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A monotone nonlinear finite volume method
for diffusion equations on conformal polyhedral meshes

A. A. DANILOV *and Yu. V. VASSILEVSKF

Abstract — We have developed a new monotone cell-centered finite vlmmathod for the dis-
cretization of diffusion equations on conformal polyhéddneshes. The proposed method is based on
a nonlinear two-point flux approximation. For problems wdthooth diffusion tensors and Dirichlet
boundary conditions the method is interpolation-free. Aagive interpolation is applied on faces
where diffusion tensor jumps or Neumann boundary conditiare imposed. The interpolation is
based on physical relationships such as continuity of tfiesibn flux. The second-order convergence
rate is verified with numerical experiments.

1. Introduction

The phenomenon of anisotropic diffusion plays a criticé in many physical mod-
els describing subsurface flows, heat conduction in stredtmaterials and crystals,
biological systems, and plasma physics. Accurate modetifrdiffusive processes
in these applications requires reliable discretizationhoes. Engineering 3D sim-
ulations use different types of meshes, such as tetrahddrehhedral, prismatic,
octree, etc. All of them fall in the class of conformal meshés$ polyhedral cells.
The demand from the computational community for a simple acclrate con-
servative method applicable to general conformal mesheésmisotropic diffusion
coefficients, is very distinct. In this article we presenesvrcell-centered finite vol-
ume method that preserves the solution positivity.

The conservative linear methods on unstructured mesheserd&nown: the
multipoint flux approximation (MPFA), the mixed finite elemie(MFE) and the
mimetic finite difference (MFD) methods. They are secondeoraccurate and are
not monotone even when the diffusion coefficient is modérdie100) anisotropic.
The cell-centered finite volume (FV) method with a linear {paint flux approx-
imation is monotone, but not even first-order accurate fasaropic problems or
unstructured meshes. Nevertheless, this method is caomahtn modelling flows
in porous media due to its technological simplicity and ntoniity. The restric-
tions on monotonicity of the MPFA methods are analyzed in4[113, 14]. The
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conditions for the discrete maximum principle (DMP) to besfeed by piecewise-
linear finite element approximations generate restrigtigsh constraints [3, 8, 15].
Another class of monotone discretization methods for gdmaeshes is formed by
nonlinear methods. They guarantee solution positivitytfier Poisson equation [2]
and even for general diffusion equation [6, 9-12, 18, 19]

Following [6, 9, 11, 12, 18, 19] we propose a new monotone Fthoestbased
on a nonlinear two-point flux approximation scheme. Theioalyidea belongs
to C. LePotier [9] who proposed a monotone FV scheme for therelization of
parabolic equations on triangular meshes. Two years latemntethod and anal-
ysis of its monotonicity were extended to steady-stateusién problems with full
anisotropic tensors on triangulations or scalar diffusioefficients on shape-regular
polygonal meshes [11]. At the same time the method was estetal conformal
tetrahedral meshes in [6, 18] where monotonicity was prdeedhe case of full
anisotropic tensors. Recently the derivation of the n@alintwo-point flux stencil
was modified on the basis of co-normal vector decompositiéh vhich was orig-
inally suggested for a linear FV method in [7]. This approagtended the scheme
to a much bigger class of polygonal meshes consisting osbt@ped cells and full
tensor diffusion coefficients.

All these monotone nonlinear cell-centered FV methods ahdisn values at
mesh cells (primary unknowns) and mesh nodes (auxiliarynowks) for calcu-
lating discrete flux coefficients. Auxiliary unknowns ar¢eirpolated from primary
cell-based unknowns. The choice of the interpolation neffects the accuracy of
the nonlinear FV method [11, 19]. The particular interpolatmethod may be effi-
cient for one problem and be inaccurate for another. Rgcantlew interpolation-
free monotone cell-centered FV method with nonlinear twovpflux approxima-
tion was proposed for full diffusion tensors and unstrustuconformal polygonal
2D meshes [12]. However, the method cannot be appliechéderogeneouslif-
fusion tensor coefficients on an arbitrary mesh, since it negyire partitions of
certain cells.

In this paper, we extend the approach [12] to the case of 3booal polyhe-
dral meshes and heterogeneous diffusion tensors. It i$ Exdimear and piecewise-
linear solutions and thus has the second-order truncation elowever, the method
may involve certain interpolation operations for a few &ary unknowns and thus
is not interpolation-free formally. The important featurfethe method is that most
of auxiliary unknowns are interpolated from primary unkmsion the basis of a
physicalrelationship. The latter expresses the continuity of tifieision flux at the
cell faces. The stencil of the interpolation operator atlafaee is two-point, and
the coefficients depend on primary and auxiliary unknowns.

The main advantage of the proposed approach compared tonathinear FV
methods using interpolation is that it is interpolatioadifor diffusion tensors with
smooth components and Dirichlet boundary conditions. heiotases, we apply
physical interpolation on mesh faces where diffusion tegpsmps or Neumann
boundary conditions are imposed. In rare pathological ;abe method requires
auxiliary unknowns at the face edges. Interpolation at edgjarithmetic averaging
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the unknowns adjacent to the face. Such simple interpolatses physically mo-
tivated data at cell faces and still provides an easy impttatien. Although we

provide monotonicity analysis only, our numerical expenms show the second-
order convergence rate in the mesh-depentegmtorm.

The two-point flux approximation methods are technolodjcappealing due to
the compact stencil even on polyhedral meshes. For cubibeseand a diagonal
diffusion tensor this stencil reduces to the conventionpbint stencil. The major
computational overhead in nonlinear FV methods is relaigd/¢ nested iterations
in the solution of a nonlinear algebraic problem. The outeration is the Picard
method, which guarantees solution positivity in each tiena The inner iteration is
the Krylov subspace method for solving linearized problems

The paper outline is as follows. In Section 2, we state thiesln problem. In
Section 3, we describe the nonlinear finite volume schem8ebtion 4, we prove
the monotonicity of the proposed scheme. In Section 5, weegptenumerical anal-
ysis of the scheme using tetrahedral, hexahedral, andjurianprismatic meshes.

2. Diffusion equation

Let Q be a three-dimensional polyhedral domain with a boundary 'y U T p,
wherel'p =T'p andlMp # @. We consider a model diffusion problem for an un-
known concentratioe:

—div(KdOc) = g in Q
c=gp onlp 2.1)
—K@ = onl

whereK(x) = KT (x) > 0 is an anisotropic diffusion tensag,is a source term, and
n is the exterior normal vector.

Let .7 be a conformal polyhedral mesh composed of shape-regularvai¢h
planar faces. We assume that each cell is a star-shaped 3Birdwith respect to
its barycenter, and each face is a star-shaped 2D domairresgitiect to the face’s
barycenter. LeNs» be the number of polyhedral cells aid; be the number of
boundary faces. We assume thiatis face-connected, i.e. it cannot be split into two
meshes having no common faces. We also assume that the fanstion K(x)
varies slightly inside each cell; however it may jump acnoesh faces, as well as
may change the orientation of the principal directions.

We denote disjoint sets of interior and boundary faces/yand.%g, respec-
tively. The subset#; of .%, collects faces with a jumping diffusion tensor. The
set.7g is further split into subsets?? and.#}, where the Dirichlet and Neumann
boundary conditions, respectively, are imposed. The palitlf of set%, is denoted
by Nz, . Finally, #t andé&t denote the sets of faces and edges of the polyhebron
respectively, wherea$; denotes the set of edges of the fdce
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3. Monotone nonlinear FV discretization

Let g = —KOc denote the flux which satisfies the mass balance equation:
dvg=g inQ. 3.1

We derive a FV scheme with a nonlinear two-point flux appration. Integrating
equation (3.1) over a polyhedrdnand using the Green’s formula we get:

/ q-ans:/gdx (3.2)
oT T

wherent denotes the outer unit normal &3 . Let f denote a face of the cell and

n; be the corresponding normal vector. For a single Tele always assume that
n; is the outward normal vector. In all other cases we spec#yottentation ofs.

It will be convenient to assume thiais| = | f|, where| f| denotes the area of the face
f. The equation (3.2) becomes

> Qf-an/ng (3.3)
feaT T

whereqs is the average flux density for fade

For each celll, we assign one degree of freeddt, for the concentratior.
Let C be the vector of all discrete concentrations. If two cdllsand T_ have a
common facef, the two-point flux approximation is as follows:

qf -n¢ = M{Cr, —~M;Cr. (3.4)

whereM; andM; are some coefficients. In a linear FV method, these coefficien
are equal and fixed. In the nonlinear FV method, they may lferdiit and depend
on concentrations in the surrounding cells. On the faeel p, the flux has a form
similar to (3.4) with an explicit value for one of the conagtions. For the Dirichlet
boundary value problenf,p = dQ, upon substituting (3.4) into (3.3), we obtain
a system ofNs equations withNs unknownsCr. The Dirichlet and Neumann
boundary conditions are considered in Subsection 3.3.

3.1. Notations

For every cellT in .7, we define the collocation pointr at the barycenter of .
For every facef € .#g U .%#, we denote the face barycenter kyand associate a
collocation point withxs for f € .%gU.%#;. We also define collocation points at the
centers¢e of edgese € &%, f € FgU.Z.

We shall refer to the collocation points on faces and edgéseagixiliary collo-
cation points. They are introduced for mathematical comrexe and will not con-
tribute to the vector of unknowns in the final algebraic systalthough will affect
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Figure 1. Examples of set&r (left) andXs 1 (right).

the system coefficients. In contrast, we shall refer to therotollocation points as
primary collocation points whose discrete concentrations fornutii@aown vector
in the algebraic system.

For every celll we define a selt of nearby collocation points as follows. First,
we add toXy the collocation poinky. Then, for every facd € 7 \ (%#;U %),
we add the collocation point;, whereT; is a cell other tharT, that has the facé.

Finally, for any other face € .71 N (.%g U .%#;), we add the collocation poins
(see Fig. 1, left). LeN(Xt) denote the cardinality dfr.

Similarly, for every facef € .7gU.#; belonging to the cell we define a set
>t 1 of nearby collocation points. We initializes 1 = {X¢,x1} and add t&¢ 7 the
points fromZy which are the barycenters of cells or faces adjacerfit(see Fig. 1,
right). The cardinality o ¢ 1 is denoted byN(>¢ 7).

We assume that for every cell-face pair~> f, T € .7, f € %7, there exist three
pointsxt 1, Xf 2, andxs 3 in the setXy such that the following condition holds (see
Fig. 2): The co-normal vectdt; = K(x¢ )n¢ started fromxr belongs to the trihedral
corner formed by the vectors

tf1=Xf1—XT, tf2 = X2 — X7, tr3=Xf3—XT (3.5)
and
1 as Bt Vi
—L; = tr1+ tro+ ti3 (3.6)
€] teal 7 ftea2] 7 fteal
wherea; >0, B¢ > 0,y > 0.
The coefficientsas, Bs, y; are computed as follows:
D¢ 1 Ds > Dt3
a = — = =2 = 12 3.7
f Df ) Bf Df ) Vi Df ( )
where
tra trz trg] 8r tra trg]
Dt = f1=-pg——
Itrallts2f[ts 3 €5 [ts2][ts 3
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Figure 2. Co-normal vector and vector triplet.

tra 21 trg| tra tra £
Dto=-""F—i7, fa=
[t all€s|[ts gl |tal[te2l[€r]

andjab ¢ =|(axb)-c|.

Similarly, we assume that for every face-cell péir—» T, f € #gU.%;, T:
f € F7 there exist three points 1, Xt 2, andX 3 in setX¢ 1 such that the vector
¢: 1 = —K7 (x¢)n¢ started fromx; belongs to the trihedral corner formed by the
vectors

tf1=Xf1—Xf, tf2=Xf2—Xf, tf3=Xf3—X¢ (3.8)

and (3.6), (3.7) hold true.

We suggest a simple and efficient algorithm for searchingpéetrsatisfying
(3.6) with non-negative coefficients. We present here tgerdahm for a cell-face
pairT — f. The algorithm for a face-cell pafr— T is obtained from Algorithm 3.1
by substitution okt and>t for xs andZs 1, respectively.

For a general conformal polyhedral mesh this algorithm naalytd find an
appropriate triplet. In this case, we extend the sets ofhyeewllocation points and
repeat Algorithm 3.1. The reuse of Algorithm 3.1 guarantdetecting a triplet.
For the case of the cell-face pair— f we proceed as follows. First, for every
f e 1N (F;UFg) we add tozt the collocation pointxe, € € &%. Second, for
f € 77\ (#3U.Z8), we add tazt the collocation pointsy;, whereT{ is the cell,
not belonging tost, that has an edge € & and may be connected  with a
polylinear path{xy,,...,xt} through the face barycenters. The path should belong
to the cells sharing the edgeand should not intersect a face fro#fy. For the case
of the face-cell paif — T we add toX¢ 7 the collocation pointe, for e € &%.

3.2. Nonlinear two-point flux approximation for an interior face

Let f be an interior face. We denote by andT_ the cells that sharé and assume
thatns is outward forT,.. Letx.. (or xt.) be the collocation point of ;.. LetC,. (or
Cr.) be the discrete concentrationsTip.

We begin with the casé ¢ .%; and introduceK; = K(x). Let T =T,. Using
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Algorithm 3.1. Algorithm for searching vector triplet for a pair — f.

1: Define on the unit sphere poirks, = x1 + [€¢| ¢, X = xT +1i, ti = ti/[ti],
i=1,...,N(Z7).

2: Reorderx; according to increase of the distar{ggxg, |.

3 fori=1,N(Xr)—-2do

4 for j=i+1,N(Z1)—1do

5: for k=j+1,N(Zr) do o
6: Calculate coefficients (3.7) for vectdist;, ti.
7 if all coefficients are non-negatitken

8: if all coefficients are less or equal tdaHen go to 16
9: elseput triplet{i, j,k} to the set*

10: end if

11 end if

12: end for

13: end for

14: end for

15: Pick fromZ5 triplet {i, j,k} with minimal value of maxas, B+, ys }.
16: Settf,l = |Xi — XT|ti, tio= |Xj — XT|'[J', ti3= |Xk — XT|tk.

the above notations, the definition of the directional deive,
Jc
_ = [c- (K
ae, [€¢| = Oc- (K¢ ny)

and assumption (3.6), we write

€+ (9Cd A

oo Ll poc ol (a Jc Jc
A= 70 Jrag 7 T i oty

+ Bt 3t 2

Jc
+yi atm) ds. (3.9)

Replacing the directional derivatives by finite differesicere get

Jc ds— Cf7i—CT

= fl+0(hd), i=1,2,3 3.10
fdth |Xf,i _XT|| | ( T) ( )

wherehr is the diameter of the cell. Using the finite difference approximations
(3.10), we transform formula (3.9) to

a
ani =il (L (Cra—Cr)+ L (Cra—Cr) +

Yi

(Ct3 —CT)>- (3.11)
lts 3

At the moment, this flux involves four rather than two concations. To derive a
two-point flux approximation, we consider the cé&ll and derive another approx-
imation of the flux through the facé. To distinguish betweet, andT_, we add
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subscriptst and omit the subscript. Sincen; is the internal normal vector far_,
we have to change the sign of the right-hand side:

Vi

ql-ng= |ef|( (Cr1—Cu)+ S
tes] ts ]

(Ci2—Cy)+ (Ci,S_Ci)>

(3.12)
wherea, B+, andy; are given by (3.7) an@..; denote concentrations at points
X4 i from 21, .

We define a new discrete flux as a linear combinatiorgbf ny with non-
negative weightgi..:

|ti 2|

qf-ne = Mol -ne+po gt ong

B+ Yy >
= e T c
ol (e + g fod :
)
l + C_
'f'(|t_ e Tl (3.13)
—u+|€f|( Cia+ P Crot Lt C+3>
|ty Ity o] |ty 3]
B - y-
+ 1 |€s ( C_1+ 2+——C_3
e T R T T

The obvious requirement for the weights is to cancel the ¢e@mthe last two rows
of (3.13), which results in a two-point flux formula. The sedaequirement is to
approximate the true flux. These requirements lead us t@tlosving system

{ —pidp +p-do

0
py+p- =1

(3.14)

where

B+
|ts 2|

Since the coefficients. depend both on geometry and concentration, so do the
weightsp. as well. Thus, the resulting two-point flux approximatiomalinear

It may happen that the concentration; (C_;), i =1,2,3, is defined at the same
collocation point a€_ (C,). In this case the terms to be canceled are changed so
that they do not incorporai@... By doing so, for the Laplace operator we recover
the classical linear scheme with the1, -1, —-1,6,—1, —1,—1} stencil on uniform
cubic meshes.

The solution of (3.14) can be written explicitly. In all cagk. > 0if C > 0. If
dy =0, we sefu, = u_ =1/2. Otherwise,

de = |8 [ ——Cu1+ Cio+ Ve Ciz).
|t 1| |t 3

d d,
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This implies that the weightg,. are non-negative. Substituting this into (3.13), we
get the two-point flux formula (3.4) with coefficients

MF = bl ](as/[tea] + Be/Ite2l + ve/[te ) (3.15)

Now we consider the casec .%; whenK, (x;) andK_ (x¢) differ. We derive
two-point flux approximations in the cells. andT_ independently:

‘nf)y = N*C, — N/ Cy (3.16)
‘nf)_ = N"C_—N;Cy. (3.17)

(af

—(qf

Non-negative coefficientdl*, N;", N=, Ni are derived similarly to coefficients

(3.15) on the basis of discrete concentrations at collosgtoints fromzr,, Z¢ 1,
andé. = FK. (xf)ns, the co-normal vectors to fadeoutward with respect td...
The continuity of the diffusive flux allows us to elimina@g from (3.16), (3.17)

Ci = (NTCL+N"C.)/(N{ +Ny) (3.18)
and derive the two-point flux approximation (3.4) with cogéfnts
M{ = NENF/(NF +Np). (3.19)

If Nf =0, we setMi = N*/2 andC; = (C; +C_)/2.

3.3. Flux approximation for a boundary face

First, we consider the case of the Dirichlet boundary faee.# where we define
_ 1
Ct=0p, = m/ng ds (3.20)

and for every edge € &%

_ 1
Ce=0pe= H /egD dx. (3.22)

It may be convenient to think abotitas the ghost cell with zero volume. LEtbe
the cell with the facef. ReplacingC, andC_ with Gy andCs, andXr_, Z1 with
21, 2f 1, respectively, we get

at-ns = M{Cr — M[Cs (3.22)

where coefficientM?E are given by (3.15).

Now consider the case of a Neumann boundary Iaee?é\'. The flux through
this face is B
a7 -nt = an,f f| (3.23)

wheregy 1 is the mean value afy on facef.
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3.4. Recovery of discrete solution at auxiliary collocatio points

The coefficientdM{ in (3.15), (3.19), (3.22) may depend on discrete solutdns
and C, at auxiliary collocation pointxs, f € .%g U .%;, andXe, € € &t. On the
other hand, the discrete FV system is formulated only forceatration<Cr at the
primary collocation points. The valu&, Ce, f € F2, e € &, are computed by
(3.20), (3.21) from the Dirichlet data. The values f € .#;, are recalculated from
(3.18). However, value§s, Ce, f € ZY, e€ &%, e¢ Mp and the value€,, e € &,
e¢ Np, f € .%; have to be recovered from available data.

We recover the concentrations at Neumann faces f@&3nusing (3.22) and
(3.23). The coefficientM7 can depend on the values at primary collocation points
andCq, f € .%#;U %R, andCg, e € &. Therefore, concentratior®; at mesh faces
f, f € F;U.%g, are interpolated from the cell data on the basiploysicalrela-
tionships, such as the diffusion flux continuity or a giveffugion flux. The coef-
ficients of interpolation can depend on concentratiGngo be found ake, e € &%,

f € 307}, e¢ I'p. For every such edge, we suggest to comfgtay arithmetic
averaging o for all facesf € .#} U.%; sharinge.

4. Discrete system and monotonicity analysis

For everyT in .7, the cell equation (3.3) is
> X(T,f)q?-nf:/ f dix 4.1)
fesr T

wherex (T, f) = sign(n¢ - nt(X¢)). Substituting two-point flux formula (3.4) with
non-negative coefficients given by (3.15) and (3.19) intd)4and using equations
(3.20), (3.21) and (3.22), (3.23) to eliminate concentradiat boundary faces, and
using arithmetic averaging of recovered face concentratai non-Dirichlet edges
ec &, f € Z) U .73, we get a nonlinear system by equations

M(C)C = G(C). (4.2)
The matrixM(C) may be represented by assembling 2 matrices

f(C) —M;(C
wo-( e WO) e

for the interior faces and & 1 matricesM (C) = M{ (C) for Dirichlet faces (see

Algorithm 4.1 for more detail). The right-hand side vedB{C) is generated by the
source and the boundary data:

Gr(©) = [ gox+ MiCdor— 3 [flane  YTes. (@44)

T teFDNFT tegNnFr
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Algorithm 4.1. Generation and solution of nonlinear system (4.2).

1: For each cell-face paif — f, f € %1, and each face-cell pair — T, f €
F; U .#g find vectorsts 1, tf 2, tf 3, Satisfying conditions (3.5), (3.6) and (3.8),
(3.6), respectively.

2. Select initial vector€? € ON7 andC? € 0" ™7 with non-negative entries
and a small valuéng, > 0.

3: Calculate concentratior®{ at the auxiliary collocation points on edges using
(3.21) or arithmetic averaging of neighboring d@&a

4: fork=0,...,do

5. Assemble the global matridy = M(CX,C¥,C¥) from the face-based matri-

cesM (CK,CX,CK). To form M (CX,CK,CK), use (3.15) forf € #8 U.Z \

Z3and (3.19) forf € .%;.

Calculate the right-hand side vectsf = G(CX,C¥,CK) using (4.4).

Stop if [ My C* - Gku Enon|MoC® — G|

Solve M Ck+1 =

Calculate concentratlorf'é‘f(+1 at the auxiliary collocation points on faces

f € #;U.%g using (3.18), (3.20), (3.22), (3.23), and data?, Ck, Ck.

10: Calculate concentratior@&t? at the auxiliary collocation points on edges
using (3.21) or arithmetic averaging of neighboring daﬁﬁl.

11; end for

For data functiong > 0, gp > 0 andgy < 0 the components of the vect@ are
non-negative. We use the Picard iterations to solve theimemn system (4.2) (see
Algorithm 4.1).

The linear system in Step 8 with the non-symmetric matfix= M (C¥,C¥, C¥)
and the right-hand side* = G(C*,C¥,C¥) is solved by the Bi-Conjugate Gradient
Stabilized (BiCGStab) method [16] with the second-orddd lhreconditioner [5].
The BiCGStab iterations are terminated when the relativennaf the residual of
the linear system becomes smaller tlagn

Now we demonstrate that the matfif is an M-matrix provided thaE* > 0.
Our derivation shows that auxiliary unknow@ > 0, CX > 0, and coefficients
M3 (CK) are positive. Thus, all diagonal entries of the mafiii are positive
and all off-diagonal entries dfll, are non-positive. The structure of face-based
matrices (4.3) implies that each column sumNf is non-negative. Moreover,
for the elements having Dirichlet faces, the correspondiolgmn sum is strictly
positive. For a connected mesh, the matridés and M, are irreducible, since
their directed graphs are strongly connected. Under theeabonditions, the well
known linear algebra result [17] implies that matl\'ni§<r is an M-matrix and all en-
tries of (M;[ )1 are positive. Since the inverse and transpose operatiansate,
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(M)~ = (M YT, we conclude thall is monotone. Due to the signs of diagonal
and off-diagonal entrleMk is an M-matrix as well. Therefore, we have proved the
following theorem.

Theorem 4.1. Letg>0, gp >0, gy <O0andlp # @ in (2.1). If C° > 0 and
linear systems in the Picard method are solved exactly, @fep 0 for k > 1.

The considered FV method is exact for piecewise linear aunagons and has
the second-order truncation error. Therefore, we may éxjpecsecond order of
convergence for the scalar varialileand at least the first order of convergence for
the flux degrees of freedom.

5. Numerical experiments

We use discretéo-norms to evaluate discretization errors for the concéntrac
and the fluxq:

1/2

z(c< r)-Cr2 (] 3 (tar—a-ne) v

T
&= 4 ) Eg_

)2|T| - ; (ar-ne)2 Vs
TE? fes UFs

where|V;| is a representative volume for the fat.eMore precisely|V; | is the arith-
metic mean of the volumes of mesh cells sharing the face. ®hknear iterations
are terminated when the relative norm of the residual norootmes smaller than
gnon=10"9. The convergence tolerance for the linear solver is sefte- 1012,

We consider three classes of polyhedral meshes for the ubi [©,1]3. All
meshes are considered to be quasiuniform.

Hexahedral meshes are constructed from uniform cubic rsdsh¢he distor-
tion of internal nodes. In each plaxe= 0.5, y = 0.5, andz = 0.5 the nodes are
randomly shifted along the planes. The position of othelesad determined by the
requirement of planarity of the faces. The distance andttlme in which the nodes
are shifted from the original position are chosen randoifihe shifts of all nodes
do not exceed .@h, whereh is the cubic mesh size.

Prismatic meshes are constructed as a tensor product ofaigifiarm unstruc-
tured triangulaxy-mesh and 1x-mesh, both meshes having the sizeé\ddition-
ally, z-planes are slightly tilted in such a way, that they do nagnsgct each other
and the distance between them is at leagbld The height of each cell in these
meshes is between®h and 125h.

Tetrahedral meshes are quasiuniform unstructured tetraheneshes with a
mesh sizén. There is no hierarchical relation between the tetrahedeshes.

Representative examples of all three mesh classes are shéwn 3.
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Figure 4. Cutplane of the solution calculated with the nonlinear F\thod (left) and with the MFE
method (right) for a problem with the Dirichlet boundary d@mons. Elements with solution values
less than-10"2 are also shown. Tetrahedral mesh witk 1/20.

5.1. Monotonicity test

Numerical results of this section verify the assertion oéditem 4.1. We consider
two benchmark problems with a highly anisotropic diffusiensor and demonstrate
numerically that the discrete solution is always non-riggaalthough it can violate
the discrete maximum principle (DMP).

5.1.1. Dirichlet boundary conditions. Here we consider problem (2.1) defined
in a unit cube with a cubic hol& = (0,1)3/]0.4,0.6]3. The boundary of2 consists
of two disjoint parts, interiof g and outef ;. We setr y =@, f =0,gp =2 onlg,

go = 0 onl 1, and take the anisotropic diffusion tendoy

K = R;(—6,)Ry(—6y)Rx(—6x)diag(ky, kz, k3) R«( k) Ry(6)R,( 67) (5.1)
wherek; = 100, k, = 10, ks = 1, 6, = 11/3, 8, = /4, 6, = /6, andRa(Q) is

the rotation matrix in the plane orthogonal @a with anglea. According to the
maximum principle for elliptic PDEs, the exact solution slibbe between 0 and 2.
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Figure 5. Solution calculated with the nonlinear FV method for thelyyean with no-flow boundary
conditionsh = 1/22.

Table 1.
The maximum concentration values for the problem
with no-flow boundary conditions.

h /11 1/22 144  1/88
maxC 2.163 1765 1136  1.024

Discrete solutions computed with the nonlinear FV metho@lbtypes of the
considered meshes are non-negative everywhete (gee Fig. 4, left). The com-
puted solution does not violate the DMP on the considerechatesither. We re-
mark that discretizations with the lowest-order Raviaheifas MFE on simplicial
meshes computed using public libraries [20, 21] generdieneixe areas of nega-
tive solutions (see Fig. 4, right). Similar observation,[12] have been made for
MFE and MPFA discretizations of the 2D analogue of (2.1).

5.1.2. No-flow boundary conditions. Now we demonstrate that the FV discrete
solution can violate the DMP even on cubic meshes.

We consider the 3D analogue of the problem described andtige¢ed in [1].
We consider a unit cube with two vertical hol®g, P,, Q = (0,1)3\ (PLUP>),
R=S§x(01),i=12 8§ =[3/11,4/11 x [5/11,6/11], S, = [7/11,8/11] x
[5/11,6/11]. The domain boundary is splitinto the outer dagtwhere the homoge-
neous Neumann (no-flow) boundary condition is set, and tweripartd p 1, [p 2
where the Dirichlet boundary conditions are sg$(x) =0,x € 'p1, Oo(X) =1,
X € 'pp. The anisotropic diffusion tensor is defined by (5.1) with= ks = 1,
ko =1073, 6, = 8 =0, 6, = 67.5°. According to the maximum principle for ellip-
tic PDEs the exact solution should be between 0 and 1 and lmaggtrema on the
no-flow boundaryy.

The FV discrete solution is shown in Fig. 5. It is non-negatin agreement
with Theorem 4.1, but demonstrates overshoots near theowobibundary. These
overshoots are decreased rapidly as we refine the mesh, ldeelTa
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Table 2.
Number of Picard iterations for different types of meshea$ an
tolerancegnon, 1073/107%/1079.

h\ Mesh hexahedral prismatic tetrahedral
1/10 6/18/30 7/25/43 6/23/42
1/20 7/30/54 8/37/69 9/39/74
1/40 7/48/95 9/61/127 8/67/137

5.2. Picard method

The iterative solution of the nonlinear algebraic problsrthe major computational
overhead in the nonlinear FV method. The Picard method gteea the solution
positivity on each nonlinear iteration.

We consider the problem described in Subsection 5.1.1 aadume the number
of Picard iterations required for 39 1(°-, and 18-fold reduction of the initial
nonlinear residual due to the initial vector composed ofsoigach linear system
is solved with 1&?-fold reduction of the initial residual. In Table 2 we preséme
numbers of Picard iterations; for different types of meshes and tolerances. We
observe a fast convergence of the first iterations, a maalgratvth ofN;; ash — 0
for €non= 103, proportionality ofN; to h~1 for £,0n — 0, and slight sensitivity of
Ni; to the mesh type.

5.3. Convergence study: smooth solution

In this section we study the convergence of the method foblpro (2.1) with a
smooth solution. Le® = (0,1)3, 'p = dQ, andf be obtained by substitution of the
exact solution 1
=32 sin(7x) sin(7ty) sin(71z) (5.2)
in (2.1). The Dirichlet datap are equal to the trace ofx,y,z) onl'p. We consider
two cases of the anisotropic diffusion tensor

c(%,,2)

K =K(x,y, ) - diag(1, 10, 100)

represented by constant and smooth functiarBhe first and the second cases are
defined by relationk(x,y,z) = 1 andk(x,y,z) = 1+ 0.25cogx+Yy— z), respectively.
In both cases the diffusion tensor is smooth &fig= @.

The convergence results are presented in Tables 3 and 4.ohkiergence rate
for the scalar variabl€ demonstrates the second-order reduction-as0, whereas
for the normal component of the flux it decreases at leasatipeish — 0.

Now we proceed to problem (2.1) with the identity diffusi@msor discretized
on highly anisotropic meshes. Following the benchmark [tHstwe consider the
distortion of the unit cube bi-fold shrinking the cube iz-direction,k = 10,100,
and tilting itsyzfaces onr/6. Thus we produce meshes with different aspect ra-
tios, Q1 and 001 (see Fig. 6). We consider two types of quasiuniform hectadte
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Table 3.
The convergence results for the problem with the smoothtisoliand a constant
tensor.
Hexahedral meshes Prismatic meshes Tetrahedral meshes
h £§ & €§ & £§ &
1/10 6.79e-3  1.39%e-2 8.31e-3  6.85e-3 2.42e-2 5.72e-2
1/20 1.69e-3  4.45e-3 2.05e-3 2.26e-3 5.45e-3  3.05e-2
1/40 3.77e-4  1.51e-3 5.34e-4 8.09e-4 1.44e-3 1.47e-2
Table 4.

The convergence results for the problem with the smoothtisolland a smooth
variable tensor.

Hexahedral meshes Prismatic meshes Tetrahedral meshes
h €S & &5 & €S &
1/10 6.91e-3 1.38e-2 8.43e-3 6.86e-3 2.43e-2 5.73e-2
1/20 1.72e-3  4.42e-3 2.08e-3 2.26e-3 5.46e-3  3.04e-2
1/40 3.84e-4 1.49e-3 5.42e-4 8.02e-4 1.45e-3  1.45e-2

meshes in the original unit cube, the undistorted cubic essand the distorted
cubic meshes presented in the beginning of the section.
We define the exact solution

c(x,Y,2) = cosH x) coq 112)

generating a zero source term and non-homogeneous Diriiduedary conditions.

The convergence results are presented in Table 5. The asyorg#cond-order con-
vergence for the scalar variable is observed for aspect@dti For the small aspect
ratio, the asymptotic convergence rate demonstrates frendencd’, 1< 8 < 2,

h — 0. The convergence for the flux variable is higher than thé dirder for both

aspect ratios.

Figure 6. Anisotropic meshes with=1/10, aspect ratio.Q and tilt 30. Above: Undistorted. Below:
Distorted.
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Table 5.
The convergence results for the problem defined on the aomothexahedral meshes.
Undistorted meshes Distorted meshes
Aspect ratio 0.1 Aspect ratio 0.01 Aspect ratio 0.1 Aspetio & 01
h &§ & €S &5 €S &5 €S &5

1/10 1.02e-3 1.70e-1 1.55e-5 1.77e-0 1.15e-3 1.47e-1 4.76€-83e-0
1/20 4.35e-4 6.11e-2 1.17e-5 6.32e-1 5.00e-4 5.45e-2 2.04d-44e-0
1/40 1.35e-4 2.03e-2 8.10e-6 2.24e-1 1.48e-4 197e-2 6.89&:60e-1
1/80 3.60e-5 6.58e-3 4.96e-6 8.08e-2 3.82e-5 6.40e-3 2.414-97e-1

5.4. Convergence study: solutions with sharp gradients

In this section we study the convergence of the nonlinear Ethod for a problem
with a known highly anisotropic solution. We consider peshl(2.1) defined in a
unit cubeQ = (0, 1)2 which is divided into three subdomaiy = (0,1) x (0,Y1) x
(0,1), Q2 = (0,1) x [Y1,Y2] x (0,1), Q3 = (0,1) x (Y2,1) x (0,1). We impose the
homogeneous Dirichlet boundary condition on the non-loottial parts'p of 0Q
and set the source function and the diffusion tensor asfstio

0 Q. uUQ
f(X,y,Z):{ ) (X,y,Z)E 1UQ3

. . K=diag(k,1,1}.
foy)sin(m),  (xy,2) € Qs ok, 1,1}

In our experimentdy(y) = 50,k = 50,Y; = 0.3, andY, = 0.7. The exact solution to
this problem can be calculated using the separation oflMasaTaking

C(x,y,2) = ¢(y)sin(nx)
and substituting it into equation (2.1), we get the follogvegquation for (y):

2 ~ A~
Sogeram =i, fm={F, 1

ay?2
that can be solved analytically. We seek the solution in dinen f

¢ (y) = aexp(rvky) + bexp(—mvky) + %( f(y)

where the coefficienta andb are constant in each of the three intervals. The conti-
nuity and boundary conditions result in a system of order @Hese coefficients.

We present the computed errors in Table 6. The dominant er@bserved in
the areas of large solution gradients (see Fig. 7). We obs&slow convergence
for the scalar unknow on the coarse meshes. On the fine hexahedral and pris-
matic meshes the convergence rate increases and becosetodbe second order.
On the tetrahedral meshes the convergence rate increades:&sbut just indi-
cates to the second order asymptotics. The flux unkngywshows the first-order
convergence on finer meshes.
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Solution

0.106

0.0953 0.0101

0.0847 0.0083

0.0741 0.00653

0.0635 0.00475

0.0529

0.00297

-0.0a24

00318

~0.0212 —-0.00236

~0.0106

3 ;

~-0.00591 =

Figure 7. Solution and error distribution for the problem with sharpdjents. Prismatic mesh,=
1/20.

Table 6.
The convergence results for the problem with sharp graslient
Hexahedral meshes Prismatic meshes Tetrahedral meshes

h €§ &5 £§ &5 €§ &5
1/10 456e-2 5.07e-2 8.0le-2 6.19%e-2 9.22e-2 1.15e-1
1/20 2.49e-2 2.84e-2 7.02e-2 6.63e-2 7.15e-2 7.72e-2
1/40 7.92e-3 1.07e-2 1.80e-2 1.93e-2 3.54e-2 4.75e-2
1/80 2.10e-3 3.94e-3 4.28e-3 5.47e-3 1.29e-2 2.52e-2

5.5. Convergence study: discontinuous diffusion tensor

In this section we consider the convergence towards a salir a problem with a
jumping diffusion tensor. Le® = (0, 1) be split into two non-overlapping subdo-
mainsQ® = QN {x < 0.5}, Q® = QN {x > 0.5}, with the interface defined by the

planex = 0.5, and tensoK jump across the interface. LE{(x) = K" for x ¢ Q()
where

3 1 0 10 3 0
KYV=11 3 0}, K®»%=( 3 1 o0
0 0 1 0 0 1

The spectral decompositidid’) = (W®)TADW() demonstrates a significant jump
of the eigenvalues and orientation of the eigenvectotis(aj:

AY = diag{4,2,1}, A ~diag{10.908 0.092 1}

0.707 Q707 O 0.957 Q290 O
wW ~ [ —0.707 Q707 O W@ ~ [ —0.290 Q957 0

?

0 01 0 01
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1

\

Figure 8. The solution isolines iny-plane for the problem with the jumping diffusion tensor.

0.0)

Table 7.
The convergence results for the problem with the jumpinfysgién tensor.
Hexahedral meshes Prismatic meshes Tetrahedral meshes
h €5 &5 £§ &5 &5 &5
1/10 3.38e-4 5.02e-3 2.99e-4 2.73e-3 4.68e-4  7.54e-3
1/20 8.64e-5 2.09e-3 1.37e-4 2.09e-3 1.67e-4  4.09e-3
1/40 2.18e-5 7.85e-4 3.45e-5 6.35e-4 4.62e-5 1.95e-3

We define the following exact solution of (2.1) willy = 9Q:

&) = 1-2y°+4xy+2y+6x, xeQW
T 1 35-2%+2xy+x+3y, xeQ@.

The numerical tests were performed on the hexahedral, gtisrand tetrahedral
meshes defined above. The meshes were generated so thdetfeecax = 0.5 is
approximated by the mesh faces exactly. The solution isslon thexy-plane are
shown in Fig. 8. The convergence results presented in Tatieribnstrate that the
discontinuity of the diffusion tensor does not affect thevargence rate for all the
considered meshes.

Conclusion

We have proposed and analyzed the new monotone finite voluetteohfor the dis-
cretization of the anisotropic diffusion equation on confal polyhedral meshes.
We have proved the non-negativity of the numerical solutidhe source term and
the initial guess are non-negative. The method is appkcabfull anisotropic het-
erogeneous diffusion tensors. The numerical experimestsodstrate the second-
order convergence for the scalar unknown and the first-azdevergence for the
flux variable (a) on unstructured polyhedral quasiuniforeshres and meshes with
moderately small aspect ratios and (b) for problems witlhlgignisotropic coeffi-
cients.
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