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Abstract We present applications of the nonlinear monotone finite volume method
to radionuclide transport and multiphase flow in geological media models. The
scheme is applicable for full anisotropic discontinuous permeability or diffusion
tensors and arbitrary conformal polyhedral cells. We consider two versions of the
nonlinear scheme: two-point flux approximation preserving positivity of the solu-
tion and compact multi-point flux approximation that provides discrete maximum
principle. We compare the new nonlinear schemes with the conventional linear two-
point and multi-point (O-scheme) flux approximations. Both new nonlinear schemes
have compact stencils and a number of important advantages over the traditional lin-
ear discretizations. Two industrial applications are discussed briefly: radionuclides
transport modeling within the radioactive waste safety assessment and multiphase
flow modeling of oil recovery process.
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Introduction

A simple and accurate conservative method applicable to general conformal meshes
and full anisotropic tensor permeability coefficients, is much-in-demand among en-
gineers. The maximum principle is one of the important properties of solutions of
partial differential equations (PDEs) such as the diffusion or heat equation. Its dis-
crete counterpart is a very desirable property to have in a numerical scheme. Un-
fortunately, the schemes satisfying the discrete maximum principle (DMP) impose
severe limitations on mesh regularity [6] and problem coefficients. Violation of the
DMP leads to various numerical artifacts, such as heat flow from a cold material to
a hot one, that can be amplified by physics non-linearity.

The classical two-point finite volume (FV) scheme for diffusion problems de-
fines a two-point flux approximation (TPFA) across a mesh face as a difference of
two concentrations at neighboring cells times a transmissibility coefficient. It re-
sults in a system of algebraic equation with an M-matrix with diagonal dominance
in rows, which implies immediately the discrete maximum principle [15]. However,
accuracy of this scheme depends on mesh geometry and mutual orientation of mesh
faces and principle directions of the diffusion tensor. More precisely, the co-normal
vector for a face must be collinear to the vector connecting neighboring collocation
points, which is clearly the impossible requirement for arbitrary tensors and/or ar-
bitrary polyhedral cells. The multi-point flux approximation (MPFA) scheme solves
accuracy problem by using more than two points in the flux stencil [1] and a ma-
trix of transmissibility coefficients. The MPFA scheme provides a second-order ac-
curate approximation of concentrations but is often only conditionally stable and
conditionally monotone [14].

A new research direction pioneered by Le Potier [7] uses a two-point flux stencil
with two coefficients that depend on the concentrations in neighboring cells. Non-
linear FV schemes with TPFA proposed in [3, 5, 7, 9, 10, 13, 18] guarantee solution
positivity on general meshes and for general tensor coefficients.

For general meshes and coefficients the DMP requires a nonlinear multi-point
flux approximation. For diffusion problems, such schemes were proposed in [8, 19]
using auxiliary unknowns at mesh vertices. Later an interpolation-free multi-point
nonlinear approximation of diffusive fluxes was proposed for two-dimensional [11]
and three-dimensional cases [2, 4]. The resulting scheme has the minimal stencil
and reduces to the classical two-point FV scheme on Voronoi or rectangular meshes
and for scalar (and, in a few cases, diagonal tensor) coefficients.

In this article, we present two our FV schemes for the steady-state diffusion equa-
tion with anisotropic coefficients: both schemes work on general polyhedral meshes
and have a compact stencil, the first preserves non-negativity of the discrete solu-
tion and the second satisfies the DMP. We also briefly consider two applications of
the nonlinear schemes to subsurface flows: simulation of radionuclides geomigra-
tion from a nuclear waste disposal and multiphase flow modeling of oil recovery
process.

The paper outline is as follows. In Section 1 we introduce our nonlinear FV
schemes for the steady-state diffusion equation. In Section 2 we present a new par-
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allel toolkit and two industrial applications using the toolkit and the presented FV
schemes.

1 Nonlinear finite volume methods

Let Ω be a three-dimensional polyhedral domain with boundary Γ . The mixed form
of the diffusion equation for unknown concentration c with the Dirichlet boundary
condition is as follows:

q =−K∇c, div q = f in Ω ,

c = g on Γ .
(1)

Here K(x) is a symmetric positive definite discontinuous (possibly anisotropic) dif-
fusion tensor, f (x) is a source term, and g(x) is a boundary data.

A discretization scheme can have two additional properties: discrete maximum
(or minimum) principle and non-negativity of the discrete solution. The minimum
principle states that for f ≥ 0 the concentration c(x) satisfies:

min
x∈Ω̄

c(x)≥min{0, min
x∈Γ

g(x)}.

The maximum principle is formulated similarly. In the following we shall refer
to both principles as the maximum principle. Non-negativity is a weaker property
which stems from the minimum principle: for non-negative f and g one has non-
negative c(x). A numerical scheme can provide non-negativity of c but violate the
discrete maximum principle (DMP) and thus can produce oscillations.

The cell-centered FV scheme uses one degree of freedom, CT , per cell T collo-
cated at cell barycenter xT . Integrating the mass balance equation (1) over T and
using the divergence theorem, we obtain:

∑
f∈∂T

σT, f q f ·n f =
∫

T
f dx, q f =

1
| f |

∫
f
qds, (2)

where q f · n f is the total flux across face f , and σT, f is either 1 or -1 depending
on the mutual orientation of normal vector to face n f and the outer normal to cell
boundary nT .

Both nonlinear flux approximation schemes exploit the same idea of vector ex-
pansion. First we need to find a triplet of three vectors t1∗ connecting xT1 with other
collocation points such that the co-normal vector ` f =K ·n f can be expanded

` f = α1a t1a +β1b t1b + γ1c t1c, α1a ≥ 0, β1b ≥ 0, γ1c ≥ 0, (3)

where a,b,c are indexes of neighboring cells.
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Fig. 1 Two representations of
co-normal vector `1 =−`2 =
K ·ne (2D example).

Since the flux normal component is the directional derivative along the co-normal
vector ` f , it can be represented as the sum of three directional derivatives along t1∗
which are approximated by central differences:

(q f ·n f )
(1)
h = α1a (Ca−C1)+β1b (Cb−C1)+ γ1c (Cc−C1). (4)

For the opposite co-normal vector −`e we have similar representation with an-
other triplet and central differences, see Fig. 1 for the 2D example:

(−q f ·n f )
(2)
h = α2k (Ck−C2)+β2l (Cl−C2)+ γ2m (Cm−C2). (5)

Our flux discretization is a linear combination of approximations (4) and (5) with
coefficients µ+ and µ−. For the sake of approximation the linear combination should
be convex:

µ++µ− = 1.

The second equation for µ± is dictated by the goal of the method:

• To obtain the two-point discretization, we get rid of unwanted concentrations in
the flux stencil:

µ+(α1a Ca +β1b Cb + γ1c Cc)−µ−(α2k Ck +β2l Cl + γ2m Cm) = 0.

• To provide the DMP, we balance the contributions of one-sided fluxes:

µ+(q f ·n f )
(1)
h = µ−(−q f ·n f )

(2)
h ,

so that either (4) or (5) can be used in assembling the discrete fluxes in (2). This
helps us to preserve compactness of the stencil for both cells T1 and T2 even with
the multi-point fluxes (4), (5).
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FV method with the nonlinear TPFA provides non-negativity of the discrete so-
lution, whereas FV method with the nonlinear MPFA provides the DMP. In the case
of K-orthogonal mesh vectors Kn f and t12 are collinear, both nonlinear flux ap-
proximations reduce to the conventional linear TPFA which provides at least first
order accuracy. In general case, the linear TPFA may not provide approximation at
all, whereas the linear MPFA may not provide the DMP or positivity.

2 Applications

Means for the development of parallel numerical models of complex phenomena on
general polyhedral meshes are provided by data structures and algorithms from the
open source package INMOST (Integrated Numerical Modelling Object-oriented
Supercomputing Technologies) [17]. FV discretization assumes that the processor
possessing a mesh cell has access to data in neighboring cells. If a cell adjoins to the
boundary of the local submesh associated with a processor, some of its neighbors
belong to other processors. For each local submesh we generate additional layers of
ghost cells composed of these neighbors. The ghost cells contain exact copy of data
of the associated normal cells. The main difference between the ghost cell and the
normal cell is that the ghost cell data should be actualized after any update of the
normal cell data. Actualization involves inter-processor communications that move
the data from normal cells to their ghost copies. Mesh data structure implemented in
INMOST allows simple design of a numerical scheme on each mesh cell and is very
convenient even for single processor implementations. Both applications presented
in this paper are built using INMOST toolkit.

First we consider application of the nonlinear FV schemes for the black-oil model
[12, 16]. The black oil model describes the three-phase flow of water, oil and gas
components in the underground reservoir. If the reservoir pressure drops below cer-
tain threshold, then oil is split into a liquid phase and gaseous phase at thermody-
namic equilibrium. In this case the water phase does not exchange mass with the
other phases, while the liquid and the gaseous phases exchange mass. The model
consists of mass conservation equations for each of the components and Darcy’s
velocity equations for each phase:

uα =−krα

µα

K
(

∇pα −ρα(p)g∇z
)
, α = w,o,g, (6)

where K is the absolute permeability tensor, z is the depth, g is the gravity term, pα ,
Sα are unknown pressure and saturation, µα and krα are the formation viscosity and
relative phase permeability, ρα are the densities at current conditions for the phase
α = w,o,g.

We use the fully implicit scheme in time and Newton method to solve the non-
linear system at each time step. Construction of the Jacobian matrix is based on
partial derivatives with respect to primary variables (oil pressure p, water and gas
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Fig. 2 Example of three-phase flow in heterogeneous media. Left: computational grid and geolog-
ical layers. Right: water saturation field.

saturations Sw, Sg) of discrete Darcy fluxes. The latter are obtained either by the
conventional linear TPFA or MPFA or by the nonlinear TPFA or MPFA presented
above (the diffusion tensor should be replaced with absolute permeability tensor).

Dependence of the method coefficients on primary variables leads to the exten-
sion of the Jacobian stencil [12, 16]. For instance, in case of the nonlinear TPFA one
has

−(K∇p)h
f ·n f = D+

f (p)p+−D−f (p)p−. (7)

Coefficients D±f must be differentiated as dependent on primary variables in neigh-
boring cells: ∆D±p = ∑

Ti∈ΣT∗

L±p,i ∆ pTi , where ΣT ∗ = ΣT+ ∪ΣT− , ΣT± is the set of cells

forming the stencil for cell T±, L±p,i are the coefficients of differentiation. Wider
stencil ΣT ∗ for Jacobian results in more dense Jacobian matrix and more expen-
sive Jacobian-vector multiplication and Jacobian preconditioning compared to the
conventional linear TPFA. On the other hand, the linear TPFA is often inconsistent.

An example for three-phase water-flooding with several wells in heterogeneous
media is shown in Fig. 2.

The second application of the nonlinear FV schemes is related to validation of
safe subsurface disposal of radioactive wastes (RW). In this application two main
tasks must be solved, the groundwater (GW) flow problem and the transport in
porous media problem, which may be strongly coupled in some cases. The novel FV
schemes are implemented within the code GeRa (Geomigration of Radionuclides).
This code is developed to model the major significant processes for radwaste dis-
posal safety: saturated and unsaturated flow, density-driven flow, reactive transport
with decay, heat transport. The basis for all these numerical models are the dis-
cretizations of the diffusion and advection operators. The computational meshes are
assumed arbitrary polyhedral. The code involves the triangular prismatic and the
octree-hexahedral mesh generators. In the first generator the resulting meshes may
contain triangular prisms, tetrahedra and pyramids. The octree hexahedral generator
cuts and adapts the cells to the domain boundary and interfaces between geological
layers leading to complicated polyhedral cells.
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Fig. 3 Example problem: groundwater flow in a realistic heterogeneous media. Left: computa-
tional grid and geological layers. Right: pressure head and flow streamlines.

The GW flow problem may be solved by FV scheme with either the linear TPFA
(may be inconsistent) and MPFA (may be non-monotone) or the nonlinear TPFA
and MPFA (both consistent and monotone). For the temporal discretization the
operator-splitting scheme or the implicit scheme may be used. The first one treats the
advection operator explicitly and the diffusion operator implicitly. Advection may
be modeled using the conventional first-order accurate FV scheme with piecewise-
constant solution or the second-order accurate TVD-scheme with linear reconstruc-
tion of discrete solution on the cells. For the diffusion operator any of the four flux
approximation schemes (linear/nonlinear TPFA/MPFA) may be applied. The im-
plicit scheme solves the coupled advection-diffusion problem using the nonlinear
FV method for diffusion and local linear solution reconstruction for advection.

Numerical experiments with GeRa show robustness of the nonlinear schemes:
the resulting matrices are reasonably well conditioned and the solutions remain non-
negative or satisfy the DMP. In case of large complicated grids and heterogeneous
tensor coefficients the schemes provide the best solution, as they allow to solve
efficiently the generated grid equations and they are consistent.

Fig.3 (left) presents a filtration model with three geological layers, single well
and outflow boundary with a prescribed water head. Water head solution and flow
streamlines obtained using the FV scheme with the nonlinear TPFA is shown on
Fig.3 (right).
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