0e is the cell, other than T, that has edge e. If
e 2 ET \ EJ , we add to RT the collocation point xe. Finally, for every boundary edge e 2 ET \ EB, we add the collocation point
xe. Let NðRTÞ denote the cardinality of RT .

We shall refer to collocation points on edges e 2 EJ [ EB as the secondary collocation points. They are introduced for math-
ematical convenience and will not enter the final algebraic system. In contrast, we shall refer to the other collation points as
the primary collocation points.

We assume that for every e 2 ET , there exist two points xe;1 and xe;2 in set RT such that the following two conditions are
hold. First, if
te;1 ¼ xe;1 � xT ; te;2 ¼ xe;2 � xT ;
and he;i, i ¼ 1;2, is the angle between te;i and the co-normal vector ‘e ¼ KT ne, then
he;1 < p; he;2 < p and he;1 þ he;2 < p: ð6Þ
Second, the vectors te;i and ‘e satisfy
te;1 � ‘e 6 0; te;2 � ‘e > 0: ð7Þ
In simple words, the co-normal vector ‘e is assumed to lie between vectors te;1 and te;2, as shown in Fig. 1, and all angles are less
than p. If conditions (6) and (7) are violated, we may add to the set RT the neighbors of already included collocation points.

Lemma 3.1. Under assumptions (6) and (7), there exist positive ae and be such that
1
j‘ej

‘e ¼
ae

jte;1j
te;1 þ

be

jte;2j
te;2: ð8Þ
Moreover,
ae ¼
sin he;2

sinðhe;1 þ he;2Þ
and be ¼

sin he;1

sinðhe;1 þ he;2Þ
:

The proof of Lemma may be found in [10].
3.2. Nonlinear two-point flux approximation for an interior edge

Let e be an interior edge. We denote by Tþ and T� the cells that share e and assume that ne is outward for Tþ. Let x� (or
xT� ) and x�� be the collocation point and the barycenter of T�, respectively. Let K� ¼ Kðx��Þ and C� (or CT� ) be the discrete
concentrations in T�.
Fig. 1. Notation: vector ‘e forms acute angles with vectors te;1 and te;2; the collocation points are marked by solid circles.
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We begin with the case when Kþ ¼ K� ¼ K. Let T ¼ Tþ.
Using the above notations, definition of the directional derivative
oc
o‘e
j‘ej ¼ rc � ðKneÞ;
and Lemma 3.1, we write
qe � ne ¼ �
j‘ej
jej

Z
e

oc
o‘e

ds ¼ � j‘ej
jej

Z
e

ae
oc

ote;1
þ be

oc
ote;2

� �
ds: ð9Þ
Replacing directional derivatives by finite differences, we get
Z
e

oc
ote;i

ds ¼ Ce;i � CT

jxe;i � xT j
jej þ Oðh2

TÞ; i ¼ 1;2; ð10Þ
where hT is the diameter of T. Note that this formula is exact for linear concentrations. If xe;i is the secondary collocation
point, we use formula (19) to replace Ce;i by a linear combination of concentrations in primary collocation points from RT .
Using the finite difference approximations (10), we transform formula (9) to
qh
e � ne ¼ �j‘ej

ae

jte;1j
ðCe;1 � CTÞ þ

be

jte;2j
ðCe;2 � CTÞ

� �
: ð11Þ
At the moment, this flux involves three rather than two concentrations. To derive a two-point flux approximation, we
consider polygon T� and derive another approximation of flux through edge e. To distinguish between Tþ and T�, we
add subscripts � and omit subscript e. Since ne is the internal normal vector for T�, we have to change sign of the
right-hand side:
qh
� � ne ¼ �j‘ej

a�
jt�;1j

ðC�;1 � C�Þ þ
b�
jt�;2j

ðC�;2 � C�Þ
� �

; ð12Þ
where a� and b� are given by Lemma 3.1 and C�;i denote concentrations at points x�;i from RT� .
We define a new flux as a linear combination of qh

� � ne with non-negative weights l�:
qh
e � ne ¼ lþqh

þ � ne � l�qh
� � ne

¼ lþj‘ej
aþ
jtþ;1j

þ bþ
jtþ;2j

� �
Cþ � l�j‘ej

a�
jt�;1j

þ b�
jt�;2j

� �
C� � lþj‘ej

aþ
jtþ;1j

Cþ;1 þ
bþ
jtþ;2j

Cþ;2

� �

þ l�j‘ej
a�
jt�;1j

C�;1 þ
b�
jt�;2j

C�;2

� �
: ð13Þ
The obvious requirement for the weights is to cancel the terms in the last row of (13) which results in a two-point flux for-
mula. The second requirement is to approximate the true flux. These requirements lead us to the following system:
�lþdþ þ l�d� ¼ 0;
lþ þ l� ¼ 1;

(
ð14Þ
where
d� ¼ j‘ej
a�
jt�;1j

C�;1 þ
b�
jt�;2j

C�;2

� �
: ð15Þ
Since coefficients d� depend on both geometry and concentration, the weights l� do as well. Thus, the resulting two-point
flux approximation is nonlinear.

Remark 3.1. Note that concentration Cþ;i (resp., C�;i), i ¼ 1;2, may be defined at the same collocation point as C� (resp., Cþ).
In this case the terms to be canceled are changed. By doing so, we recover the classical linear scheme for square meshes with
the 4-1-1-1-1 stencil. A similar conclusion can be drawn for centroidal Voronoi meshes. To simplify the presentation, we
shall not consider this and similar special cases.

The solution of (14) can be written explicitly. In all cases d� P 0 if C P 0. If d� ¼ 0, we set lþ ¼ l� ¼ 1
2. Otherwise
lþ ¼
d�

d� þ dþ
and l� ¼

dþ
d� þ dþ

: ð16Þ
This implies that the weights l� are non-negative. Substituting this into (13), we get the two-point flux formula (5) with
coefficients
M�
e ¼ l�j‘ejða�=jt�;1j þ b�=jt�;2jÞ: ð17Þ
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Now we consider the case when Kþ – K�. In this case, the collocation points x� depend on both tensors. Let ‘� ¼ �K�ne be
two co-normal vectors to edge e outward with respect to T�.

Lemma 3.2. For every edge e 2 EJ shared by polygons Tþ and T�, there exist two primary collocation points xþ and x� and one
secondary collocation point xe such that
ðxe � xþÞ � ‘þ ¼ 0 and ðxe � x�Þ � ‘� ¼ 0:
The proof is based on the fact that the line defined by vector ‘� and passing through any interior point of e has an non-
empty intersection with interior of T�. In the computer program we choose collocation points x� that satisfy the lemma con-
dition and minimize the following functional:
Uðxþ;x�Þ ¼
jxþ � x�þj

2

jTþj
þ jx� � x��j

2

jT�j
:

The consequence of Lemma 3.2 is that formulae (12) are reduced to a two-point flux approximation:
qh
� � ne ¼ �

j‘�j
jxe � x�j

ðCe � C�Þ: ð18Þ
Continuity of the flux at edge e gives a linear relation for concentration Ce
ðCe � CþÞj‘þjjxe � x�j þ ðCe � C�Þj‘�jjxe � xþj ¼ 0: ð19Þ
Calculating Ce from (19) and substituting it in (18), we obtain
qh
þ � ne ¼ �qh

� � ne ¼
j‘þjj‘�j

j‘þjjxe � x�j þ j‘�jjxe � xþj
ðCþ � C�Þ:
Thus, the non-negative coefficients in (5) are equal
Mþ
e ¼ M�

e ¼
j‘þjj‘�j

j‘þjjxe � x�j þ j‘�jjxe � xþj
: ð20Þ
3.3. Neumann and Dirichlet boundary conditions

First, we consider the case of Neumann boundary edge e 2 EN
B . The flux through this edge is
qh
e � ne ¼ �gN;ejej; ð21Þ
where �gN;e is the mean value of gN on edge e. Despite that this flux is given, there may be fluxes (13) using concentration Ce.
Thus an equation for concentration Ce is needed. It is derived following the argument in the beginning of Section 3.2. It may
be convenient to think about e as the cell with zero area. Let T be the cell with edge e. Replacing Cþ and C� with CT and Ce,
respectively, we get
qh
e � ne ¼ Mþ

e CT �M�
e Ce; ð22Þ
where coefficients M�
e are given by (17). The required equation is then
M�
e Ce �Mþ

e CT ¼ ��gN;ejej: ð23Þ
Now consider the case of the Dirichlet boundary edge e 2 ED
B . Let T be again the cell with this edge. The equation for concen-

tration is trivial
Ce ¼ �gD;e ¼
1
jej

Z
e

gDds: ð24Þ
The equation for the flux is given by (22).

4. Discrete system and monotonicity analysis

For every T in T , the cell equation (4) is
X
e2ET

vðT; eÞqh
e � ne ¼

Z
T

f dx; ð25Þ
where vðT; eÞ is either 1 or �1 depending on mutual orientation of normal vectors ne and nT . Substituting two-point flux
formula (5) with non-negative coefficients given by (17) and (20) into (25), and using equations (23) and (24) to eliminate
boundary concentrations, we get a nonlinear system of NT equations
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MðCÞC ¼ FðCÞ: ð26Þ
The matrix MðCÞ may be represented by assembling of 2� 2 matrices
MeðCÞ ¼
Mþ

e ðCÞ �M�
e ðCÞ

�Mþ
e ðCÞ M�

e ðCÞ

 !
ð27Þ
for the interior edges and 1� 1 matrices MeðCÞ ¼ Mþ
e ðCÞ for Dirichlet edges (see Algorithm 1 for more detail). The right-hand

side vector FðCÞ is generated by the source and the boundary data:
FTðCÞ ¼
Z

T
f dxþ

X
e2ED

B\oT

M�
e ðCÞ�gD;e �

X
e2EN

B \oT

jej�gN;e; 8T 2 T ; ð28Þ
for f ðxÞP 0, gD P 0 and gN 6 0 the components of vector F are non-negative. We use the Picard iterations to solve the non-
linear system (26) (see Algorithm 1).

Algorithm 1: Generation and solution of nonlinear system (26)
1: Calculate primary and secondary collocation points (first paragraph in Section 3.1 and Lemma 3.1).
2: For each interior edge e 2 EI n EJ shared by elements T� find vectors t�;1, t�;2 satisfying conditions (6) and (7). Find sim-

ilar vectors for Neumann boundary edges.
3: Select an initial vector C0 with non-negative entries and a small value Enon > 0.
4: for k ¼ 0; . . . ; do
5: Assemble the global matrix MðCkÞ from the edge-based matrices MeðCkÞ. If e 2 EJ , use formula (20) to form MeðCkÞ.

For the other edges use (17) with (15) and (16).
6: Calculate the right-hand side vector FðCkÞ using (28).
7: Solve MðCkÞCkþ1 ¼ FðCkÞ.
8: Calculate concentrations Ce at the secondary collocation points on edges e 2 EJ [ EB using (19), (23) and (24).
9: Stop if kMðCkþ1ÞCkþ1 � FðCkþ1Þk 6 EnonkMðC0ÞC0 � FðC0Þk.
10: end for

The linear system in Step 7 with the non-symmetric matrix MðCkÞ is solved by the bi-conjugate gradient stabilized (BiCG-
Stab) method [14] with the second-order ILU preconditioner [15]. The BiCGStab iterations are terminated when the relative
norm of the initial residual MðCkÞCk � FðCkÞ becomes smaller than E lin.

Let us show that the matrix MðCkÞ is the M-matrix provided that Ck > 0. Our derivation shows that coefficients M�
e ðC

kÞ are
positive. Thus, all diagonal entries of matrix MðCkÞ are positive and all off-diagonal entries of MðCkÞ are non-positive. The
structure of edge-based matrices (27) implies that each column sum in MðCkÞ is non-negative. Moreover, for elements hav-
ing Dirichlet edges, the corresponding column sum is strictly positive. For a connected mesh, matrices MðCkÞ and MTðCkÞ are
irreducible since their directed graphs are strongly connected. Under the above conditions, the well-known linear algebra
result [16] implies that matrix MTðCkÞ is the M-matrix and all entries of ðMTðCkÞÞ�1 are positive. Since the inverse and trans-
pose operations commute, ðMTðCkÞÞ�1 ¼ ðM�1ðCkÞÞT , we conclude that MðCkÞ is monotone. Due to the signs of diagonal and
off-diagonal entries MðCkÞ is the M-matrix as well. Therefore, we proved the following theorem.

Theorem 4.1. Let f P 0, gD P 0, gN 6 0 and CD – ; in (1). If C0 P 0 and linear systems in the Picard method are solved exactly,
then Ck P 0 for k P 1.
5. Numerical experiments

We use discrete L2-norms to evaluate discretization errors for the concentration c and the flux q:
ec
2 ¼

P
T2T
ðcðxTÞ � CTÞ2jTjP

T2T
ðcðxTÞÞ2jTj

2
64

3
75

1=2

and eq
2 ¼

P
e2EI[EB

ððqe � qh
e Þ � neÞ2jSejP

e2EI[EB

ðqe � neÞ2jSej

2
64

3
75

1=2

;

where jSej is a representative area for edge e. More precisely, jSej is the arithmetic average of areas of mesh cells sharing the
edge. The nonlinear iterations are terminated when the reduction of the initial residual norm becomes smaller then
Enon ¼ 10�9. The convergence tolerance for the linear solver is set to E lin ¼ 10�12.

5.1. Monotonicity test

5.1.1. Dirichlet boundary conditions
In this section, we verify numerically the assertion of Theorem 4.1. The problems with highly anisotropic diffusion tensor

are challenging for any discretization method. Here we consider problem (1) defined in the unit square with a square hole,
X ¼ ð0;1Þ2=½4=9;5=9�2. The boundary of X consists of two disjoint parts as shown in Fig. 2(a).



Γ0
Γ1

a b c

Fig. 2. (a) Sketch of the computational domain X. (b) Uniform triangular mesh. (c) Square mesh.
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We set CN ¼ ;, f ¼ 0, gD ¼ 0 on C0, gD ¼ 2 on C1, and take the anisotropic diffusion tensor K
K ¼ Rð�hÞ
k1 0
0 k2

� �
RðhÞ; RðhÞ ¼

cos h sin h

� sin h cos h

� �
; ð29Þ
where k1 ¼ 100; k2 ¼ 1 and h ¼ �p=6.
According to the maximum principle for elliptic PDEs, the exact solution should be between 0 and 2. Let us consider the

uniform triangular and quadrilateral meshes shown in Fig. 2(b) and (c). The solution calculated with the lowest-order Rav-
iart–Thomas mixed finite element (MFE) method on the triangular mesh is shown in Fig. 3(a). In Fig. 3(b), we observe exten-
sive areas where the discrete solution is negative. Solutions computed with the nonlinear FV method on triangular and
square meshes are non-negative everywhere in X (see Fig. 4).

5.1.2. No-flow boundary conditions
Theorem 4.1 guarantees only non-negativity of the numerical solution. It means that in some situations the proposed

method may violate the discrete maximum principle. In this subsection we investigate problems with homogeneous Neu-
mann (no-flow) boundary conditions which frequently appear in simulations.

The problem, that we consider in this subsection, was also described and investigated in [3,17]. Let X be the unit square
X ¼ ð0;1Þ2 and K be the anisotropic diffusion tensor:
K ¼ Rð�hÞ
k1 0
0 k2

� �
RðhÞ; ð30Þ
where k1 ¼ 1; k2 ¼ 10�3 and h ¼ 67:5	.
The uniform 11� 11 square partition T is shown in Fig. 5(a). The source term f ðx; yÞ is set to zero. The scalar variable is

fixed in two cells (4, 6) and (8, 6), representing the sink (c ¼ 0) and the source (c ¼ 1) terms, respectively. These terms result
Fig. 3. (a) Solution calculated with the MFE method. (b) Part of X where this solution is negative.



Fig. 4. Solutions calculated with the nonlinear FV method on triangular (a) and square (b) meshes.

a b

Fig. 5. The profile of numerical solution (b) calculated with the nonlinear FV method for the problem with no-flow boundary conditions on the uniform
square mesh 11� 11 (a).
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in the Dirichlet boundary conditions on edges of these cells. The homogeneous Neumann boundary condition is set on the
outer boundary:
K
oc
on
¼ 0 on oX:
The maximum principle for elliptic PDEs states that the exact solution should be between 0 and 1 and have no extrema on
no-flow boundaries (the Hopf’s second lemma). The numerical solution is shown in Fig. 5(b). In agreement with Theorem 4.1,
the numerical solution is non-negative; however, some overshoots near the no-flow boundaries are observed. These over-
shoots are decreased as we refine the mesh and disappear on sufficiently fine meshes.

5.2. Picard method

The major computational overhead in the nonlinear FV methods comes from solution of the nonlinear algebraic problem.
Here, we study the Picard method that guarantees solution positivity on each iteration.

We consider the first problem described in the previous section and two triangular meshes with h ¼ 1=36 and h ¼ 1=72.
In Fig. 6, the interpolation-free nonlinear FV method is compared with two nonlinear FV methods described in [9]. One of
these two methods uses the linear interpolation algorithm, while the other employs the inverse distance weighting (IWD)
algorithm. The initial guess is C0 ¼ 1 for all methods.



Fig. 6. Convergence of the Picard method for nonlinear FV methods with the linear interpolation (marked by circle), the inverse-weighted distance
interpolation (marked by squares) and without interpolation (marked by pentagons). The solid line correspond to 72� 72 mesh. The dashed lines
correspond to 36� 36 mesh.
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All methods show fast convergence during the first 10–15 Picard iterations and then slow down. The results indicate that
the convergence rate depends on the mesh resolution. The interpolation-free method is the fastest one. We observed similar
behavior in many other experiments where the computational mesh was not aligned with the solution. The IWD interpola-
tion method is more preferable for solutions with sharp gradients [9]. This may explain why its convergence is faster com-
pared to the method with linear interpolation.

Next, we study convergence of nonlinear iterations for the second problem described in the previous section. Again, we
compare the interpolation-free nonlinear FV method with the two nonlinear FV methods described in [9]. In Fig. 7 the num-
ber of iterations required to reduce the nonlinear residual in 105 times is plotted as a function of the mesh step size h. On
coarse meshes the methods using the interpolation techniques converge faster. However, on finer meshes the interpolation-
free method requires much less iterations. Moreover, this difference in the number of nonlinear iterations grows as the mesh
Fig. 7. The number of Picard iterations required to reduced the nonlinear residual 105 times as a function of the mesh step size h. The nonlinear FV methods
with linear interpolation (marked by circles) and inverse-weighted distance interpolation (marked by squares) are compared with the FV method without
interpolation (marked by pentagons).
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refined. It may be caused by the step-like shape of the solution. As soon as the steepest part of the solution is well resolved,
the nonlinear method converges faster.

The Newton-type methods, such as the Newton–Raphson method, can be considered for reducing the number of nonlin-
ear iterations. However, a few issues have to be resolved before employing them. These methods do not guarantee solution
positivity after each iteration. The lack of positivity may result in division by zero in (16). Imposing of some positivity con-
straints may result in deterioration of their convergence properties. Analysis of these methods will be the direction for future
research and is beyond the scope of this paper.

5.3. Convergence study: smooth solution

In this section we investigate the convergence of the method for problems with a smooth solution. Let X ¼ ð0;1Þ2
Table 1
The con

h

1/16
1/32
1/64
1/128
1/256
cðx; yÞ ¼ 1
2p2 sinðpxÞ sinðpyÞ and K ¼

1 0
0 100

� �
ð31Þ
be the exact solution and the anisotropic diffusion tensor, respectively.
The convergence study is performed on three sequences of distorted triangular, distorted quadrilateral and polygonal

meshes. The distorted mesh is constructed from the uniform mesh with the mesh size h by random distortion of internal
nodes ðx; yÞ:
x :¼ xþ anxh; y :¼ yþ anyh; ð32Þ
where nx and ny are random variables with values between �0.5 and 0.5 and a 2 ½0;1� is the degree of distortion. To avoid
mesh tangling, we set a ¼ 0:4 for triangular meshes and a ¼ 0:7 for quadrilateral meshes. It is pertinent to emphasize that
the distortion is performed on each refinement level. Examples of these meshes are shown in Fig. 8. For each space resolu-
tion, the quadrilateral and polygonal meshes have roughly the same number of cells. The corresponding triangular meshes
have twice more cells.

The presented FV method is exact for piecewise-linear concentrations, so we may expect the second-order of convergence
for the scalar variable C and at least the first-order of convergence for the flux degrees of freedom. The convergence results
are presented in Table 1. The convergence rate for the scalar variable C increases as the meshes are refined and tends to the
asymptotic second-order. For the normal component of the flux, the convergence rate is higher than the first-order in all
cases: on randomly distorted meshes (triangular and quadrilateral meshes) and on smooth meshes (polygonal meshes).

In the next group of tests we study the problem with an isotropic and homogeneous diffusion tensor defined on highly
anisotropic meshes. The particular example is described in [3] where the authors demonstrate that for this type of problems
Fig. 8. Examples of distorted triangular (a), distorted quadrilateral (b) and polygonal (c) meshes.

vergence results for the problem with the smooth solution (31).

Triangular meshes Quadrilateral meshes Polygonal meshes

EC
2 Eq

2 EC
2 Eq

2 EC
2 Eq

2

1.20e�02 1.95e�02 8.47e�03 2.15e�02 1.59e�02 3.99e�02
4.74e�03 8.71e�03 2.34e�03 1.03e�02 5.86e�03 1.35e�02
1.65e�03 3.62e�03 6.64e�04 4.25e�03 1.80e�03 4.68e�03
5.20e�04 1.38e�03 2.06e�04 1.78e�03 4.67e�04 1.63e�03
1.50e�04 5.38e�04 5.89e�05 7.85e�04 1.10e�04 6.01e�04
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the convergence of MPFA O(g)-methods is lost. Following the description of numerical tests presented in [3], we consider
distorted and undistorted parallelogram meshes with different aspect ratios, 0:1 and 0:01 (see Fig. 9). The distorted meshes
are constructed using a modified formula (32) with different mesh steps hx and hy.

Let cðx; yÞ ¼ coshðpxÞ cosðpyÞ be the exact solution of the problem at hand. We consider a homogeneous isotropic medium
and zero source term. The convergence results are presented in Table 2. For both aspect ratios, the second-order convergence
for the scalar variable is observed. Convergence for the flux variable is the second-order on undistorted meshes and reduces
to the first-order on distorted meshes.

5.4. Convergence study: solutions with sharp gradients

In the next set of numerical experiments, we study convergence of the nonlinear FV method for a problem with a known
highly anisotropic solution. We consider problem (1) defined in the unit square X ¼ ð0;1Þ2 which is divided into three sub-
domains X1 ¼ ð0;1Þ � ð0;Y1Þ;X2 ¼ ð0;1Þ � ½Y1;Y2�;X3 ¼ ð0;1Þ � ðY2;1Þ as shown in Fig. 10(a). We impose the homogeneous
Dirichlet boundary condition on oX and set the source function and the diffusion tensor as follows:
Table 2
The con

h

1/16
1/32
1/64
1/128

Fig.
f ðx; yÞ ¼
0; ðx; yÞ 2 X1 [X3;

f0ðyÞsinðpxÞ ðx; yÞ 2 X2;

�
K ¼

k1 0
0 1

� �
:

In our experiments f0ðyÞ ¼ 100; k1 ¼ 100;Y1 ¼ 3=8 and Y2 ¼ 5=8. The exact solution to this problem can be calculated using
the separation of variables. Taking
Cðx; yÞ ¼ /ðyÞsinðpxÞ
Fig. 9. Parallelogram meshes with aspect ratio 0:1. Angle 30	 . Above: undistorted. Below: distorted.

vergence results for the problem defined on the anisotropic parallelogram meshes.

Undistorted meshes Distorted meshes

Aspect ratio 0.1 Aspect ratio 0.01 Aspect ratio 0.1 Aspect ratio 0.01

EC
2 Eq

2 EC
2 Eq

2 EC
2 Eq

2 EC
2 Eq

2

1.54e�03 6.08e�02 3.02e�03 2.49e�01 1.93e�03 7.96e�02 3.16e�03 6.40e�01
2.71e�04 1.79e�02 5.47e�04 5.74e�02 3.38e�04 2.28e�02 5.28e�04 2.30e�01
6.56e�05 5.01e�03 8.98e�05 1.42e�02 9.70e�05 1.23e�02 1.18e�04 1.28e�01
1.65e�05 1.40e�03 1.23e�05 3.75e�03 2.72e�05 5.21e�03 4.06e�05 7.34e�01

1

2

3

0
10

1

1

2Y

Y

10. (a) The computational domain for the problem defined in Section 5.4. (b) The discrete solution calculated with the nonlinear FV method.
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and substituting it into equation (1), we get the following equation for /ðyÞ:
Table 3
The con

h

1/16
1/32
1/64
1/128
1/256
� o2/
oy2 þ p2k1/ðyÞ ¼ f̂ ðyÞ where f̂ ðyÞ ¼

0; y 2 ½0;Y1� [ ½Y2;1�
f0ðyÞ y 2 ðY1; Y2Þ

�

that can be solved analytically. We seek the solution in the form
/ðyÞ ¼ a expðp
ffiffiffiffiffi
k1

p
Þ þ b expð�p

ffiffiffiffiffi
k1

p
Þ þ 1

p2k1
f̂ ðyÞ;
where coefficients a and b are constant on each of the three intervals. The continuity and boundary conditions result in a
6� 6 system for these coefficients. The solution Cðx; yÞ is shown in Fig. 10(b).

The numerical tests were performed on the meshes defined in Section 5.3 with the same order of distortion. The vertices
located on lines y ¼ Y1 and y ¼ Y2 were distorted only in the x-direction. The polygonal meshes were modified slightly to
conform to these lines. Each polygonal cell intersected by one of these lines was split into two cells.

The computed errors are collected in Table 3. Due to high order of the mesh distortion and large solution gradients (see
Fig. 10(b)), we observe slow convergence for the scalar unknown C on the coarse meshes. On the fine meshes,
h ¼ 1=128;1=256, the convergence rate increases and becomes close to the second-order for triangular and quadrilateral
meshes. For polygonal meshes, the convergence rate grows but does not yet reach the asymptotic rate on the finest mesh.
The way we adapt the polygonal meshes to lines y ¼ Y1 and y ¼ Y2 results in strong dis-proportionality of neighboring mesh
cells. This may be is one of the reasons for slowing down the convergence rate. The flux variable qh converges with the first-
order on all meshes.

5.5. Convergence study: discontinuous diffusion tensor

In this section we investigate convergence of our method for a problem with a heterogeneous diffusion tensor. Let X be
the unit square and K changes the eigenvalues and orientation of eigenvectors across the line x ¼ 0:5. Let KðxÞ ¼ Kð1Þ for
x 6 0:5 and KðxÞ ¼ Kð2Þ otherwise, where
vergence results for the problem with the anisotropic solution defined in Section 5.4.

Triangular meshes Quadrilateral meshes Polygonal meshes

EC
2 Eq

2 EC
2 Eq

2 EC
2 Eq

2

1.21e�01 1.68e�01 8.28e�02 1.71e�01 7.01e�02 1.96e�01
1.02e�01 1.41e�01 4.93e�02 8.21e�02 6.20e�02 1.09e�01
5.81e�02 7.85e�02 2.43e�02 3.97e�02 3.79e�02 6.18e�02
2.20e�02 3.49e�02 7.91e�03 1.86e�02 1.57e�02 2.68e�02
6.08e�03 1.54e�02 1.94e�03 8.81e�03 5.32e�03 8.55e�03

Fig. 11. The solution profile for the problem with the heterogeneous diffusion tensor.



Table 4
The convergence results for the problem with the heterogeneous diffusion tensor.

h Triangular meshes Quadrilateral meshes Polygonal meshes

EC
2 Eq

2 EC
2 Eq

2 EC
2 Eq

2

1/16 2.92e�04 7.38e�03 3.71e�04 1.02e�02 4.55e�04 1.08e�02
1/32 7.56e�05 2.97e�03 1.04e�04 4.61e�03 1.25e�04 3.33e�03
1/64 2.12e�05 1.18e�03 2.31e�05 1.96e�03 3.45e�05 1.11e�03
1/128 5.41e�06 4.83e�04 6.70e�06 8.92e�04 9.03e�06 3.92e�04
1/256 1.38e�06 2.08e�04 1.64e�06 4.14e�04 2.35e�06 1.40e�04
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Kð1Þ ¼
1 0
0 1

� �
and Kð2Þ ¼

10 3
3 1

� �
:

Note that condðKð1ÞÞ ¼ 1 and condðKð2ÞÞ ¼ 118:99. We choose the following exact solution:
cðx; yÞ ¼ 1� 2y2 þ 4xyþ 2yþ 6x if x 6 0:5;
b2y2 þ c2xyþ d2xþ e2yþ f2 if x > 0:5;

(

where
b2 ¼ �2; c2 ¼
ð4K

ð2Þ
11 � 2K

ð2Þ
12 � 2Þ

K
ð2Þ
11

; d2 ¼
4ðKð2Þ12 þ 1Þ

K
ð2Þ
11

; f 2 ¼
4K

ð2Þ
11 þ 2K

ð2Þ
12 � 3

K
ð2Þ
11

:

The numerical tests were performed on distorted triangular, distorted quadrilateral and polygonal meshes. The order of dis-
tortion is the same as in the previous sections. The mesh nodes located on the line x ¼ 0:5 were distorted only in the y-direc-
tion. The polygonal meshes were modified as before to conform to this line. The solution profile is shown in Fig. 11. The
convergence results presented in Table 4 demonstrate that the heterogeneity of the diffusion tensor does not affect the con-
vergence rate for all the considered meshes.

6. Conclusion

We developed and analyzed the new monotone finite volume method for anisotropic diffusion equation. We have proved
that this method guarantees nonnegativity of the numerical solution if the source term and the initial guess are non-nega-
tive. The distinctive feature of the proposed method is that no interpolation technique is employed. This provides more ro-
bust and faster convergence of nonlinear iterations in comparison with the methods described in [9]. The method is
applicable to polygonal meshes and full anisotropic heterogeneous diffusion tensors. The numerical experiments demon-
strate the second-order convergence for the scalar unknown and the first-order convergence for the flux variable (a) on
meshes with small aspect ratios and (b) for problems with highly anisotropic coefficients.

The future research direction is the reduction of the computational cost of solving the nonlinear algebraic problem by
using more efficient iterative methods. Another open problem is conforming the discrete maximum principle. A new ap-
proach to this problem was proposed recently by Potier [11].
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