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Abstract: Parallel-plate compression of multicellular spheroids (MCSs) is a promising and popular
technique to quantify the viscoelastic properties of living tissues. This work presents two different
approaches to the simulation of the MCS compression based on viscoelastic solid and viscoelastic fluid
models. The first one is the standard linear solid model implemented in ABAQUS/CAE. The second
one is the new model for 3D viscoelastic free surface fluid flow, which combines the Oldroyd-B
incompressible fluid model and the incompressible neo-Hookean solid model via incorporation of an
additional elastic tensor and a dynamic equation for it. The simulation results indicate that either
approach can be applied to model the MCS compression with reasonable accuracy. Future application
of the viscoelastic free surface fluid model is the MCSs fusion highly-demanded in bioprinting.
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1. Introduction

Mechanical properties of cells, cellular substrates, and biological tissues have been
demonstrated to play a crucial role in many physiological and pathological processes [1,2].
The mechanical behavior of soft biological objects is time-dependent and combines both
solid- and liquid-like aspects [3–5]. Therefore, it is often investigated using analogies with
inert soft condensed matter, either liquid or solids, including such models as viscoelastic
solids, pastes, foams, and liquids with surface tension [6]. Multicellular spheroids (MCSs),
three-dimensional spherical cellular aggregates, are part of a good in vitro model system to
explore tissue biomechanics [7]. The biological and mechanical properties of MCS result
from the complex interactions of its constituents, which are cells, extracellular matrix,
liquid medium, and that include intracellular adhesion, active force and tension generation
by cells, liquid diffusion, and cell and matrix rearrangements [7].

Even though a large number of mechanical models currently exist, none of them can
fully account for all components and describe a full reach spectrum of MCS mechanical
behavior, which can be observed during a time-dependent response to compression, shape
changes after the incision, and the fusion of two or more MCSs. Even though the creation
of an ideal model does not seem feasible at the moment, the models that can describe par-
ticular aspects should be developed, tested, and compared. From the practical perspective,
knowledge of the biomechanical properties of cellular aggregates will improve the quality
of the tissue engineering constructs. Cell aggregates hold the potential to be widely utilized
as building blocks for the construction of complex tissues via fusion and bioprinting [8].
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We address viscoelasticity-based simulations of an experiment on parallel-plate com-
pression [9] of spheroids generated from mesenchymal stromal cells. Viscoelastic phe-
nomena have been taken into account in solid deformation models of the parallel-plate
MCS compression in the literature (see [10,11] and references therein). For the simulation
of viscoelastic solid deformations we exploit the finite element ABAQUS/CAE software,
which is based on the model of linear isotropic viscoelasticity [12]. Although 3D viscoelastic
fluid models have been used in many applications [13–15], to the best of our knowledge
only 1D viscoelastic fluid flow models were applied to cells and multicellular aggregates
mechanics problems such as compression tests (we refer for a review to Table 1 from [10]).
In this paper, we suggest a new 3D viscoelastic free surface fluid flow model of the parallel-
plate MCS compression and compare it with the 3D linear isotropic viscoelastic solid
deformation model.

The description of viscoelastic fluid flows is based on differential constitutive equa-
tions such as Upper-Convected Maxwell (UCM) [16], Oldroyd-B [17], Giesekus [18], Phan–
Thien–Tanner [19] and others, as well as on integral constitutive equations [20,21]. Due to
its relative simplicity, the differential form of the UCM and Oldroyd-B models laid the
foundation for the benchmarking of numerical models [14,15,22,23]. The simulations of
flows of UCM and Oldroyd-B free surface fluids are based on finite elements [24,25], finite
volumes [13], smoothed particle hydrodynamics [26–28], finite differences on staggered
MAC grids [14,29,30], the lattice Boltzmann method [31] and so forth. Numerical treatment
of the free surface tracking is provided by the volume of fluid (VOF) method [32], the front
tracking by massless markers [33], or the front capturing by the level set method [34]. We
exploit the level set method, which represents the free surface by the zero isolevel of a
globally defined level set function advected by the fluid velocity field, since it allows us to
process complex topological changes on the surface. Although this feature is not used in
the simulation of the parallel-plate MCS compression, it is important for other experiments
such as the fusion of MCSs.

The novelty of our paper is the new model for 3D viscoelastic free surface fluid
flow applicable to the parallel-plate MCS compression experiment. The model combines
the Oldroyd-B incompressible fluid model and the neo-Hookean incompressible solid
model via the incorporation of an additional elastic tensor and a dynamic equation for
it. The numerical model of the Oldroyd-B incompressible free surface fluid is discussed
in [35]. The neo-Hookean model is one of the hyperelastic material models, which are
widely used for the evaluation of the mechanical properties of single cells [3,36,37]. It is
known to be reasonably accurate for incompressible soft tissues undergoing strains of up to
100% [38,39]. The second important contribution of the present paper is direct comparison
of the simulated and experimental data for the MCS compression.

The rest of the paper is organized as follows. In Section 2 we present the 3D models for
isotropic viscoelastic solid deformation and viscoelastic free surface fluid flow. In Section 3
we discuss the numerical results and compare them with experimental data for the parallel-
plate MCS compression.

2. Materials and Methods

In this section, we discuss viscoelastic models of solid and fluid which are applicable
to the description of the MCS compression and describe the protocol of the experiment.

2.1. Viscoelastic Solid Model

Since the compression of a multicellular spheroid is assumed to be slow enough,
the inertia forces can be neglected and the deformation can be described by a sequence of
quasi-static states of a linear isotropic viscoelastic solid. Each quasi-static state of a body
with current volume V and surface S is governed by the virtual work principle:∫

V

σ : δD dV =
∫
S

t · δv dS +
∫
V

f · δv dV, (1)
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where σ is the total Cauchy stress, D = ∇v+(∇v)T

2 is the strain-rate tensor, v is the virtual
velocity field, t = n · σ is the traction vector, f is the external force. Contact and traction
free boundary conditions complement the mechanical problem.

The constitutive law for the total stress of a linear isotropic viscoelastic material is time-
dependent and is defined by the following integral equation in case of small deformations:

σ(t) =
t∫

0

2G(t− t
′
)ėdt

′
+ I

t∫
0

K(t− t
′
)ϕ̇dt

′
, (2)

where e and ϕ are the mechanical deviatoric and volumetric strains; K is the bulk modulus
and G is the shear modulus, ȧ denotes differentiation of a with respect to t

′
. The generaliza-

tion [12] of (2) to finite strains is:

σ(t) = 2G(0)e(t) + dev

 t∫
0

F−1
t (t− t

′
)
(

2Ġ(t
′
)ė(t− t

′
)
)

Ft(t− t
′
)dt

′

 (3)

+I

K(0)ϕ(t) +
t∫

0

K̇(t
′
)ϕ̇(t− t

′
)dt

′

,

where dev[C] := C− 1
3 tr(C)I is the deviatoric part of a tensor C, Ft(t− t

′
) is the deforma-

tion gradient of the state at t− t
′

relative to the state at t.
Viscoelasticity properties are controlled by Young modulus E and Poisson ratio ν,

the parameters of the standard linear solid model, and the time-dependent shear modu-
lus G(t):

G(t) = G∞ + (G0 − G∞)e−t/λ1 , (4)

where λ1 is the elastic relaxation time, G∞ = lim
t→∞

G(t) and G0 = G(0) = E
2(1+ν)

are the

long-term and instantaneous shear moduli. The use of (4) implies setting two parameters
α = G∞

G0
and λ1. In order to compare the simulation results with the results produced by

the incompressible viscoelastic fluid model, we neglect the compressibility of the solid by
setting ν = 0.5, ϕ = 0 and discard the third term of (3).

The finite element implementation of the virtual work principle results in a sequence of
nonlinear systems to be solved at each time step of the simulation based on the quasi-static
process assumption.

2.2. Viscoelastic Fluid Model

The viscoelastic fluid model expands the Oldroyd-B fluid model by introducing an
additional stress component described by the incompressible neo-Hookean constitutive
law [40,41] as follows. The velocity v of incompressible non-Newtonian fluid in the gravity
field satisfies the Navier–Stokes equations:

ρ

(
∂v
∂t

+ (v · ∇)v
)
= −∇p +∇ · τ + ρg, (5)

∇ · v = 0, (6)

with the initial condition at the state of rest and appropriate boundary conditions.
The fluid stress tensor τ is split into two parts. The first part is governed by the

Oldroyd-B fluid model [17], the second one is governed by the incompressible neo-Hookean
model of hyperelastic solid [40,41]:



Mathematics 2021, 9, 2333 4 of 12

τ = τ1 + τ2, (7)

τ1 + λ1
O
τ1 = 2(1− α)λ1G0(D + λ2

O
D), (8)

O
τ2 = 2αG0D, (9)

where D = ∇v+(∇v)T

2 is the strain-rate tensor, parameters G0, λ1 and α < 1 define the shear

modulus (4), λ2 = βλ1, β < 1 is the retardation parameter, and
O
C denotes the first order

upper-convected derivative for a tensor C,

O
C =

∂C
∂t

+ (v · ∇)C− (∇v)TC− C(∇v). (10)

Note that by definition
O
I = −2D.

The next step is to express the constitutive Equations (7)–(9) in terms of the fluid stress

tensor τ. Summing (8) and (9) multiplied by λ1 and eliminating
O
τ1 yields the following

identity for τ:

O
τ − 2λ1G0

O
D + λ1

OO
τ − 2(1− α)λ1λ2G0

OO
D = 2αG0D, (11)

where
OO
C :=

O
O
C.

In order to simplify (11), we perform the rheological splitting of the fluid stress tensor
τ into viscous and elastic stress parts:

τ = 2(1− α)βλ1G0D + τP, (12)
O
τP = 2(1− (1− α)β)G0D + B1, (13)

where B1 is the remaining elastic tensor part satisfying the equation

B1 + λ1
O
B1 = 2(1− α)(β− 1)G0D. (14)

Substitution for B1 = (1−α)(β−1)G0
λ1

(A1 − I) reduces (14) to

O
A1 =

I−A1

λ1
. (15)

Substitution for τP = (1− (1− α)β)G0(A2 − I) eliminates the strain-rate term in (13):

O
A2 =

B1

(1− (1− α)β)G0
=

(1− α)(1− β)

1− (1− α)β

I−A1

λ1
. (16)

Finally, the governing equations for the fluid stress tensor τ with unknown elastic
tensors A1, A2 are written as follows:

τ = 2(1− α)βλ1G0D + (1− (1− α)β)G0(A2 − I), (17)
O
A2 =

(1− α)(1− β)

1− (1− α)β

I−A1

λ1
, (18)

O
A1 =

I−A1

λ1
. (19)

We assume that no elastic deformations are initially present, which leads to the
conditions on the elastic tensors A1|t=0 = I and A2|t=0 = I. Another assumption is that
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tensors A1, A2 possess the same boundary conditions: homogeneous Neumann at the
contact boundary and zero traction at the free boundary [35].

Remark. For α = 0, the model (17)–(19) reduces to the standard Oldroyd-B fluid model
with the conformation tensor A1

τ = 2βλ1G0D + (1− β)G0(A1 − I),
O
A1 =

I−A1

λ1
.

Indeed, the Equations (18) and (19) possess the same right hand side I−A1
λ1

; since tensors
A1, A2 possess the same initial and boundary conditions, one derives A1(t) = A2(t).

Keeping in mind future applications of MCSs fusion, we address fluids with a free
surface boundary. The boundary position Γ(t) is determined by the zero level isosurface of
a globally defined level set function φ(t, x) [34]:

φ(t, x)


< 0, x ∈ Ω(t)
> 0, x ∈ R3 \Ω(t)
= 0, x ∈ Γ(t)

∀t ∈ [0, T].

The level set function φ satisfies the transport equation for t > 0:

∂φ

∂t
+ ṽ · ∇φ = 0 in R3 × (0, T], (20)

where the fluid velocity field v is extended outside Ω(t) to get ṽ in R3. Initially, the domain
Ω(0) is defined by {x, φ(0, x) < 0}. For details of the level set function processing and the
finite volume semi-implicit discretization of (5), (6), (17), (18), (19), (20) we refer to [35].

2.3. Measurements on Multicellular Spheroids

The multicellular spheroids were constructed from a primary human somatic cell
culture of limbal mesenchymal stem cells (MSCs). Cells of the 4th passage were used. The
technique for the spheroid preparation is described in detail in [42–44]. Briefly, MSCs were
generated on agarose plates [45] prepared using a 3D Petri Dish (Microtissues, Providence,
RI, USA). The spheroids formation occurred under standard conditions (37 ◦C, 5% CO2)
for seven days.

The parallel-plate compression was performed using a micro-scale testing system
(Microsquisher, CellScale, Waterloo, ON, Canada) and associated SquisherJoy software. The
experimental apparatus and protocol are described in detail in [46–48]. The spheroids were
compressed between a fixed, rigid substrate and a displaceable cantilever beam with an
attached flat platform in a PBS-filled bath. Compression of up to 50% of the initial spheroid
height with a speed of 3 um/s was accompanied by simultaneous recording of the reaction
force, the upper plate position, as well as the spheroid shape by the side-view camera.

The compression test consisted of three sequential phases. In the first phase (compress),
within 36 s the upper plate moved towards the lower one with constant speed. In the
second phase (hold), within 60 s the upper plate remained still. In the third phase (release),
the upper plate moved away from the lower plate with the same constant speed as in the
first phase. According to the experimental evidence, the multicellular spheroid regained
partially its shape by the end of the release phase. Viscoelastic properties of the spheroid
manifested themselves in all three phases.

3. Results and Discussion
3.1. Model Setting

The experimental setup is shown schematically in Figure 1. The spheroid with ra-
dius R = 0.11 mm is located between the upper and lower plates touching both plates.
The upper plate may move towards the lower plate and back.
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H

R

Figure 1. Spheroid compression test.

During all three phases of the numerical test, one computes the distance H between
the lower and upper points of the spheroid and the reaction force F acting on the upper
plate. The force in both viscoelastic models is computed according to the definition of the
reaction force:

F =
∫
S

n · σ̄ndS, (21)

where S is the contact surface, σ̄ is the stress tensor σ for the viscoelastic solid, or the total
stress tensor −pI + τ for the viscoelastic fluid.

The viscoelastic solid model is implemented in the ABAQUS package [12], whereas
the viscoelastic fluid model is implemented within the in-house code Floctree http://
floctree.com (accessed on 29 July 2021) [35]. The contact surface of the viscoelastic solid is
computed in the ABAQUS package via the accurate solution of the contact problem [12].
The contact surface of the viscoelastic fluid at the release stage is estimated in the Floctree
package less rigorously.

The following viscoelastic model parameters are chosen to reproduce the experimental
data: ν = 0.5, α = 0.2, β = 0.2, E0 = 9 kPa, E∞ = αE0 = 1.8 kPa, λ1 = 10 s. The surface
tension is neglected in the viscoelastic fluid modeling.

3.2. Numerical Results

We compare two computational scenarios for the third phase: instantaneous release of
the upper and lower plates and slow release of the upper plate.

Figure 2 demonstrates the computed reaction force and the spheroid height for the
case of instantaneous release and compares them with the physical experiment. To make
the comparison between the solid and fluid viscoelastic models fair, we set the release
phase duration in the ABAQUS simulation to be equal to the time step (0.5 s) for the
fluid model.

We observe that the force and height graphs of both models are quite close. The instan-
taneous release of the plates results in the sharp increase of the spheroid height followed
by a slower (than physically observed) gradual height increase in the remaining time.
In contrast to the physical measurements, the simulated reaction force for both models
vanishes instantaneously at t = 96 since the upper and lower plates disappear according to
the first scenario.

http://floctree.com
http://floctree.com
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Figure 2. The reaction force acting on the upper plate (top) and the spheroid height (bottom) in the
case of instantaneous release of the plates.

Despite the similarity of the reaction force and spheroid height graphs for both vis-
coelastic models, the distributions of the accumulated elastic energy differ. In Figure 3
we present the distributions of the elastic energy in terms of von Mises deviatoric stress

q =
√

3
2 (dev[σ̄] : dev[σ̄]) at the final time of the experiment t = 132. Although the experi-

mentally observed shape of the spheroid (shown in the background) matches the shapes
computed by both models, the computed distribution of the elastic energy differ in the
center of the spheroid.
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Figure 3. Experimental spheroid shape at t = 132 (background), viscoelastic fluid (top) and viscoelas-
tic solid (bottom) elastic energy distribution in terms of von Mises deviatoric stress.

The second scenario of our computational experiment addresses the physical exper-
iment at the third phase when the upper plate is released slowly. The accurate solution
of the solid–solid contact problem in the ABAQUS software allows us to simulate this
scenario. In Figure 4, we compare the reaction force and the spheroid height graphs ob-
tained by the viscoelastic solid model within both scenarios (instantaneous release and
slow release) and the experimentally measured values. Under the slow release scenario, the
computed reaction force matches the experimental one, whereas the computed spheroid
height matches the measured one until t ≈ 105 (see also the animated comparison of the
results in the Supplementary Video S1).

The simulation of the slow release scenario based on the viscoelastic fluid model
does not match the experiment. The main reason for the mismatch in the release phase is
the inaccurate boundary condition at the contact surface. A more appropriate boundary
condition is under development.
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Figure 4. The reaction force acting on the upper plate (top) and the spheroid height (bottom).
Two scenarios of the release phase and experimental measurements.

3.3. Discussion

We note that, although the viscoelastic solid model describes reasonably the multi-
cellular spheroid compression, it can not be applied to the simulation of the MCSs fusion
process manifesting extracellular matrix remodelling. Besides, experiments with the dis-
section of multicellular spheroids by a nanosecond laser scalpel suggest involvement of
the surface tension phenomena. According to the recent study [44], simple models of the
coalescence of highly viscous liquid drops with surface tension are not capable of correct
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description of the spheroids fusion process. The remedy may be provided by the direct
simulation of the viscoelastic fluid with a free surface. The present study is devoted to
the validation of such a model by the MCS compression experiment. Application of the
presented viscoelastic fluid model to the MCSs fusion is a subject for the future research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/math9182333/s1, Video S1: Spheroid compression experiment: numerical simulation of
viscoelastic solid (left) compared with the experimental data (right); color indicates von Mises
stresses distribution.
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