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Abstract

We consider a non-linear finite volume (FV) scheme for stationary diffusion equation. We prove that the scheme is
monotone, i.e. it preserves positivity of analytical solutions on arbitrary triangular meshes for strongly anisotropic and
heterogeneous full tensor coefficients. The scheme is extended to regular star-shaped polygonal meshes and isotropic het-
erogeneous coefficients.
� 2007 Elsevier Inc. All rights reserved.

1. Introduction

Predictive numerical simulations require not only more sophisticated physical models but also more accu-
rate and reliable discretization methods for these models. In this article we consider a stationary diffusion
problem with a full tensor coefficient. Development of a new discretization scheme for this problem should
be based on a few practical requirements [3,4]. The scheme must

– be locally conservative;
– be monotone, i.e. preserve positivity of the differential solution;
– be reliable on unstructured anisotropic meshes that may be severely distorted;
– allow heterogeneous full diffusion tensors;
– result in a sparse system with minimal number of non-zero entries;
– have higher than the first order of accuracy for smooth solutions.

0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.08.008

* Corresponding author. Tel.: +1 505 606 2124; fax: +1 505 665 5757.
E-mail addresses: lipnikov@lanl.gov (K. Lipnikov), shashkov@lanl.gov (M. Shashkov), dasvyat@lanl.gov (D. Svyatskiy),

vasilevs@dodo.inm.ras.ru (Yu. Vassilevski).

Available online at www.sciencedirect.com

Journal of Computational Physics 227 (2007) 492–512

www.elsevier.com/locate/jcp



Author's personal copy

As far as we know, a linear scheme satisfying all the above requirements is not known. Several linear
schemes satisfying one or more requirements have been proposed in [1,8,9,5]. In this article, we analyze a
non-linear scheme that satisfies all six requirements.

Monotonicity is the most difficult requirement to satisfy. We distinguish two classes of monotone
schemes. The larger class contains schemes which preserve positivity of a continuum solution. The smaller
class contains schemes which satisfy the discrete maximum principle (DMP). Both classes are tightly con-
nected to algebraic properties of the matrix of the discrete operator. A monotone matrix [20] guarantees
that the solution of a system of linear algebraic equations will be non-negative for any non-negative right
hand side. The discrete maximum principle requires the matrix to be monotone and to have weak diagonal
dominance in rows [17].

Classical finite volume (FV) and finite element (FE) schemes violate the discrete maximum principle on gen-
eral meshes and for full diffusion tensors [7,9]. The schemes which satisfy the DMP impose severe restrictions
on both meshes and problem coefficients [14,15]. To enlarge the class of admissible problems and meshes,
some schemes such as the multi-point flux approximation methods [1] use built-in flexibility to increase their
monotonicity regions. The other schemes use the first physical principles such as the constrained minimization
of the energy functional [12] to get the positive solution. In this article, we analyze a FV scheme which is
monotone (i.e. preserves positivity of a continuum solution) and imposes no constraints on both the problem
coefficients and mesh regularity.

Recently a few non-linear schemes [6,11] have been suggested to guarantee monotonicity on unstructured
simplicial meshes. The Poisson equation in arbitrary space dimensions was analyzed in [6] and a general two-
dimensional parabolic equation was considered in [11]. In this article, we further develop and analyze the
non-linear FV scheme proposed in [11]. First, we rectify the scheme by giving correct positions of collocation
points for the case of a full diffusion tensor and an unstructured triangular mesh. Second, we propose an
alternative interpolation technique [16] to improve robustness of the scheme for problems with strong anisot-
ropy and sharp gradients. Third, we prove monotonicity (in the sense of solution positivity) of the scheme for
stationary diffusion equations. It was shown in [11] that the scheme is monotone only for parabolic equa-
tions and sufficiently small time steps. Fourth, we study numerically important features of the scheme such
as violation of the DMP as well as impact of anisotropy of the diffusion tensor on the scheme convergence.
Finally, we extend the scheme to shape-regular quadrilateral meshes and heterogeneous isotropic diffusion
tensors. We also mention the recent extension of the scheme to tetrahedral meshes [21].

The outline of the article is as follows. In Section 2 we formulate the stationary diffusion equation and
introduce the conformal simplicial mesh. In Section 3 we describe and analyze the non-linear FV scheme.
In Section 4 we extend the scheme to polygonal meshes. In section 5 we present the numerical experiments
which illustrate the basic features of the scheme.

2. Stationary diffusion equation

Let X be a two-dimensional polygonal domain X with boundary C = CN [ CD where CD ¼ CD and CD 6¼ ;.
We consider a model diffusion problem for unknown concentration c:

� divDrc ¼ f in X

c ¼ gD on CD

�D
oc
on
¼ gN on CN

ð1Þ

where D ¼ DT > 0 is a piecewise constant (possibly anisotropic) diffusion tensor and n is the exterior normal
vector.

Let T be a conformal triangulation composed of N T triangular cells T. We assume that T is connected, i.e.
it cannot be split into two sets having at most one common point (a mesh vertex). We assume that the tensor D

is constant inside each cell and its jumps occur only along mesh edges of T . Let q ¼ �Drc denote the diffu-
sion flux which satisfies the mass balance equation:

divq ¼ f in X: ð2Þ
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3. Monotone non-linear FV scheme on triangular meshes

In this section, we derive a non-linear FV scheme with 2-point flux approximation. Integrating the mass
balance equation (2) over a cell T and using the Green formula we getZ

oT
q � nds ¼

Z
T

f dx; 8T 2 T ; ð3Þ

where n denotes the outer unit normal to oT. Let e denote an edge of triangle T and ne be the corresponding
normal vector. For a single cell T, we shall always assume that ne is the outward normal vector. We shall spec-
ify orientation of ne in all other cases. Hereafter, it will be convenient to assume that jnej = jej where jej denotes
the length of edge e. Eq. (3) becomesX

e2oT

qe � ne ¼
Z

T
f dx; 8T 2 T ; ð4Þ

where qe is the average flux density for edge e:

qe ¼
1

jej

Z
e

qds:

The FV schemes differ by approximations for the fluxes qe. In this article we use a two-point flux approx-
imation. For each cell T, we assign one degree of freedom CT for concentration c. Let C be the vector of dis-
crete unknowns. The two-point flux approximation uses only two degrees of freedom CTþ and CT�

corresponding to cells T+ and T� that share the edge e. Sometimes, we shall write C+ instead of CTþ for sim-
plicity. The general form for the two-point flux is as follows:

qh
e � ne ¼ Aþe Cþ � A�e C�;

where Aþe and A�e are some coefficients. For instance, Aþe ¼ A�e in some classical FV schemes. Substituting dis-
crete approximation qh

e for qe in (4), we obtain a system of N T equations with N T unknowns CT.

3.1. Non-linear two-point flux

In this section, we consider a non-linear two-point flux approximation where coefficients Aþe and A�e depend
on concentration. We begin with the physical meaning of discrete unknowns. The discrete concentration CT

approximates the continuous concentration c at a point xT inside triangle T. We shall refer to this point as the
collocation point. Denoting the vertices of this triangle by v1, v2 and v3, we define the collocation point as
follows:

xT ¼
X3

i¼1

viki; ki ¼
jnaðiÞjDP3
j¼1jnaðjÞjD

; ð5Þ

where jnjD ¼ ðDn � nÞ1=2 is the length of vector n in metric D induced by the diffusion tensor in triangle T and
a(i) denotes the edge opposite to vertex vi. The reason for such a choice of coordinates ki will be explained
later.

Let us consider an interior mesh edge e with end points v1 and v2 shared by two triangles T+ and T�. Let Dþ
and D� be the values of diffusion tensor in triangles T+ and T�, respectively. Similarly, we denote the collo-
cation points for these triangles by x+ and x� (see Fig. 1). We assume that the normal vector ne is outward for
triangle T+.

Let Ti, i = 1,2, be the triangle with vertices x+, x�, and vi. For triangle T1, we denote the normal vectors to
its edges by nþ1 , n�1 and nM as shown in Fig. 1. We assume again that length of these vectors equals to length of
the corresponding edge, i.e. jn�1 j ¼ jv1 � x�j and jnMj = jx+ � x�j. In a similar way we define normals n�2 to
edges of triangle T2. The following identities hold:

nþ1 þ n�1 þ nM ¼ 0 and nþ2 þ n�2 � nM ¼ 0: ð6Þ
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Case I. To illustrate the general idea of the method, we consider first the case Dþ ¼ D� ¼ D. The Green
formula for triangle T1 and definition of flux q yield:Z

T 1

D�1qdx ¼ �
Z

oT 1

cnds: ð7Þ

Applying the mid-point (second-order) quadrature rule for both integrals, we obtain

�jT 1jD�1qh
e;1 ¼

C1 þ Cþ
2

nþ1 þ
C1 þ C�

2
n�1 þ

Cþ þ C�
2

nM ;

where C1, C+ and C� are the values of concentration c at points v1, x+, and x�, respectively. Only concentra-
tions C± are our discrete unknowns. The concentration C1 will be eliminated later. Using identity (6), we get

qh
e;1 ¼

1

2jT 1j
D Cþn�1 þ C�nþ1 � C1ðnþ1 þ n�1 Þ
� �

: ð8Þ

Now we apply the same derivations to triangle T2 to obtain the second formula for the flux density:

qh
e;2 ¼

1

2jT 2j
D Cþn�2 þ C�nþ2 � C2ðnþ2 þ n�2 Þ
� �

: ð9Þ

Given two flux density approximations (8) and (9), we seek for the discrete flux qh
e � ne through edge e as

their linear combination:

qh
e � ne ¼ l1qh

e;1 � ne þ l2qh
e;2 � ne; ð10Þ

where l1 and l2 are positive unknown coefficients. The approximation of flux density yields

l1 þ l2 ¼ 1: ð11Þ
The second equation for these coefficients follows from the requirement that qh

e � ne is the two-point flux
approximation. Substituting (8) and (9) into (10), we require that:

l1

C1Dðnþ1 þ n�1 Þ � ne

jT 1j
þ l2

C2Dðnþ2 þ n�2 Þ � ne

jT 2j
¼ 0: ð12Þ

Fig. 1. Case I. Interior edge e with end points v1 and v2. The collocation points x+ and x� are marked by solid balls. The triangles T+ and
T� are marked by dashed lines.
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Substituting (6) into (12) we may rewrite it as follows:

DnM � ne l2

C2

jT 2j
� l1

C1

jT 1j

� �
¼ 0: ð13Þ

If DnM � ne ¼ 0, then requirements (12) and (13) are fulfilled for any l1 and l2. This is almost impossible to
achieve for unstructured triangular meshes. Thus the last term in (13) should be zero. Together with (11), this
gives

l1 ¼
C2=jT 2j

C1=jT 1j þ C2=jT 2j
and l2 ¼

C1=jT 1j
C1=jT 1j þ C2=jT 2j

: ð14Þ

Substituting (14) in (10) gives the discrete flux through the interior edge e:

qh
e � ne ¼ Aþe ðCÞCþ � A�e ðCÞC�; ð15Þ

where

Aþe ðCÞ ¼
l1

2jT 1j
n�1 �Dne þ

l2

2jT 2j
n�2 �Dne;

A�e ðCÞ ¼ �
l1

2jT 1j
nþ1 �Dne �

l2

2jT 2j
nþ2 �Dne:

ð16Þ

The coefficients Aþe and A�e depend on concentrations C1, C2, i.e. the flux (15) is non-linear. The unknown
concentrations C1 and C2 must be approximated using the original degrees of freedom, i.e. concentrations at
collocation points. The total number of collocation points is NT which leave enough flexibility for accurate
approximation of these concentrations. We consider two interpolation methods.

First interpolation method uses three collocation points closest to v1 that form a imaginary non-degenerate
triangle eT containing v1. We denote these points by xT j , j = 1,2,3. The linear interpolation over this triangle
gives a second-order approximation for C1 [11]:

C1 ¼
X3

j¼1

CðxT jÞ~kj; ð17Þ

where ~kj, j = 1,2,3, are the barycentric coordinates of point v1 in triangle eT . Note that 0 6 ~kj 6 1. We found
out that this interpolation method is not robust for problems with strong anisotropy and/or solutions with
sharp gradients (see Section 5).

Second interpolation method uses the inverse distance weighting [16] of values C(xT) for all triangles T 2 T
that have v1 as a vertex. Let Uðv1Þ be the collection of these triangles. Then

C1 ¼
X

T2Uðv1Þ
CðxT ÞwT ; wT ¼

jxT � v1j�1P
T 02Uðv1ÞjxT 0 � v1j�1

: ð18Þ

Note that 0 6 wT 6 1. We shall use this fact later. The same interpolation methods are used for approximating
C2.

Case II. Now we proceed to the general case Dþ 6¼ D�. In this case the interval [x+,x�] may not inter-
sect the edge e. Therefore we define m as the mid-point of edge e, see Fig. 2. The edge e and point m split
the quadrilateral v1x+x�v2 into four triangles T�i , i = 1,2. For example, triangle Tþ1 is defined by vertices
m, x+ and v1.

In addition to vectors introduced above (see Fig. 1), we define vectors n�M , and ne,i, i = 1,2, that are normal
to intervals [m; x±] and [m; vi], i = 1,2, respectively. The orientation of these normal vectors is shown in Fig. 2.
We assume again that their length equals to the length of corresponding intervals; for example,
jnþM j ¼ jxþ �mj. Since ne;i ¼ 1

2
ne, the following identities hold:

n�1 þ n�M �
1

2
ne ¼ 0: ð19Þ

Applying the Green formula (7) for triangle Tþ1 and using the mid-point (second-order) quadrature rules for
both integrals, we get
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�2jTþ1 jD�1
þ qh;þ

e;1 ¼ ðC1 þ CþÞnþ1 þ
1

2
ðC1 þ CmÞne þ ðCþ þ CmÞnþM ; ð20Þ

where Cm is the concentration value at point m. A similar formula holds for triangle T �1 :

�2jT�1 jD�1
� qh;�

e;1 ¼ ðC1 þ C�Þn�1 �
1

2
ðC1 þ CmÞne þ ðC� þ CmÞn�M : ð21Þ

Taking into account identities (19) and continuity of the normal flux across edge e,

qh;þ
e;1 � ne ¼ qh;�

e;1 � ne � qh
e;1 � ne;

we eliminate Cm from (20) and (21). To simplify formula, we introduce the following numbers:

kðiÞ� ¼ D�n�i � ne; i ¼ 1; 2; and d� ¼
1

2
D�ne � ne:

Then,

qh
e;1 � ne ¼

Cþðdþkð1Þ� Þ þ C�ðd�kð1Þþ Þ � C1ðdþkð1Þ� þ d�kð1Þþ Þ
2ðjTþ1 jkð1Þ� � jT�1 jkð1Þþ Þ

: ð22Þ

Repeating the above derivations for triangles T�2 and Tþ2 , we obtain a similar formula:

qh
e;2 � ne ¼

Cþðdþkð2Þ� Þ þ C�ðd�kð2Þþ Þ � C2ðdþkð2Þ� þ d�kð2Þþ Þ
2ðjTþ2 jkð2Þ� � jT�2 jkð1Þþ Þ

: ð23Þ

Now we proceed as in Case I. Given two flux densities, we seek for their linear combination:

qh
e � ne ¼ l1qh

e;1 � ne þ l2qh
e;2 � ne; ð24Þ

where l1 and l2 are positive unknowns. The approximation of flux density yields

l1 þ l2 ¼ 1: ð25Þ
The second equation for these coefficients follows from requirement of two-point flux approximation. Substi-
tuting (22) and (23) into (24), we require that

l1c1 þ l2c2 ¼ 0; ci ¼
CiðdþkðiÞ� þ d�kðiÞþ Þ

2ðjTþi jk
ðiÞ
� � jT�i jk

ðiÞ
þ Þ
: ð26Þ

Fig. 2. Case II. Interior edge e with end points v1 and v2. The collocation points x+ and x� are marked by solid balls. The triangles T�1 and
T�2 are marked by thick lines. The triangles of T sharing the edge e are marked with dashed lines.
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The solution of system (25) and (26) gives

l1 ¼
c2

c2 � c1

and l2 ¼
�c1

c2 � c1

: ð27Þ

Therefore, the non-linear flux through an interior edge e is

qh
e � ne ¼ Aþe ðCÞCþ � A�e ðCÞC�; ð28Þ

where

Aþe ðCÞ ¼ l1

dþkð1Þ�
2ðjTþ1 jkð1Þ� � jT�1 jkð1Þþ Þ

þ l2

dþkð2Þ�
2ðjTþ2 jkð2Þ� � jT�2 jkð2Þþ Þ

;

A�e ðCÞ ¼ �l1

d�kð1Þþ
2ðjTþ1 jk

ð1Þ
� � jT�1 jk

ð1Þ
þ Þ
� l2

d�kð2Þþ
2ðjTþ2 jk

ð2Þ
� � jT�2 jk

ð2Þ
þ Þ

:

ð29Þ

Boundary edge. We consider separately the case of Dirichlet and Neumann boundary edge e. If e 2 CN, we
simply set

qh
e � ne ¼ �gNjnej; ð30Þ

where �gN is the mean value of gN on edge e. If e 2 CD, there exists a triangle T e 2 T such that Te \ CD = e. Let
Te be the triangle containing the collocation point x+ as shown in Fig. 1. Using notations introduced there, we
define triangle T+ with vertices x+, v1 and v2. The Green formula (7) for triangle T+, mid-point quadrature
rules for both integrals, and the identity (6) yield:

�jTþjD�1
þ qh

e ¼
C1 þ Cþ

2
nþ1 þ

C2 þ Cþ
2

nþ2 �
C1 þ C2

2
ðnþ1 þ nþ2 Þ: ð31Þ

Since C1 and C2 are end points of the Dirichlet edge, Ci = gD(vi). From (31) we derive the linear approxima-
tion of flux through edge e:

qh
e � ne ¼

1

2jTþj ðgDðv1Þnþ2 þ gDðv2Þnþ1 Þ �Dþne �
1

2jTþjCþðn
þ
1 þ nþ2 Þ �Dþne

or in a compact form:

qh
e � ne ¼ Aþe Cþ þ A�e ; ð32Þ

where

Aþe ¼ �
1

2jTþj ðn
þ
1 þ nþ2 Þ �Dþne; A�e ¼

1

2jTþj ðgDðv1Þnþ2 þ gDðv2Þnþ1 Þ �Dþne: ð33Þ

In Section 3.3, we show that the coefficients A�e appeared in (15), (28), and (32) are positive.

3.2. Discrete system and its iterative solution

Let EI and EB denote the sets of interior and boundary edges of T , respectively. We split the set EB into sub-
sets ED

B and EN
B of Dirichlet and Neumann edges, respectively. The normal vector ne to edge e is defined accord-

ing to the following rules. If e 2 EB, we choose the outward normal vector to X. If e 2 EI, we denote by Te+ and
Te� the two triangles that share edge e and assume that ne is outward for Te+. Eq. (4) may be rewritten asX

e2oT

vðT ; eÞqh
e � ne ¼

Z
T

f dx; 8T 2 T ; ð34Þ

where v(T,e) = 1 for e 2 EB and

vðT ; eÞ ¼
1; if T ¼ T eþ;

�1; if T ¼ T e�

�
otherwise.
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Substituting (15), (28), and (32) into (34), we get a system of N T equations in N T unknowns CT. Let C be
the vector discrete unknowns and AðCÞ be the matrix of this system. The matrix AðCÞ may be represented by
assembling of 2 · 2 matrices

AeðCÞ ¼
Aþe ðCÞ �A�e ðCÞ
�Aþe ðCÞ A�e ðCÞ

� �
for interior edges and 1 · 1 matrices AeðCÞ ¼ Aþe for Dirichlet edges. The coefficients A�e ðCÞ are defined in (16),
(29), and (33). The global discrete non-linear system reads as

AðCÞC ¼ F ; ð35Þ
where

AðCÞ ¼
X
e2T

NeAeðCÞNT
e ; ð36Þ

F T ¼
Z

T
f dx�

X
e2ED

B \oT

A�e �
X

e2EN
B \oT

Z
e

gN ds; ð37Þ

A�e is defined in (33) and Ne are assembling matrices consisting of zeros and ones.
The non-linear system (35) may be solved by a number of different methods. We use the Picard iterations:

Choose a small value enon > 0 and initial vector C0 2 RNT with positive entries, C0
i P 0, i ¼ 1; . . . ;N T , and

repeat for k = 1,2, . . . ,

1. solve AðCk�1ÞCk ¼ F ,
2. stop if kAðCkÞCk � F k 6 enonkAðC0ÞC0 � F k.

The linear system with non-symmetric matrix AðCk�1Þ is solved by the Bi-Conjugate Gradient Stabilized
(BCGStab) method [18] with the second-order ILU preconditioner [10]. The BCGStab iterations are termi-
nated when the relative norm of the initial residual becomes smaller than elin.

According to numerical evidence, the Picard iterations always converge provided that the linear systems are
solved with very low tolerance elin.

3.3. Monotonicity

The main result of this section is the following theorem.

Theorem 3.1. Let F T i P 0, C0
T i

P 0 for i ¼ 1; . . . ;NT and linear systems in Picard iterations are solved exactly.

Then all iterates Ck are non-negative vectors:

Ck
T i

P 0; i ¼ 1; . . . ;NT :

Proof. Assume for a moment that the matrix AðCk�1Þ is monotone for any non-negative vector Ck�1. Then
the solution Ck of AðCk�1ÞCk ¼ F is a non-negative vector and the next matrix AðCkÞ is again monotone.
Therefore, Ck

T i
P 0 for all i and k.

It remains to prove that matrix AðCÞ is monotone for any vector C with non-negative components. We
begin by showing that for any conformal triangulation T and any piecewise constant diffusion tensor D, the
following inequalities hold:

A�e ðCÞP 0; 8e 2 EI;

Aþe > 0; 8e 2 ED
B :

ð38Þ

Let us show that

kð1Þþ ¼ Dþnþ1 � ne < 0: ð39Þ
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To this end we consider a triangle Tþ 2 T with vertices vi, i = 1,2,3 (see Fig. 3). We use the same notations
as in Figs. 1 and 2. We denote the normals to the triangle edges by n13, n23 and ne. As before, the length of
these normals equal to the length of corresponding edges. For example, jn13j = jv1 � v3j. Let aDðn;mÞ denote
the angle in metric D between vectors n and m,

aDðn;mÞ ¼ arccos
n �Dm

jnjDjmjD

� �
:

Without loss of generality, we put the origin of the coordinate system in vertex v1. Eq. (5) gives the follow-
ing formula for the collocation point xTþ :

xTþ ¼
v2jn13jDþ þ v3jnejDþ

jnejDþ þ jn13jDþ þ jn23jDþ
:

Note that nþ1 is orthogonal to xTþ , ne and n13 are orthogonal to vectors v2 and v3, respectively. We search nþ1 as
a linear combination of vectors ne and n13. The direct substitution verifies that

nþ1 ¼ �
nejn13jDþ � n13jnejDþ
jnejDþ þ jn13jDþ þ jn23jDþ

and

Dþne � nþ1
jnejDþ

þDþn13 � nþ1
jn13jDþ

¼ 0: ð40Þ

Identity (40) implies that angles between ne and nþ1 and between n13 and �nþ1 are equal in metric Dþ. We
shall refer to the line which passes through a triangle vertex and cuts angles with the above properties as the
angle Dþ-bisectors. From the mutual orientation of vectors shown in Fig. 4, we conclude that

aDþðne; n
þ
1 Þ ¼ aDþðnþ1 ; n13Þ þ aDþðn13; neÞ

and

aDþð�nþ1 ; n13Þ ¼ p� aDþðnþ1 ; n13Þ:

Fig. 3. Notations for triangle T+. The collocation point xTþ is marked by a solid bullet.
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Since aDþðne; n
þ
1 Þ ¼ aDþð�nþ1 ; n13Þ, we get that

aDþðne; n
þ
1 Þ ¼

p
2
þ 1

2
aDþðn13; neÞ;

which in turn implies that the angle between ne and nþ1 is obtuse in metric Dþ. Therefore kð1Þþ < 0. Using similar
arguments we show that

kð2Þþ � Dþnþ2 � ne < 0 and kðiÞ� � D�n�i � ne > 0; i ¼ 1; 2: ð41Þ

The positive-definiteness of the diffusion tensor implies that the coefficients d± are positive.
Now, we show that for non-negative CT i , i ¼ 1; . . . ;NT , the coefficients l1 and l2 in (14) and (27) are non-

negative. For l’s in formula (14) this follows from non-negativity of C1, C2 and positivity-preserving
interpolation methods (17) and (18). For l’s in formula (27) we need to show that c1 and c2 have opposite
signs. Since the denominators in definition of c’s are positive, we have to analyze signs of the nominators.
Introducing a 2 · 2 matrix U ¼ 1

2 D�ðnenT
e ÞDþ and using identity nþ1 þ n�1 þ nþ2 þ n�2 ¼ 0, we get

dþkð1Þ� þ d�kð1Þþ ¼
1

2
nT

e Dþnen
T
e D�n�1 þ

1

2
nT

e D�nen
T
e Dþnþ1 ¼ n�1 �Une þ nþ1 �UTne

¼ �n�2 �Une � nþ2 �Une þ nþ1 � ðUT �UÞne

¼ �ðn�2 �Une þ nþ2 �UTneÞ þ nþ2 �UTne � nþ2 �Une þ nþ1 � ðUT �UÞne

¼ �ðdþkð2Þ� þ d�kð2Þþ Þ þ nþ1 � ðUT �UÞne þ nþ2 � ðUT �UÞne: ð42Þ

Based on identity nþ1 þ nþ2 þ ne ¼ 0 and skew-symmetry of matrix UT �U we conclude that sum of the last
two terms in (42) is zero. Thus c’s in (27) have opposite signs and therefore l’s are non-negative.

Using (39), (41), and non-negativity of l1 and l2, we get that the first inequality in (38) holds for any non-
negative vector C 2 RNT . Similarly, from (33), (39), and (41) we get the second inequality in (38).
Summarizing, we have proved three important statements.

1. All diagonal entries of matrix AðCÞ are positive.
2. All off-diagonal entries of AðCÞ are non-positive.
3. Each column sum in AðCÞ is non-negative and there exists a column with a positive sum ðED

B 6¼ ;Þ. More-
over, by construction,

4. Matrices AðCÞ and ATðCÞ are irreducible since their directed graphs are strongly connected. The graphs are
strongly connected because A�e ðCÞ 6¼ 0 and the mesh is assumed to be connected (see [19] for more detail).

Therefore, matrix ATðCÞ is the M-matrix and all entries of ðATðCÞÞ�1 are positive, see [19]. Since inverse and
transpose operation commute, ðATðCÞÞ�1 ¼ ðA�1ðCÞÞT, we conclude that all entries of A�1ðCÞ are positive
and AðCÞ is the monotone matrix. h

Corollary 3.1. For any tensor D the angle D-bisectors of triangle T are concurrent and intersect at the colloca-

tion point xT defined by (5).

Fig. 4. Normals emanating from a common point. The marked angles are equal in metric Dþ.
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Corollary 3.2. Let gN 6 0 on CN, f P 0 in X, gD P 0 on CD. Then A�e 6 0 in (37) and therefore F T i P 0,

i ¼ 1;N T .

Remark 3.1. The original version of the method [11] gives the wrong position of the collocation point xT in the
case of a full diffusion tensor. For the triangle with vertices (1, 0), (0, 1), and (0.25,0.25) and for the diagonal
tensor D ¼ diagf16; 1g the method in [11] results in a non-monotone scheme.

4. Monotone non-linear FV scheme on polygonal meshes

Construction of a non-linear FV scheme on a polygonal mesh is similar to that on a triangular mesh. The
main difficulty is to determine a position of collocation point inside each mesh cell such that the resulting sys-
tem is monotone. For the triangular case it is proved that such points exist for any diffusion tensor and any
geometry. For general polygonal meshes such points exist only for a restricted class of meshes and diffusion
tensors. We modify the scheme to relax some of the restrictions.

Let D be an isotropic heterogeneous diffusion tensor and Q be a conformal polygonal mesh composed of
NQ cells. We assume that the mesh is composed of shape-regular and star-shaped cells in the following sense:

1. For each polygonal cell Q 2 Q, we have

dðQÞ
qðQÞ 6 R�;

where d(Q) is the diameter of Q, q(Q) is radius of maximal inscribed circle, and R* is a constant independent
of the mesh.

2. Each cell Q is star-shaped with respect to an interior point xQ, i.e. any ray emanating from this point inter-
sects the boundary oQ at exactly one point. If geometry allows, we shall always place xQ at the center of
mass of Q.

Let EI and EB denote again the sets of interior and boundary edges of Q, respectively. We split EB into two
subsets of Dirichlet, ED

B , and Neumann, EN
B , edges. To each edge e we assign a normal vector ne such that

jnej = jej. If e 2 EB, we choose the outward normal to X. For e 2 EI we denote by Qe+ and Qe� the two poly-
gons that share edge e and assume that ne is outward for Qe+. Eq. (4) may be rewritten asX

e2oQ

vðQ; eÞqh
e � ne ¼

Z
Q

f dx; 8Q 2 Q; ð43Þ

where v(Q,e) is defined in the same way as the function v(T,e) in Section 3.2.
Given a two-point flux formula (28) we may follow the path described in the previous section to get a non-

linear system (35). In order to guarantee positivity of coefficients in formula (28), we propose the following
method. For an edge e 2 EI with end points v1 and v2, we define a minimal interval e0 ¼ ½v01; v02� containing
e such that

D�n�i � ne P 0 and Dþnþi � ne 6 0; i ¼ 1; 2; ð44Þ

where n�i are outward normals to edges of polygon v01xþv2x� as shown in Fig. 5. Formally extending coefficients
D± to the respective half planes of e 0, we may use formula (28) to calculate the flux density through e 0 and asso-
ciate this flux density with the mesh edge e. The accuracy of such a modification depends on the ratio je 0j/jej
which is bounded for shape-regular polygonal meshes and isotropic heterogeneous tensors. The monotonicity
of the matrix AðCÞ for any non-negative vector C follows from (44) and arguments used in Section 3.3.

5. Numerical experiments

We consider several numerical tests to demonstrate that the discretization scheme satisfies the practical
requirements mentioned in the introduction. The convergence rate is studied for both smooth and non-smooth
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highly anisotropic solutions. The positivity of a discrete solution is verified on different types of meshes. We
show that the discretization scheme is applicable to unstructured and strongly distorted meshes and can
accommodate full heterogeneous and anisotropic diffusion tensor.

5.1. Implementation issues

Since the FV scheme uses the collocation points xQ (xT for triangular meshes) to approximate the solution,
it is appropriate to use discrete L2-norms to evaluate approximation errors. For the concentration c, we use
the following norm:

ec
2 ¼

XNQ

i¼1

ðcðxQi
Þ � CQi

Þ2jQij
" #1=2

:

For the flux q, we use the following norm:

eq
2 ¼

XMQ

i¼1

ððq� qh
ei
Þ � neiÞ

2jSei j
" #1=2

;

where MQ is a total number of mesh edges, nei is the unit normal vector to edge ei, and jSei j is a representative
area for that edge. More precisely, jSei j is the arithmetic average of areas of mesh cells sharing edge ei.

Two interpolation methods were described in Section 3.1. The linear interpolation method is used in Sec-
tions 5.3.1 and 5.6. The inverse weighting interpolation method is used in the other sections. The numerical
results presented in Section 5.4 demonstrate that the linear interpolation method is not robust for problems
with strong anisotropy and/or solutions with sharp gradients.

To visualize a solution, we use the MATLAB tool which constructs the Delaunay triangulation from the set
of collocation points and draws a solution on this triangular mesh.

5.2. Triangular meshes: positivity of solution

In this section, we consider several test problems illustrating Theorem 3.1. We also to compare the non-lin-
ear FV method with the mixed finite element (MFE) method and the multi-point flux approximation (MPFA)

Fig. 5. Interval ½v01; v02� containing the interior mesh edge e with end points v1 and v2. The collocation points x+ and x� are marked by solid
balls. The quadrilaterals Q+ and Q� are marked by dashed lines.
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method. Recall that the MFE method always results in an algebraic problem with a symmetric positive definite
matrix. The MPFA method results in a non-symmetric matrix whose positivity was not proved in general.

5.2.1. Comparison with linear methods
Let us consider problem (1) in the unit square X = (0, 1)2 and set

D ¼ y2 þ ex2 �ð1� eÞxy

�ð1� eÞxy ey2 þ x2

� �
; e ¼ 5� 10�2 ð45Þ

and

f ðx; yÞ ¼ 1 if ðx; yÞ 2 ½3=8; 5=8�2;
0 otherwise:

(
We impose the homogeneous Dirichlet boundary conditions on oX. Let T be the triangular partition of X
shown in Fig. 6.

The exact solution is unknown but the maximum principle states that c(x,y) is non-negative. The numerical
solutions obtained with the MFE, MPFA, and non-linear FV methods are shown in Fig. 7. Only the FV
method preserves positivity of the continuum solution. Both linear methods produce negative values in large
subdomains. The largest negative values appear in the vicinity of the source term area where the solution has
sharp gradients. The MPFA solution has more non-physical oscillations than the MFE solution. As parameter
e decreases, the oscillations grow. This behavior of linear methods has been also observed by other researchers
[13]. The special technique which improves monotone properties of MFPA methods has been proposed in [2].

5.2.2. Different type of meshes

Quality of the solution produced with a linear method is improved when the mesh is aligned with the solu-
tion. The numerical results presented in this section demonstrate that the non-linear FV method preserves pos-
itivity of a continuum solution on different triangulations and produces solutions of the same quality. We
consider the diffusion problem described in the previous section and the following triangular partitions: the
regular structured mesh (Fig. 8(a)), the regular unstructured mesh (Fig. 8(b)), and the anisotropic mesh
(Fig. 8(c)). In all cases the discrete solution is non-negative.

5.3. Triangular meshes: convergence study

The next group of tests addresses the convergence rate of the non-linear FV scheme on randomly distorted
triangular meshes. To construct such a mesh, we take a uniform square partition of X with a mesh size h, split
each cell into four triangles, and distort randomly the positions of mesh nodes:

Fig. 6. Uniform triangular partion of X.
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Fig. 7. Comparison of the MFE, MPFA, and non-linear FV methods.

Fig. 8. Solution profile on different type of meshes.
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x :¼ xþ nxh; y :¼ y þ nyh;

where nx and ny are random variables with values between �0.15 and 0.15. It is pertinent to note that showing
convergence of a scheme on a sequence of true random meshes is a more difficult task than that on a sequence
of uniformly refined meshes.

5.3.1. Smooth solution

We consider problem (1) in the unit square X = (0,1)2 with the exact solution

cðx; yÞ ¼ 2 cosðpxÞ sinð2pyÞ þ 2: ð46Þ

We set D ¼ I and impose the Dirichlet boundary condition of oX.
The convergence results are presented in Table 1. The linear regression analysis shows that error ec

2

approaches the second-order convergence rate. The convergence rate for the flux q is greater than the first-
order. Note that in linear methods, the superconvergence of the flux is usually observed on smooth meshes.

5.3.2. Non-smooth anisotropic solution

Let us consider now problem (1) with a non-smooth anisotropic solution. The computational domain is the
unit square with a hole, X = (0,1)2/[4/9, 5/9]2, so that the boundary oX is composed of two disjoint parts C1

and C0 as shown in Fig. 9.
We set f = 0, gD = 0 on C0, gD = 2 on C1, and take the anisotropic diffusion tensor D,

D ¼
cos h � sin h

sin h cos h

� �
k1 0

0 k2

� �
cos h sin h

� sin h cos h

� �
; ð47Þ

where k1 = 100, k2 = 1 and h = p/6.

Table 1
Convergence analysis for the smooth solution on randomly distorted triangular meshes

h ec
2 eq

2

1/16 1.23e�3 1.04e�1
1/32 3.0e�3 4.05e�2
1/64 7.79e�4 1.75e�2
1/128 1.97e�4 8.47e�3
Rate 1.99 1.2

Fig. 9. Computational domain X and randomly distorted triangular partition.
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Since the exact solution is unknown, we replace it with the discrete solution computed on a very fine mesh
with h = 1/576 (Fig. 10). The numerical results shown in Table 2 indicate the first-order convergence rate for
concentration c.

5.4. Triangular meshes: violation of discrete maximum principle

The non-linear FV scheme may not satisfy the DMP. In the absence of a source term, the discrete solution
may have a few maxima inside the computational domain. We refer to this feature of the scheme as ‘‘over-
shoots’’. Numerical experiments presented below show that an appearance and values of overshoots depend
on the mutual orientation of the solution and mesh edges. Moreover, the overshoots are sensitive to the inter-
polation method implemented in the scheme.

Let us consider the problem from Section 5.3.2 discretized on the uniform triangular partition shown in
Fig. 11. The maximal value of the continuum solution is attained on the boundary and equals to 2.

We have tested tensors (47) for different ratio k1/k2 and orientation h of principal axes. The solution profiles
are shown in Fig. 12. Maximum values of the discrete solutions are collected in Table 3. The inverse distance
weighting interpolation method reduces overshoots and makes the scheme more robust. Moreover, no over-
shoots are observed when sharp gradients of the solution are aligned with mesh edges. The same observations
are held for the MFE and MPFA schemes.

Table 2
Convergence analysis for the non-smooth solution on randomly distorted meshes

h ec
2

1/18 8.69e�2
1/36 4.60e�2
1/72 2.34e�2
1/144 1.37e�2
1/288 6.72e�3
Rate 0.9

Fig. 10. Solution profile for the problem with the diffusion tensor defined by (47).
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Fig. 12. Solution profiles for different diffusion tensors and different interpolation techniques.

Fig. 11. Uniform triangular partion of X.
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Table 4 demonstrates that the discrete L2-norm of the overshoot error

eover ¼
XNQ

i¼1

ðmaxf0;CQi
� 2gÞ2jQij

" #1=2

goes to zero linearly with h.

5.5. Triangular meshes: heterogeneous diffusion tensor

In this section, we demonstrate that the non-linear FV scheme can handle strong jumps of full diffusion
tensor across mesh edges. We consider problem (1) in the unit square X = (0, 1)2 with the source term

f ðxÞ ¼
1
jxj if x 2 x;

0 otherwise;

(
where x ¼ ½7=18; 11=18�2

and the homogeneous Dirichlet boundary condition gD = 0 on CD = oX.

Table 3
Maximum value of the discrete solution for different diffusion tensors and interpolation techniques

Cmax Interpolation method

k1/k2 Linear Inverse distance weighting

h ¼ p
6

101 1.82 1.82
102 1.90 1.90
103 1.98 1.98

h ¼ 5p
6

101 1.89 1.89
102 2.39 2.00
103 3.41 2.05

Table 4
Reduction of the overshoot error eover for k1/k2 = 103 and h = 5p/6

h eover

1/18 2.48e�3
1/36 1.40e�3
1/72 5.89e�4
1/144 2.24e�4

k
2 k

1

k
1

k
2k

2k
1

k
1

k
2

k  =1000  k  = 121

θ = π/6 θ = −π/6

θ = π/6θ = −π/6

a b

Fig. 13. Principle directions of the anisotropic diffusion tensor with fixed eigenvalues k1 and k2 (left picture) and profile of the discrete
solution (right picture).

K. Lipnikov et al. / Journal of Computational Physics 227 (2007) 492–512 509



Author's personal copy

The domain X is partitioned into four square subdomains Xi, i = 1, . . . , 4, as shown in Fig. 13(a). The dif-
fusion tensor is given by formula (47) with different parameters k1, k2, and h in subdomains Xi. First, we fix the
anisotropy ratio by setting k1 = 103 and k2 = 1 and vary only parameter h (see Fig. 13(a)). Second, we use the
same values of h and the chess board distribution of k1 and k2 (see Fig. 14(a)). In both cases we get the non-
negative discrete solution (see Figs. 13(b) and 14(b)). Both discrete solutions have a good eye-ball quality.

5.6. Quadrilateral meshes: convergence study

The next group of tests addresses the convergence rate of the non-linear FV scheme on polygonal meshes in
the case of isotropic diffusion tensors. We consider a set of randomly distorted quadrilateral meshes. The
quadrilateral mesh is constructed from the uniform square mesh with the mesh size h by random distortion
of its nodes:

x :¼ xþ anxh; y :¼ y þ anyh:

2

1

θ = −π/6

2

k  = 1

k

2

1

1

θ = π/6

1
k

k

k

k

k  = 1000

2 k

k  = 10
1

2
k  = 1

θ = −π/6

2
k  = 1
k  = 1000

1

θ = π/6

k  = 10
1

2
k  = 1

k1
k2

a b

Fig. 14. Principle directions and eigenvalues of the heterogeneous anisotropic diffusion tensor (left picture) and profile of the discrete
solution (right picture).

Fig. 15. Two randomly distorted quadrilateral meshes with a = 0.5 (left picture) and a = 0.7 (right picture).
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Here nx and ny are random variables with values between �0.5 and 0.5 and a 2 [0,1] is the degree of distortion.
We consider a 2 [0.5,0.7]. The larger a is, the more distorted mesh is produced (see Fig. 15). If a > 0.5, mesh
cells may be non-convex. For each quadrilateral cell Q the collocation point xQ is defined to be the mass center.

We consider the Dirichlet boundary value problem (1) in the unit square X = (0, 1)2 with the isotropic dif-
fusion tensor D ¼ I and the smooth exact solution

cðx; yÞ ¼ 2 cosðpxÞ sinð2pyÞ þ 2: ð48Þ
In all experiments the edge extention factor je

0 j
jej was bounded by 1.5. The numerical results presented in

Table 5 show that the convergence rate of the non-linear FV scheme is not affected by the distortion parameter
a. For the considered degrees of distortion we observe the second-order convergence rate for concentration c
and greater than the first-order convergence rate for flux q.

5.7. Polygonal meshes: positivity of solution

We return to the problem discussed in Section 5.2.1 and discretize it on the polygonal partition Xh of
X = (0, 1)2 shown in Fig. 16(a). Since the polygonal extention of the non-linear FV scheme is restricted to
the case of isotropic or slightly anisotropic diffusion tensors, we pick a larger parameter e = 0.1 in the formula
(45) for the diffusion tensor.

The exact solution c(x,y) is unknown but according to the maximum principle it is positive in X. The dis-
crete solution profile shown in Fig. 16(b) demonstrates that the discretization scheme preserves solution
positivity.

6. Conclusion

In this article, we further developed the non-linear finite volume method proposed by Le Potier in [11].
First, we rectified the method by providing the correct formula for positions of collocation points. Second,

Table 5
Convergence results for different distortion parameters

h ec
2 eq

2

a = 0.5 a = 0.6 a = 0.7 a = 0.5 a = 0.6 a = 0.7

1/16 9.06e�3 9.56e�3 1.04e�3 1.31e�1 1.49e�2 1.72e�2
1/32 2.24e�3 2.31e�3 2.63e�3 5.02e�2 5.95e�2 7.27e�2
1/64 5.46e�4 5.91e�4 6.37e�4 2.25e�2 2.73e�2 3.22e�2
1/128 1.38e�4 1.48e�4 1.59e�4 1.1e�2 1.33e�2 1.61e�2
Rate 2.01 1.97 2.01 1.18 1.15 1.14

Fig. 16. The polygonal mesh (left picture) and the solution profile (right picture).
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we proposed the alternative interpolation technique which improves robustness of the method for problems
with strong anisotropy and sharp gradients. Third, we proved monotonicity of the method for the stationary

diffusion equation. Fourth, we studied numerically important properties of the method such as the conver-
gence rate and violation of the discrete maximum principle. Fifth, we extended the method to regular star-
shaped polygonal meshes and heterogeneous isotropic diffusion tensors.

The non-linear FV method is monotone and conservative for arbitrary triangular meshes and arbitrary full
tensor diffusion coefficients. It has the four-point stencil for triangular meshes and the five-point stencil for
quadrilateral meshes. It gives the second-order convergence rate for the scalar unknown and the first-order

convergence rate for the flux unknown. The price for these appealing features is the method non-linearity.
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